Efficient Oil Spill Identification Utilizing Hydrophobic Sampling Paper and Gas Chromatography/Mass Spectrometry

Julia Shaw², Jolene Lesuk¹, Lola Rabinovitch¹, Taylor Filewood¹, Honoria Kwok¹, Jeffrey Yan¹, Pamela Brunswick¹, Tao Huan^{2*}, and Dayue Shang^{1*}

1.Pacific and Yukon Laboratory for Environmental Testing, Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, North Vancouver, BC, Canada

2. Department of Chemistry, Faculty of Science, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada, V6T 1Z1

*Corresponding Authors: thuan@chem.ubc.ca and Dayue.Shang@ec.gc.ca

Supplementary Information:

Figure S1: Collection of an oil slick sample with hydrophobic paper

Figure S2: Extraction of an oiled hydrophobic paper sample into binary solvent (2DCM:3HEX)

Figure S3: Oiled hydrophobic paper extracts including N60SD D0(S3A), N60SD D29(S3B), N60SD D43(S3C), N60SD D50(S3D), AMSB4 D0(S3E), ASMB4 D29(S3F), ASMB4 D43(S3G), ASMB4 D50(S3H), BKC1994 D0(S3I), BKC 1994 D29(S3J), BKC 1994 D43(S3K), BKC 1994 D50(S3L), GNW D0(S3M), MD D0(S3N), TN2018 D0(S3O), BKC ZF D0(S3P).

Table S1: Storage method of each weathered oil sample using the dipped hydrophobic paper method prior to extraction, where glass refers to glass vial with Teflon lined lid and plastic refers to retained in sealed plastic bag.

Timepoint for Sample	MD	N60SD	GNW	ASMB4	TN2018	BKC 1994	BKC ZF		
Day 0		Not stored, analyzed on day							
Day 29	na	Glass	na	Glass	na	Glass	na		
Day 43	na	Plastic	na	Plastic	na	Plastic	na		
Day 50	na	Plastic	na	Plastic	na	Plastic	na		

S1: GC/MS Analysis Standard Details

Sintef (ID: 2005-0439): An oil blend prepared by SINTEF Marine Environmental Technology (Trondheim, Norway) with a 2:3:1:4 ratio of heavy fuel oil (IFO 180): Russian crude oil (Kyrtael): Sicilian crude oil (Presioso): Aspheltenic oil from the North Sea (Grane).¹

Table S2: Summary of flagged diagnostic ratios of different non weathered environmental samples compared to source oils using different solvents for extraction from the hydrophobic paper.

Source	MD	MD	MD	Crude	Crude (a)	Crude (b)	Crude	BKC	BKC	BK
Oil										С
Solvent	DC	2DCM:3HE	HE	DCM	2DCM:3HE	2DCM:3HE	HEX	DC	2DCM:3HE	HE
	М	Х	Х		X	Х		М	X	Х
MD	20	19	20	60	56	58	59	46	46	46
Crude	54	53	54	18	19	18	16	51	53	50
BKC	57	55	56	55	53	54	53	23	17	20

S2: Solvent determination

1ml of each source was diluted with 10ml of binary solvent made of 40% DCM and 60% hexanes (HEX) (2DCM:3HEX) before being pitted onto 350ml of seawater in a 600ml beaker to form a slick. The slick was allowed to sit for 30 minutes so the binary solvent (2DCM:3HEX) could evaporate. 10ml of each solvent, DCM, binary (2DCM:3HEX), and HEX, was transferred into labelled 20ml vials for each source. Hydrophobic dipping papers were used to collect oil, as described in the methods section, before extraction. Marine diesels were extracted for 5seconds, crude oils were extracted for 10 seconds, and heavy fuel oils (BKC) were extracted for 20 seconds.

S3: Optimizing the concentration of oil extracts.

Preparatio	n method detail	Sources							95% confidence Interval
ASMB4 D0 Final Blowdown Vol. (mL)	Liquid-liquid concentration factor (LCF)	MD	N60SD	GNW	ASMB 4	TN2018	BKC 1994	BKC ZF	Lower Limit
10	1	66	62	61	22	59	55	51	55
5	2	67	63	61	15	58	55	49	54
1	10	64	66	62	13	60	54	49	54

Table S3: Summary of the number of flagged diagnostic ratios at three different concentrations of ASMB4 D0 when compared to source samples. Probable matches are highlighted in green.

Nitrogen blowdown was performed to determine if the concentration of extracted study samples can improve the results of analysis. Three levels of concentration were investigated including a liquid-toliquid concentration factor (LCF) of 1, where samples were taken from the original 10 mL extract, secondly a sample of 2 LCF taken after nitrogen blow down to 5 mL, and finally an LCF of 10 (10 LCF) taken after nitrogen blow down to 1 mL (SI Table S3). For weathered samples, the content of biomarkers is known to deplete over time, therefore increasing the concentration of the sample may improve the analysis by increasing the response from the low biomarker content.^{6,16,26} Alternatively, extending blowdown could result in biomarker losses and resulting increased concentration could overwhelm the detector, thus impeding the analysis. Ultimately, it was found that the 1 mL study samples, with 10 LCF, produced the lowest number of flagged biomarker ratios for correct source to sample comparisons, as demonstrated across ASMB4 D0 samples in Table S3. Greater response from the concentrated biomarkers likely allowed for increased consistency of integration during data analysis. Generally, the number of flagged ratios only decreased for the correct assignments as concentration increased while no discernible trend was observed for incorrect comparisons (SI Table S3, SI Table S4). It is likely that the increased consistency of integration will have a larger impact on the number of flagged diagnostic ratios for the correct assignment, as these samples should present relative differences of less than 14%.²⁵ It is recognized that at low concentrations, inconsistencies in integration of peaks may exaggerate the relative percent difference consequentially increasing the number of flagged ratios. For mismatched comparisons, biomarker ratio comparisons between study samples and alternative sources are already expected to exceed the 14% relative error threshold. Therefore, exaggeration of the relative percent difference due to inconsistencies in integration would have little effect on the number of flagged ratios produced by an incorrect comparison. Further data for comparison of concentration results can be found in supplemental information (SI Table S4). Based on current study results, it was logical to conclude that 10 times concentration of sample extracts was optimal, and this procedure was incorporated into the current study for environmental spill assessments.

S4: 95% confidence Intervals

The 95% confidence intervals were calculated using a one tailed t-distribution by the formula \bar{x} -t*S/ \sqrt{n} where \bar{x} is the mean number of flags produced from incorrect source to environmental sample comparisons for a particular environmental sample, t is the critical t value, S is the standard deviation, and n is the number of observations. To determine the critical t value a significance level of 0.05 was chosen. As there were 6 incorrect sources to sample comparisons for each environmental sample, there were 5

degrees of freedom by the formula n-1. The test was considered a one tailed test as only values which were significantly lower than the mean number of flags yielded from incorrect source to environmental samples were of interest to the study. Therefore, this calculation used a critical t value of 2.02 based on the standardized table for critical t values.

Table S4: Summary of number of flagged ratios for each comparison as well as the mean, standard deviation, and the 95% confidence interval of incorrect comparisons for each environmental sample. Positive matches are highlighted in green while inconclusive matches are highlighted in orange.

Sample Oil	Final Vol.	Weathering	N60SD	MD	GN W	ASMB 4	TN201 8	BKC199 4	BKC ZF	Mean False Match	Std Dev	Lower conf. limit (95%)
N60SD	10 mL	D50	61	50	48	68	68	62	67	61	9	53
N60SD	10 mL	D43	52	49	49	67	66	67	64	60	9	53
N60SD	10 mL	D29	48	51	49	66	66	66	68	61	9	54
N60SD	10 mL	D0	26	41	51	63	62	65	66	58	10	50
N60SD	5 mL	D50	56	48	48	66	66	61	66	59	9	52
N60SD	5 mL	D43	47	45	52	64	65	65	64	59	9	52
N60SD	5 mL	D29	51	48	47	65	67	68	67	60	10	52
N60SD	5 mL	D0	25	41	53	63	64	64	65	58	10	50
N60SD	1 mL	D50	56	51	46	69	59	60	64	58	8	51
N60SD	1 mL	D43	46	53	52	65	63	65	65	61	6	55
N60SD	1 mL	D29	46	50	51	63	64	60	67	59	7	53
N60SD	1 mL	D0	14	50	61	63	64	65	66	62	6	57
MD	10 mL	D0	55	30	48	66	67	66	66	61	8	55
MD	5 mL	D0	56	25	49	65	65	66	65	61	7	55
MD	1 mL	D0	51	22	51	64	67	63	62	60	7	54
GNW	10 mL	D0	54	47	25	61	64	54	65	58	7	52
GNW	5 mL	D0	59	47	23	60	63	54	60	57	6	52
GNW	1 mL	D0	54	49	21	64	61	56	60	57	5	53
ASMB4	10 mL	D50	69	64	59	53	60	61	66	63	4	60
ASMB4	10 mL	D43	69	68	63	46	64	63	60	65	3	62
ASMB4	10	D29	69	67	65	58	65	65	63	66	2	64

	mL											
ASMB4	10 mL	D0	62	66	61	22	59	55	51	59	5	55
ASMB4	5 mL	D50	66	67	62	49	62	55	58	62	5	58
ASMB4	5 mL	D43	66	66	65	39	61	61	61	63	3	61
ASMB4	5 mL	D29	69	65	67	52	63	62	57	64	4	60
ASMB4	5 mL	D0	63	67	61	15	58	55	49	59	6	54
ASMB4	1 mL	D50	67	65	66	52	53	54	62	61	6	56
ASMB4	1 mL	D43	66	66	66	41	59	59	59	63	4	59
ASMB4	1 mL	D29	64	63	67	45	61	61	59	63	3	60
ASMB4	1 mL	D0	66	64	62	13	60	54	49	59	6	54
TN2018	10 mL	D0	63	69	64	61	13	61	65	64	3	61
TN2018	5 mL	D0	64	69	65	61	12	61	63	64	3	61
TN2018	1 mL	D0	63	70	61	58	15	59	62	62	4	59
BKC199 4	10 mL	D50	59	53	50	66	66	59	65	60	7	54
BKC199 4	10 mL	D43	60	59	61	62	68	55	63	62	3	60
BKC199 4	10 mL	D29	65	67	64	61	64	46	58	63	3	61
BKC199 4	10 mL	D0	63	59	58	58	64	21	57	60	3	57
BKC199 4	5 mL	D50	60	58	55	63	64	56	64	61	4	58
BKC199 4	5 mL	D43	63	60	63	56	65	49	62	62	3	59
BKC199 4	5 mL	D29	66	68	63	59	62	43	58	63	4	59
BKC199 4	5 mL	D0	65	60	60	53	62	18	56	59	4	56
BKC199 4	1 mL	D50	63	63	65	62	62	49	59	62	2	61
BKC199 4	1 mL	D43	64	62	66	59	65	40	61	63	3	61

BKC199 4	1 mL	D29	65	68	65	61	59	37	60	63	4	60
BKC199 4	1 mL	D0	64	61	59	55	61	9	55	59	4	56
BKCZF	10 mL	D0	68	66	63	57	64	56	22	62	5	58
BKCZF	5 mL	D0	66	67	65	58	60	57	15	62	4	59
BKCZF	1 mL	D0	65	67	64	57	62	55	15	62	5	58

		•	
NR-1-M-Ada	n/1,2-DM	De/1-M-Adam	
NR-1-M-Adam	2-E-Adam	1-M-Adam/2-M-Adam	
NR-i-C13/2	-M-tetralin	1.35-TM-Adam/tr-1.4-	4
NR-c	1,3,4-TM	DM-Adam	
NR-C6	-/C7-Benz	1,3,5-TM-Adam/1,3,6- TM-A dam	
NR-2-E-A	dam/i-C14	C1-de_s/C2-de_s	1
NF	-BS1/BS2	tetralin/2-M-tetralin	
NR-C3-de	peak/BS2	1 2 5 7-TeM-Adam/2-E-	4
N	R-B/2-E-N	Adam	
NR-2-E-N/2,6-	2,7 DM-N	1,2,5,7-TeM-Adam/BS10	
NF	-BS4/BS5	m-C6-Tol/BS10	1
NR-Br-Alk-16	9-3/n-C15		
NF	-BS5/BS6	m-/o-C6-tol	
NF	-BS8/BS9	C7-/C10-Benz	
NR-m	-/o-C8-Td	BS3/BS5	1
NR-B	S10/Norpri	1.6 DM N/4 314 7 DM N	1
NR-Napr ratio	/m-C9-Tol	ratio	
NR-C 10-Be	nz/n-C11	AN Y/ 1,2-DM-N	
NR	n-C17/Pri	Diam/4-M-Diam	1
	IR-Pri/Phy	FAME 12 0/160	1
NR-	n-C18/Phy		
NR-4-M-D	ot/1-M-Dbt	1,3,7 TM-N/1,3,6-TM-N	
NR-Br-Alk-22	5-3/n-C19	BS 8/B S10	
NR-2-M-Ph	e/1-M-Phe	8H-A/8H-Phe	1
NR-FAME	16:0/18:0		-
NR-C2-dbt_s	/C2-phe_s	1-M-F/8H-Phe	
NR-2-M	Fl/4-M-Py	FAME 14:0/16:0	
NR-C15-Benz	C17-Benz	FAME 16:1/16:0	1
NR-B	aF/4-M-Py	1 E Dho/17 DM Dho	1
NR-Re	ene/29bb	1-E-Fney 1,7-D MiFne	
NR-2-M-	Py/4-M-Py	C3-dbt_s/C3-phe_s	
NR-1-M-	Py/4-M-Py	FAME 18:2/18:0	
Figure S4: Visual summary of flagged diagt	Tr/C24Tr	b FAME-18:1+18:3/18:0	
rigure 54. Visual summary of magged diagi		IOU DIAIIK.	4
NR-	27Ts/30ab	C211#C231r	
NR-SC26/ RC	26+SC27	C23Tr/phy-tol	
NR-2	7Tm/30ab	FAME 20:0/18:0	
NR-	28ab/30ab	C20TA/C21TA	1
NR-SC	8/RC26 +		
NR-	and/suab	C21TA/ RC26+SC27 TA	
NR	300/ 30ab	C28(22S)/30ab	
NR-RC28/RC	20+3027	BaPv/BePv	1
NR-3	abo/ 30ab		1
NR	SUG/ SUBD	29 aa 5/2 9a aR	

				Ion	Table				
Time Segment	1	2	3	4	5	6	7	8	9
Start Time	7.0	20.6	24.1	26.7	30.5	34.6	39.0	44.1	49.1
Dwell Time	50	20	15	18	14	14	16	20	20
	83 85	83	74	74	74	74	74	85	
Ions	85	85	83	83	83	83	83	92	92
10113	92	92	85	85	85	85	85	106	106
	104	104	92	92	92	92	92	177	177
	106	106	106	106	106	106	106	191	191
	113	113	113	113	113	192	191	205	205
	128	123	123	123	123	194	206	217	217
	134	128	128	152	170	198	212	218	218
	135	135	142	154	178	202	216	230	231
	138	142	152	156	180	206	219	231	242
	148	148	154	162	184	208	220	234	245
	149	152	156	166	186	212	226	242	252
	152	154	162	168	188	216	228	244	276
	163	156	168	170	192	219	230	245	278
	166	162	169	176	194	220	231	252	412
	177	166	170	180	198	226	234	256	
	180	169	176	184	206	234	242	276	
		177	179	186	208	290	244	412	
		179	187	187	212		256		
		180	188	188	225		290		
				193					

Table S6: SIM Ions m/z table

Table S7: List of biomarker ratios in the traditional CEN method included in the study.

Biomarker diagnostic	Full compound names	Normative (N) or	Included or excluded
ratios	in ratio	informative (I)	from study
	1-methyl-adamantane/		
NR-1-M-Adam/1,2-DM-Adam	1,2-dimethyl-adamantane	N	Included
	1-methyl-adamantane/ 2-		
NR-1-M-Adam/2-E-Adam	ethyl-adamantane	N	Included
	2,6-dimethylundecane/2-		
	methyl-1,2,3,4-		
NR-i-C13/2-M-tetralin	tetrahydronaphtalene	N	Included
	cis-1,3,4-trimethyl-		
NR-c-1,3,4-TM-Adam/2-E-	adamantane/2-ethyl-		
Adam	adamantane	N	Included
	hexyl-benzene/heptyl-		
NR-C6-/C7-Benz	benzene	N	Included
	2-ethyl-		
	adamantane/2,6,10-		
NR-2-E-Adam/i-C14	trimethylundecane	N	Included
	bicyclic sesquiterpane		
NR-BS1/BS2	1/bicyclic sesquiterpane 2	N	Included
	C3-decalin/ bicyclic		T 1 1 1
NR-C3-de peak/BS2	sesquiterpane 2	N	Included
	biphenyl/2-ethyl-) T	T 1 1 1
NR-B/2-E-N	naphthalene	N	Included
	2-ethyl-naphthalene/		
	2,6+2,7-dimethyl-	NT	т 1 1 1
NR-2-E-N/2,6+2,7 DM-N		IN	Included
	bicyclic sesquiterpane	N	Tushudad
NR-BS4/BS5	4/bicyclic sesquiterpane 5	N	Included
	160 3/ pontadagana	N	Included
NR-Br-alk-169-3/n-C15	higualia associatornana	IN	Included
	5/biovelie sesquiterpane 6	N	Included
NK-B35/B30	bicyclic sesquiterpane	1	Included
	8/bicyclic sesquiterpane 9	N	Included
NR-D30/D39	meta-octyl-toluene/ortho-	11	Included
NP m /o C8 Tol	octyl-toluene	Ν	Included
NIX-III-/0-00-101	bicyclic sesquiterpane 10/	14	Included
	2 6 10-		
	trimethylpentadecane		
NR-BS10/Norpri	(Norpristan)	Ν	Included
	2.6.10-		
	trimethylpentadecane		
	(Norpristan)/ meta-nonyl-		
NR-Norpri/m-C9-Tol	toluene	Ν	Included
	decyl-benzene/ n-undecyl		
NR-C10-Benz/n-C11-CyC6	cyclohexane	Ν	Included
	heptadecane/2,6,10,14-		
	tetramethylpentadecane		
NR-n-C ₁₇ /Pri	(Pristane)	N	Included
NR-Pri/Phy	2,6,10,14-	Ν	Included

	tetramethylpentadecane		
	(Pristane)/ 2,6,10,14		
	tetramethylhexadecane		
	(Phystane)		
	octadecane/ 2.6.10.14		
	tetramethylhexadecane		
NR-n-C ₁₀ /Phy	(Phystane)	Ν	Included
	4-methyl-		
	dibenzothiophene/ 1-		
NR-4-M-Dbt/1-M-Dbt	methyl-dibenzothiophene	N	Included
	Branched alkane 225-3/		
NR-Br-alk-225-3/n-C19	nonadecane	N	Included
	2-methyl-phenanthrene/		morwaou
NR-2-M-Phe/1-M-Phe	1-methyl-phenanthrene	N	Included
NR-EAME 16:0/18:0	FAME 18 0/ FAME 16 0	N	Excluded
	C2-dibenzothiophenes/	1	Excluded
	C2-nbenanthrenes		
NR C2 dbt a/C2 pba a	anthracenes	N	Included
NR-C2-ubt_s/C2-pile_s	2-methyl-fluoranthene/4-	1	Included
	methyl_nyrene	N	Included
NR-2-IVI-F1/4-IVI-Py	netryi-pyrene pentadecyl		Included
	enzene/hentadecul		
ND C15 Dana/C17 Dana	benzene	N	Included
NR-C15-Bell2/C17-Bell2	benzo(a) fluorana/4	1	Included
	methyl pyrene	N	Included
NR-Bar/4-M-Py	1 methyl 7 isopropyl	1	Included
	nhanantrana/24 athyl		
	$5_{\alpha}(\mathbf{H}) 148 (\mathbf{H}) 178(\mathbf{H})$		
	$3u(\Pi), 14p(\Pi), 1/p(\Pi), 20(R+S)$ shalestane	N	Included
NR-Retene/ 29bb	20(R+S)- choiestaile	IN	Included
	2-methyl-pyrene/4-	N	Included
NR-2-M-Py/4-M-Py	1 methyl pyrene	IN	Included
	r-methyl-pyrene/4-	N	Included
NR-1-M-Py/4-M-Py	methyl-pyrene	IN	Included
	C23 tricyclic terpane/C24	N	T., . 1., 1., 1
NR-C23Tr/C24Tr	tricyclic terpane	IN	Included
	5α (H),14p(H),1/p(H),		
	20(R+S)-cholestane /24-		
	$etnyl-3\alpha(H), 14p$		
	(H), I/p(H), 20(R+S)-	N	T., . 1., 1., 1
NR-27bb/29bb		IN	Included
	$18\alpha(H)-22,29,30-$		
	218(11) horses (horses)	N	Trachadad
NR-27Ts/30ab	$21p(\Pi)$ -nopane (nopane)	1N	included
	c20,205-triaromatic		
	C27 200 trians states		
	C2/,20S-triaromatic	NT	Ter = 1 - 1 - 1
NR-SC26/ RC26+SC27 TA	sterane	IN IN	included
	$1/\alpha(H)-22,29,30-$		
	trisnorhopane/1/ $\alpha(H)$,	NT.	T 1 1 1
NR-27Tm/30ab	21B(H)-hopane (hopane)	N	Included

	17α(H), 21β(H)-28,30-		
	bisnorhopane/17α(H),		
NR-28ab/30ab	$21\beta(H)$ -hopane (hopane)	Ν	Included
	C28.20S-triaromatic		
	sterane/C26.20R-+		
	C27.20S-triaromatic		
NR-SC28/RC26 + SC27 TA	sterane	Ν	Included
	17α(H), 21β(H)-30-		
	norhopane/17 α (H).		
NR-29ab/30ab	$21\beta(H)$ -hopane (hopane)	Ν	Included
	$18\alpha(H)$ -oleanane/17 $\alpha(H)$.		
NR-300/30ab	$21\beta(H)$ -hopane (hopane)	Ν	Included
	C28.20R-triaromatic		
	sterane/C26.20R-+		
	C27,20S-triaromatic		
NR-RC28/RC26+SC27 TA	sterane	Ν	Included
	$17\alpha(H), 21\beta(H), 22(S)$ -		
	homohopane/17α(H),		
NR-31abS/30ab	$21\beta(H)$ -hopane (hopane)	Ν	Included
	gammacerane/17α(H),		
NR-30G/30ab	21β (H)-hopane (hopane)	Ν	Included
	Decalin/ 1-methyl-		
De/1-M-Adam	adamantane	Ι	Included
	1-methyl-adamantane/2-		
1-M-Adam/2-M-Adam	methyl-adamantane	Ι	Included
	1,3,5-trimethyl		
135 TM Adam/tr 14 DM	adamantane/trans-1,4-		
Adam	dimethyl adamantane	Ι	Included
	1,3,5-trimethyl		
1 3 5-TM-Adam/1 3 6-TM-	adamantane/1,3,6-		
Adam	trimethyl adamantane	Ι	Included
C1-de_s/C2-de_s	C1-decalins/C2-decalins	Ι	Included
	1,2,3,4		
	tetrahydronaphtalene/2-		
	methyl-1,2,3,4-		
tetralin/2-M-tetralin	tetrahydronaphtalene	Ι	Included
	1,2,5,7-tetramethyl-		
1 2 5 7-TeM-Adam/2-F-	adamantane/2-ethyl-		
Adam	adamantane	Ι	Included
	1,2,5,7-tetramethyl-		
	adamantane/bicyclic		
1,2,5,7-TeM-Adam/BS10	sesquiterpane 10	Ι	Included
	meta-hexyl-toluene/		
m-C6-Tol/BS10	bicyclic sesquiterpane 10	I	Included
	meta-octyl-toluene/ortho-		
m-/o-C6-tol	octyl-toluene	Ι	Included
	heptyl-benzene/decyl-		
C7-/C10-Benz	benzene	Ι	Included
	bicyclic sesquiterpane		
BS3/BS5	3/bicyclic sesquiterpane 5	Ι	Included

	1,6-dimethyl-		
	naphthalene/1,3+1,7-		
1,6-DM-N/1,3+1,7-DM-N	dimethyl-naphthalene	Ι	Included
ANY/ 1,2-DM-N	acenaphthylene	Ι	Included
	diamantane/4-methyl-		
Diam/4-M-Diam	diamantane	Ι	Included
FAME 12:0/16:0	FAME 12.0/ FAME 16.0	Ι	Excluded
	1,3,7-trimethyl-		
	naphthalene/1,3,6-		
1,3,7 TM-N/1,3,6-TM-N	trimethyl-naphthalene	Ι	Included
	bicyclic sesquiterpane		
	8/bicyclic sesquiterpane		
BS8/BS10	10	Ι	Included
	1,2,3,4,5,6,7,8-		
	octahydroanthracene		
	/1,2,3,4,5,6,7,8-		
8H-A/8H-Phe	octahydrophenanthrene	Ι	Included
	1-methyl-fluorene		
	/1,2,3,4,5,6,7,8-		
1-M-F/8H-Phe	octahydrophenanthrene	Ι	Included
FAME 14:0/16:0	FAME 14.0/ FAME 16.0	Ι	Excluded
FAME 16:1/16:0	FAME 16.1/ FAME 16.0	Ι	Excluded
	1-ethyl-phenanthrene/		
	1,7-dimethyl-		
1-E-Phe/1,7-DM-Phe	phenanthrene	Ι	Included
	C3-		
	dibenzothiophenes/C3-		
	phenanthrenes	-	
C3-dbt_s/C3-phe_s	anthracenes		Included
FAME 18:2/18:0	FAME 18.2/ FAME 18.0	Ī	Excluded
FAME 18:1 +18:3/18:0	FAME 18.0/ FAME 16.0	I	Excluded
	C21 tricyclic terpane/C23	_	
C21Tr/C23Tr	tricyclic terpane	I	Included
	C23 tricyclic		
	terpane/phytanyl-toluene		
	(1-methyl-3-	T	T 1 1 1
C23Tr/phy-tol	phytanylbenzene)	l	Included
FAME 20:0/18:0	FAME 20.0/ FAME 18.0	l	Excluded
	C20-triaromatic		
	sterane/C21-triaromatic	т	T 1 1 1
C20TA/C21TA	sterane	1	Included
	/C26,20R-+C27,20S-	т	T 1. 1. 1
C21TA/ RC26+SC27 TA	C28 triane	1	included
	$\frac{128}{12}$		
	terpane/1/ $\alpha(H)$, 21p(H)-	т	Included
C28(22S)/30ab	honzo (a) pyrana /honza		Included
	(a) pyrene /benzo	т	Included
BaPy/BePy	(e) pyrene		Included
	$\begin{array}{c} 24 \text{-eunyl-} \\ 5\alpha(11) 14\alpha(11) 17\alpha(11) \end{array}$	т	Inclusion
29aa5/29aaR	υ(Π),14α(Π),1/α(Π),		included

20S- cholestane/ 24-	
ethyl-	
5α(H),14α(H),17α(H),	
20R- cholestane	

NR=Normative ratio