Application of 2D-Liquid Chromatography for the Separation of a Mixture of Isomeric and Structurally Related Azatryptophan Derivatives

Parinita Shaw¹, Pandidurai Sekar¹, Balasaheb Chavan^{1*}, Sharad Duche^{1*}, Arvind Mathur², Amrita Roy¹

¹Discovery Analytical Sciences, Biocon Bristol Myers Squibb Research & Development Center (BBRC), Bangalore, India.

²Discovery & Development Sciences, Bristol Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543-4000, United States.

CRediT author statement

Parinita Shaw: data collection, visualization, investigation, and writing experiments; Pandidurai Sekar: data collection; Balasaheb Chavan: data investigation, validation, and manuscript drafting; Sharad Duche: conceptualization, methodology, validation, supervision, reviewing, and editing; Amrita Roy: supervision, draft reviewing, and editing; Arvind Mathur: supervision, reviewing, and funding acquisition.

*Corresponding authors:

Sharad Duche- Discovery Analytical Sciences, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India.

Email: sharad.duche@syngeneintl.com

Balasaheb Chavan- Discovery Analytical Sciences, Biocon Bristol-Myers Squibb R&D Center, Syngene International Ltd, Biocon Park, Plot No. 2 & 3, Bommasandra IV Phase, Jigani Link Road, Bangalore 560099, India.

Email: <u>balasaheb.chavan@syngeneintl.com</u>

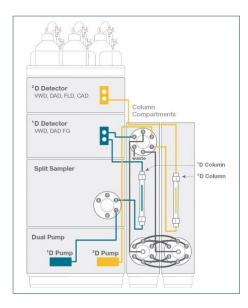
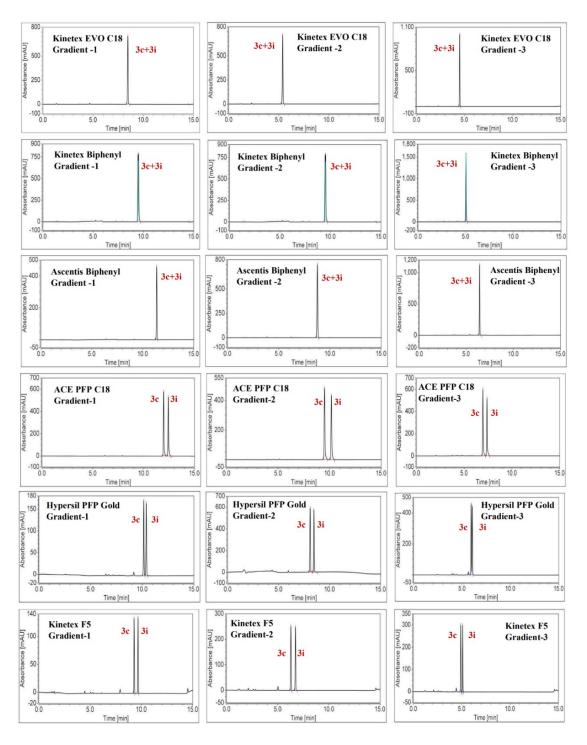



Figure S1. Schematic diagram of the Thermo Scientific Vanquish Online 2D-LC system.

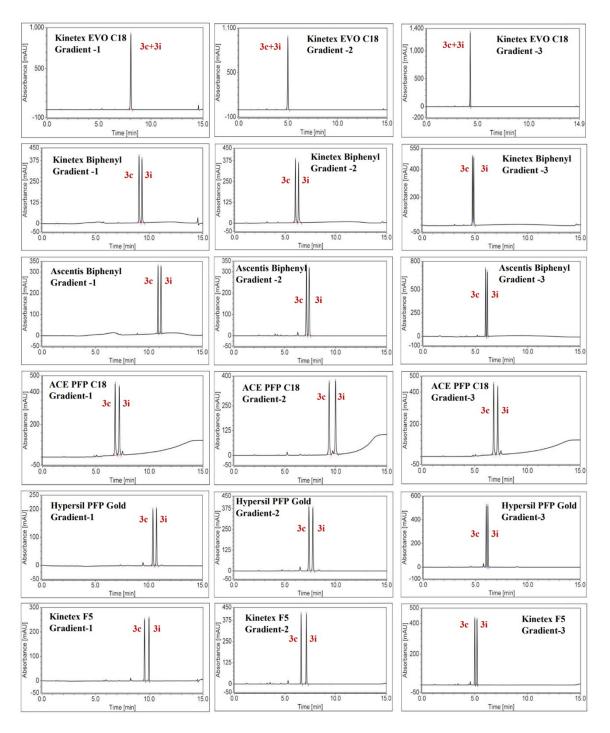


Figure S2: Chromatograms of separation of racemate 3c and 3i with mobile phase A as 0.05% TFA in water: ACN (95:5, v/v) and mobile phase B as water: ACN (5:95, v/v) with different stationary phases.

The chromatogram in above figure shows that, racemate 3c and 3i were coeluted with C18 and Ascentis biphenyl stationary phases, whereas split peak was observed with the Kinetex biphenyl column. The separation was observed only with the PFP stationary phases. The racemates were well separated using ACE PFP C18 column whereas slightly broad peak shapes were obtained with the Hypersil PFP Gold column. Best separation and peak shapes were observed with the Kinetex F5 column. (peak asymmetry is 0.98 and 0.99 for 3c and 3i, respectively).

Table S1 : Chromatograms of separation of racemate 3c and 3i with mobile phase A as 0.05% TFA in water: ACN (95:5, v/v)
and mobile phase B as water: ACN (5:95, v/v) with different stationary phases.

Column used in first dimension	Gradient	Peak Name	Retention time (min)	Peak asymmetry	Resolution	Remarks
K. (EVO C10	Gradient - 1	3c 3i	8.46	0.92	No	
Kinetex EVO C18 (100x4.6mm), 2.6µm	Gradient – 2	3c 3i	5.38	0.92	No	No separation
	Gradient - 3	3c 3i	4.50	0.93	No	
	Gradient - 1	3c 3i	9.47 9.51	NA	No	
Kinetex BPH (100x4.6mm),	Gradient – 2	3c 3i	6.49 6.55	NA	No	Split peak
2.6µm -	Gradient - 3	3c 3i	5.03 5.04	NA	No	
Ascentis [®] Express	Gradient - 1	3c 3i	11.37	1.07	No	
Biphenyl (100x2.1mm),	Gradient – 2	3c 3i	8.78	1.00	No	No separation
2.7µm	Gradient - 3	3c 3i	6.41	1.00	No	
	Gradient - 1	3c 3i	11.87 12.32	0.78 0.84	2.5	
ACE PFP C18 (150x4.6mm),	Gradient – 2	3c 3i	7.14	0.93 0.95	2.2	Peaks were well separated
3µm —	Gradient - 3	3c 3i	6.88 5.10	0.85 1.07	2.5	
Thermo Hypersil	Gradient - 1	3c 3i	18.59 19.05	0.96 0.95	3.3	
gold PFP (150x4.6mm), 1.9µm)	Gradient - 2	3c 3i	14.38 15.03	1.01 1.04	3.5	Peaks were well separated but peak
	Gradient - 3	3c 3i	9.58 10.05	0.97 0.96	2.9	shape is broad
Kinetex F5 (150x4.6mm), 2.6µm —	Gradient - 1	3c 3i	9.28 9.67	1.04 1.01	4.4	Peaks were well
	Gradient – 2	3c 3i	6.29 6.74	0.98 0.99	4.8	separated and best resolution and peak
	Gradient - 3	3c 3i	4.91 5.10	1.08 1.07	2.6	shape within all column's trials

Figure S3: Chromatograms of separation of racemate 3c and 3i with mobile phase A as 10 mM ammonium acetate in water (pH 4.5) and mobile phase B as 100% ACN with different stationary phases.

The chromatogram in above figure shows that, racemates 3c and 3i were not separated using the C18 stationary phase and less separation was observed with Kinetex biphenyl as well as Ascentis biphenyl stationary phases. The racemates were found to be well separated with all PFP columns whereas Kinetex F5 column gives a maximum resolution of 5.5 with good peak shape.

Column-ID	Gradient	Peak Name	Retention time (min)	Peak asymmetry	Resolution	Remarks
Kinetex EVO C18 (100x4.6mm), 2.6µm	Gradient - 1	3c	8.61	0.86	No	No separation between
	Gradient	3i	0.01	0.00	110	
	Gradient – 2	3c	4.97	0.90	No	3c and 3i
	Oraclent – 2	3i			INO	
	Gradient - 3	3c	4.27	0.93	No	
	Gradient - 3	3i	4.27	0.93	INO	
	Gradient - 1	3c	9.07	1.14	3.0	
	Gladient - I	3i	9.34	1.18	5.0	Separation observed
Kinetex BPH	Gradient – 2	3c	6.00	1.20	3.3	between 3c and 3i
(100x4.6mm), 2.6µm	Gradient – 2	3i	6.32	1.16	5.5	
		3c	4.76	1.13		
	Gradient - 3	3i	4.88	1.00	1.7	
		3c	10.85	0.97		
	Gradient - 1	3i	11.13	0.98	3.2	Separation observed
Ascentis® Express	Gradient – 2	3c	8.09	1.00	2.0	between 3c and 3i
Biphenyl		3i	8.47	0.96	3.8	
(100x2.1mm), 2.7µm	Gradient - 3	3c	5.98	1.03	2.1	
		3i	6.14	0.95		
	Gradient - 1	3c	11.82	1.00	3.7 5.1	Better resolution of 3c and 3i
		3i	12.26	0.93		
ACE PFP C18	Gradient – 2	3c	9.34	1.02		
(150x4.6mm), 3µm	Gradient – 2	3i	9.98	1.01		
	Gradient - 3	3c	6.80	1.09	3.5	
	Gradient - 5	3i	7.18	1.02		
	Gradient - 1	3c	10.38	0.93	3.0	
Thermo Hypersil	Gradient	3i	10.71	1.03	5.0	Separation observed
gold PFP	Gradient – 2	3c	7.37	0.97	3.2	between 3c and 3i
(150x4.6mm),	Gradient 2	3i	7.75	1.02	5.2	
1.9µm)		3c	6.03	0.93	1.7	
	Gradient - 3	3i	6.18	1.05	1.7	
	Gradient - 1	3c	9.56	1.05	4.0	
		3i	9.98	1.01	4.9	
Kinetex F5	Gradient – 2	3c	6.60	0.99	- 5.5	Best Separation
(150x4.6mm), 2.6		3i	7.12	1.04	5.5	-
μm	Gradient - 3	3c	5.00	1.03	2.9	
		3i	5.22	0.94	2.9	

Table S2: Chromatograms of separation of racemate 3c and 3i with mobile phase A as 10 mM ammonium acetate in water(pH 4.5) and mobile phase B as 100% ACN with different stationary phases.

Table S3: Chromatograms of separation of racemate 3c and 3i with mobile phase A as 10mM ammonium acetate in water (pH

 7.0) and mobile phase B as ACN with different stationary phases.

Column used in first dimension	Gradient	Peak Name	Retention time (min)	Peak asymmetry	Resolution	Remarks
Kinetex EVO C18 (100x4.6mm), 2.6µm —	Gradient - 1	3c 3i	8.06	1.16	No	
	Gradient – 2	3c 3i	4.96	1.47	No	No separation of 3c and 3i
	Gradient - 3	3c 3i	4.26	1.75	No	
Kinetex BPH	Gradient - 1	3c 3i	9.07 9.34	1.14 1.18	3.0	Separation of 3c and 3i
(100x4.6mm), 2.6µm	Gradient – 2	3c 3i	6.00 6.32	1.20 1.16	3.3	observed
2.0µ111	Gradient - 3	3c 3i	4.76 4.88	1.13 1.00	1.7	
Ascentis [®] Express	Gradient - 1	3c 3i	10.85 11.13	0.97 0.98	3.2	_
Biphenyl (100x2.1mm),	Gradient – 2	3c 3i	8.09 8.47	1.00 0.96	3.8	Baseline peak separation obtained
2.7µm	Gradient - 3	3c 3i	5.98 6.14	1.03 0.95	2.1	
	Gradient - 1	3c 3i	11.87 12.30	1.04 1.12	4.1	Better resolution of 3c and 3i as compared with other columns
ACE PFP C18 (150x4.6mm), 3μm	Gradient – 2	3c 3i	9.60 10.24	0.95	5.1	
	Gradient - 3	3c 3i	6.96 7.38	0.98 0.92	3.7	
Thermo Hypersil	Gradient - 1	3c 3i	10.4 10.74	0.95 0.94	3.2	
gold PFP (150x4.6mm),	Gradient – 2	3c 3i	7.39 7.78	0.93	3.3	Baseline peak separation obtained
1.9µm)	Gradient - 3	3c 3i	6.02 6.18	0.97 1.06	1.8	
	Gradient - 1	3c 3i	9.57 9.98	0.94 0.97	4.9	Highest resolution of 3c
Kinetex F5 (150x4.6mm), 2.6 μm	Gradient – 2	3c 3i	8.58 9.20	1.01 0.98	6.6	and 3i as compared with other columns
	Gradient - 3	3c 3i	5.00 5.22	1.02 0.93	2.9	

The coelution of the racemate 3c and 3i were observed using the C18 stationary phase. The racemates were separated with both biphenyl columns and Thermo Hypersil Gold PFP column but with low resolution. Better resolution was obtained with the ACE PFP C18 column whereas Kinetex F5 column gives a maximum resolution of 6.6 with good peak shape.

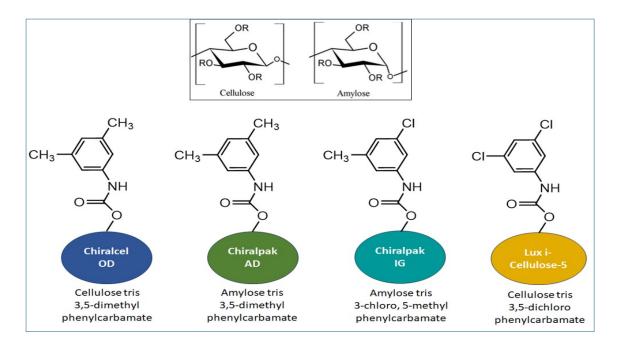
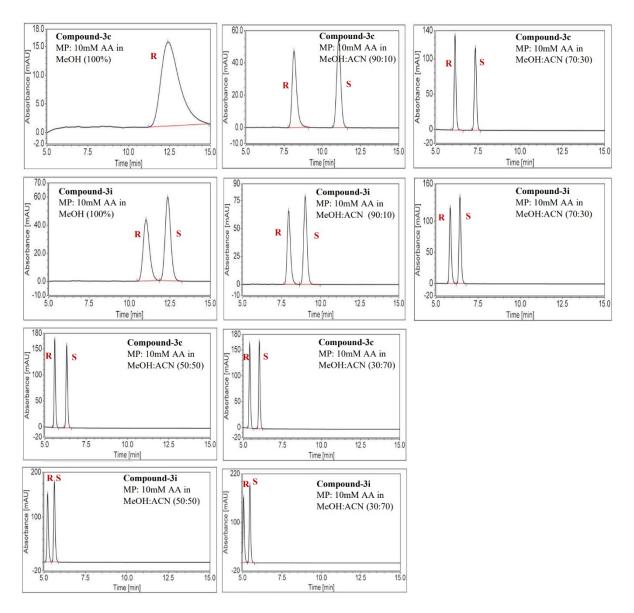



Figure S4: Structures of chiral stationary phases.

Stationary Phase	Chiralcel-OD-H						
Chromatographic conditions	Compound Name	Retention time (min)	Peak asymmetry	Resolution	Remarks		
0.1% DEA in MeOH	3c-(R+S)	12.53 NA	1.37 NA	NA	Single peak was observed for		
(100%)	3i- (R+S)	11.17 12.63	1.25 1.15	2.17	3c and separation was observed for 3i		
0.1% DEA in MeOH:	3c-(R+S)	8.23 11.30	1.41 1.08	6.00	Sharp peaks with maximum		
ACN (90: 10 v/v)	3i- (R+S)	7.98 9.05	1.25 1.15	2.84	resolution		
0.1% DEA in MeOH:	3c-(R+S)	6.20 7.44	1.21 1.12	5.84	Both peak separated but more		
ACN (70: 30 v/v)	3i- (R+S)	5.87 6.44	1.31 1.22	2.77	resolution required		
0.1% DEA in MeOH:	3c-(R+S)	5.68 6.38	1.23 1.20	4.31	Sharp peaks with less		
ACN (50: 50 v/v)	3i- (R+S)	5.21 5.60	1.29 1.18	2.38	separation		
0.1% DEA in MeOH:	3c-(R+S)	5.43 6.03	1.21 1.25	3.62	Sharp peaks with less		
ACN (30: 70 v/v)	3i- (R+S)	5.07 5.46	1.24 1.17	2.50	resolution comparatively		

Table S4. Chromatograms of separation of 3c (R and S) and 3i (R and S) enantiomers using the Chiralcel-OD-H column with the mobile phase as different combination of 0.1% DEA in MeOH and ACN.

With 0.1% DEA in methanol (100%) as a mobile phase, only one peak was observed for 3c, and two peaks were observed for 3i. All other combinations have provided the separation for the 3c and 3i enantiomers with best peak shapes and separation observed with the 0.1% DEA in methanol:ACN (90:10 v/v) ratio.

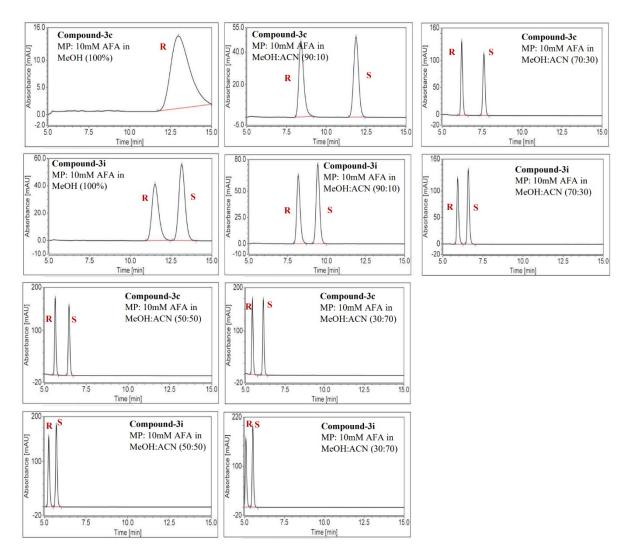


Figure S5: Chromatograms of separation of 3c (R and S) and 3i (R and S) enantiomers using the Chiralcel-OD-H column with the mobile phase as a different combination of 10 mM ammonium acetate in MeOH and ACN.

The above chromatograms showed that single peak was obtained for the 3c and two peaks for 3i (R and S) enantiomers. Best separation for 3c (R and S) and 3i (R and S) enantiomers with good peak shape were observed with 10% ACN. In other combinations of ammonium acetate and ACN, 3c and 3i enantiomers were eluted with good peak shape but with less resolution.

Stationary Phase	Chiralcel-OD-H						
Chromatographic conditions	Compound Name	Retention time (min)	Peak asymmetry	Resolution	Remarks		
	$2 = (\mathbf{D} \mid \mathbf{S})$	12.40	1.60	NIA			
10 mM Ammonium Acetate in MeOH	3c-(R+S)	NA	NA	NA	Single peak was observed		
(100%)	2: (D S)	11.03	1.22	1.99	for 3c, and separation was observed for 3i		
(10070)	3i- (R+S)	12.37	1.15	1.99	00301 Ved 101 51		
	$2 = (\mathbf{D} + \mathbf{S})$	8.15	1.43	5.66			
10 mM Ammonium Acetate in MeOH: ACN	3c-(R+S)	11.08	1.07	5.66	We observed best		
Acetate in MeOH: ACN $(90: 10 \text{ v/v})$	3i- (R+S)	7.95	1.27	2.77	separation		
()0.10 (//)		9.01	1.16				
	$2 \circ (\mathbf{D} \mid \mathbf{S})$	6.15	1.19	5.65	We observed good separation		
10 mM Ammonium Acetate in MeOH: ACN	3c-(R+S)	7.35	1.13				
(70: 30 v/v)	2: (D + C)	5.85	1.26	2 77			
(70.50 V/V)	3i- (R+S)	6.43	1.19	2.77			
	$2 (\mathbf{D} + \mathbf{C})$	5.61	1.15	4.44			
10 mM Ammonium	3c-(R+S)	6.33	1.20	4.44	Both isomers separated		
Acetate in MeOH: ACN (50: 50 v/v)	2: (D C)	5.23	1.30	2.47			
(50.50 474)	3i- (R+S)	5.63	1.18	2.47			
10 mM Ammonium Acetate in MeOH: ACN	3c-(R+S)	5.41	1.17	3.85	Both isomers separated but baseline needs to improve		
		6.03	1.16				
(30: 70 v/v)	2. (D + C)	5.07	1.28	2.57			
(000 00 00)	3i- (R+S)	5.47	1.17				

Table S5: Chromatograms of separation of 3c (R and S) and 3i (R and S) enantiomers using the Chiralcel-OD-H column with the mobile phase as a different combination of 10 mM ammonium acetate in MeOH and ACN.

Figure S6: Chromatograms of the separation of 3c (R and S) and 3i (R and S) enantiomers using the Chiralcel-OD-H column with the mobile phase as a different combination of 10 mM ammonium formate in MeOH and ACN.

Similar findings were observed with the ammonium formate buffer as with the ammonium acetate buffer. Above chromatograms showed that single peak was obtained for the 3c and two peaks for 3i (R and S) enantiomers with 100% ammonium formate in methanol. Best separation for 3c (R and S) and 3i (R and S) enantiomers with good peak shape were observed with 10% ACN. In other combinations of ammonium formate and ACN, 3c and 3i enantiomers were eluted with good peak shape but with less resolution.

Table S6: Chromatograms of the separation of 3c (R and S) and 3i (R and S) enantiomers using the Chiralcel-OD-H column with the mobile phase as a different combination of 10 mM ammonium formate in MeOH and ACN.

Stationary Phase	Chiralcel-OD-H						
Chromatographic conditions	Compound Name	Retention time (min)	Peak asymmetry	Resolution	Remarks		
10 mM Ammonium	3c-(R+S)	12.98	1.41	NA	Single neal was absorted for		
formate in MeOH	30-(K+3)	NA	NA	INA	Single peak was observed for 3c, and separation was		
(100%)	3i- (R+S)	11.52	1.23	2.24	observed for 3i		
(10070)	51- (K+S)	13.16	1.12	2.24	00501700 101 51		
	3c-(R+S)	8.40	1.38	6.15			
10 mM Ammonium formate in	30-(K+3)	11.87	1.06	0.15	Sharp peaks with maximum		
MeOH: ACN (90:10 v/v)	3i- (R+S)	8.18	1.24	3.09	resolution		
Web11: ACN (90.10 V/V)		9.43	1.11				
10 mM Ammonium	3c-(R+S)	6.23	1.22	6.21	Both peak separated but more resolution required		
formate in		7.62	1.08				
MeOH: ACN (70:30 v/v)	3i- (R+S)	5.93	1.32	3.09			
Web11: ACN (70.50 V/V)	51- (IC+5)	6.59	1.15	5.09			
10 mM Ammonium	3c-(R+S)	5.65	1.16	5.00			
formate in	30-(K+3)	6.48	1.11	5.00	Both the peaks merged with		
MeOH: ACN (50:50 v/v)	2i (P+S)	5.27	1.28	2.67	impurity		
MeOH. ACN (50.50 V/V)	3i- (R+S)	5.72	1.24	2.07			
	3c-(R+S)	5.43	1.23	4.32	Sharp peaks with less		
10 mM Ammonium		6.13	1.17				
formate in		5.09	1.24	2.75	resolution comparatively		
MeOH: ACN (30:70 v/v)	3i- (R+S)	5.53	1.15	2.75			

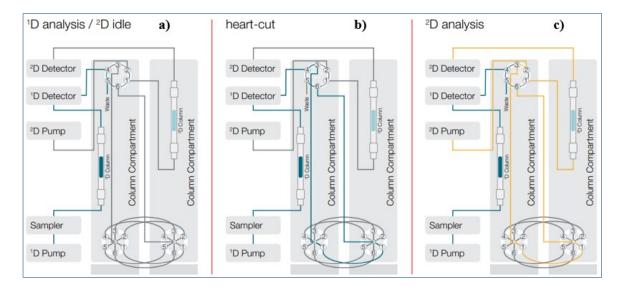


Figure S7. Flow schemes of the different steps in multi-heart-cut 2D-LC (example for loop 1)