A cobalt(III) complex as a dual-modal probe for the detection of

sodium dithionite via MRI and fluorescence

Jiaqi Zhou,^a Zexiao Huang,^a Haoyan Xing,^a Yue Wang,^{a,*} Cheng Zhang,^a Zhuye

Shang,^a Qingtao Meng,^{a,b,*} Run Zhang,^c Zhiqiang Zhang,^{b,*}

Fig. S1 Mechanism diagram of the mass spectrum after identifying sodium dithionite with probe

Fig. S2 Probe H1 was used to identify the cyclic voltammetry curves before and after sodium dithionite in a 20 mM Tris-HCl buffer solution (pH=7.4) with the scan rate of 100 mVs⁻¹ at $25 \pm$

0.5°C. Potentials are reported vs. Ag/AgCl (3 M KCl) reference electrode.

Fig. S3 ¹H NMR spectrum (DMSO- d_6 , 400 MHz) of compound L1. Compound L1 is present in equilibrium between its enol (~85%) and keto (~15%) tautomers in DMSO- d_6

Fig. S4¹³C NMR spectrum (DMSO-d₆, 101 MHz) of compound L1. Compound L1 is present in

equilibrium between its enol (\sim 85%) and keto (\sim 15%) tautomers in DMSO- d_6

Fig. S5 Characterization of compound L1 by high resolution mass spectrometry, Compound L1 is present in equilibrium between its enol (\sim 65%) and keto (\sim 35%) tautomers in DCM

Fig. S6 ¹H NMR spectrum (DMSO-*d*₆, 400 MHz) of compound H1.

HZX-1 #9 RT: 0.11 AV: 1 NL: 2.76E+006 T: FTMS + p ESI Full ms [200.0000-1000.0000]

Fig. S7 Characterization of probe H1 by high resolution mass spectrometry

Fig. S8 The color changes of **H1** (10 μM) in Tris aqueous buffer (DMF:Tris=1:9, 20 mM, pH=7.4) upon addition of various analytes (300 μM): 1. Blank,2. S₂O₄²⁻, 3. HS⁻, 4. Br⁻, 5. Cl⁻, 6. F⁻, 7. HSO₃⁻, 8. HSO₄⁻, 9. S²⁻, 10. NO₂⁻, 11. NO₃⁻, 12. P₂O₇⁴⁻, 13. PO₄³⁻, 14. SO₃²⁻, 15. SO₄²⁻, 16. H₂O₂, 17. Cys, 18. Hcy, 19.HClO, 20. ONOO⁻)

Fig. S9 The changes of fluorescence intensities of H1 (10 μ M) with time in Tris buffer solution (DMF:Tris=1:9, pH=7.4). λ ex=420 nm, λ em=525 nm.

Fig. S10 Linear curve of emission intensity of H1 (10 μ M) at 525 nm versus Na₂S₂O₄ concentrations (0–300 μ M).

Fig. S11 Fluorescence colour photographs of **H1** (10 μ M) in coexistence with analytes (300 μ M) including 1. only **H1**, 2. S₂O₄²⁻, 3. HS⁻, 4. Br⁻, 5. Cl⁻, 6. F⁻, 7. HSO₃⁻, 8. S²⁻, 9. NO₂⁻, 10. NO₃⁻, 11. P₂O₇⁴⁻, 12. PO₄³⁻, 13. SO₃²⁻, 14. SO₄²⁻, 15. GSH, 16. Hcy, 17. Cys, 18. ONOO⁻, 19.HClO and 20.

Fig. S12 Transverse relaxation rate (r_2) stability curve in the Tris-HCl buffer solution of the probe H1 (10 μ M)

Fig. S13 Transverse relaxation rate (r_2) responses of H1 (10 μ M) towards Na₂S₂O₄ (300 μ M) in

coexistence with analytes including 1. HS⁻, 2. Br⁻, 3. Cl⁻, 4. F⁻, 5. HSO₃⁻, 6. S²⁻, 7. NO₂⁻, 8. NO₃⁻, 9. P₂O₇⁴⁻, 10. PO₄³⁻, 11. SO₃²⁻, 12. SO₄²⁻, 13. GSH 14. Hcy, 15. Cys, 16. ONOO⁻, 17.HClO and 18. H₂O₂ 19.S₂O₅²⁻, 20.S₂O₃²⁻, and 21.CO₃²⁻. (300 μ M).

Fig. S14 Relaxation efficiency evaluation, (a) Co³⁺ complex under varying concentrations of H1.
(b) Co²⁺ complex after reduction with Na₂S₂O₄.

Fig. S15 Cytotoxicity of A549 cells after incubation with different concentrations of H1 by MTT assay.

Fig. S16 Fluorescence emission spectra of H1 (10 μ M) in coexistence with Na₂S₂O₄ (300 μ M, Exposed to air for 30 minutes) in Tris buffer with pH = 7.4, excitation: 420 nm.