Supporting Information

The highly specific fluorescence visualizing of mitochondrial peroxynitrite via a naphthalimide probe

Fangyun Xin ^{a,*}, Haixu Wang ^a, Yuanqian Yang ^a, Hong Wang ^a, Mingming Xing ^a, Yao Fu ^a, Ying Tian ^{a,*}, Yong Tian ^{b,*}

^a School of Science, Dalian Maritime University, Dalian 116026, PR China

^bCollege of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China

Contents

- 1. Preparation of ROS
- 2. Synthetic route of Mito-NAP-ONOO
- 3. Characterizations of Mito-NAP-ONOO
- 4. Characterizations of the reaction product of Mito-NAP-ONOO with ONOO-
- 5. The dose-dependent absorption responses of Mito-NAP-ONOO to ONOO-
- 6. The dose-dependent fluorescence responses of Mito-NAP-ONOO to ONOO-
- 7. The interference experiments
- 8. The colocalization analyses

1. Preparation of analytes

ONOO-

0.6 M NaNO₂ and 0.7 M H_2O_2 (acidified by 0.6 M HCl) were simultaneously and rapidly added into 1.2 M NaOH solution at 0 °C for stirring. After the solution is diluted 10 times, the concentration is calibrated by the absorbance at 301 nm. (Extinction coefficient is 1670 cm⁻¹ M⁻¹).

H₂O₂, TBHP, NaClO, NaNO₂, KO₂, Hcy, Cys, GSH

The above analytes with a concentration of 10 mM was prepared from the commercial available chemicals and solutions by ultra-pure water.

•OH

The hydroxyl radical was made by Fenton reaction, putting an equivalent amount of hydrogen peroxide (H_2O_2) into the Iron dichloride solution (FeCl₂).

NO

Nitric oxide (NO) was generated by sodium nitroprusside.

${}^{1}O_{2}$

Singlet oxygen (¹O₂) was generated from NaOCl and H₂O₂.

2. Synthetic route of Mito-NAP-ONOO

Schem. S1. Synthetic route of Mito-NAP-ONOO

3. Characterizations of Mito-NAP-ONOO

¹H NMR spectrum of Mito-NAP-ONOO: (400 MHz, CD₃OD) δ: 8.55 (d, 1H), 8.51 (d, 1H), 8.45 (d, 1H), 8.33 (d, 1H), 7.97 (t, 1H), 7.72-7.68 (m, 3H), 7.31 (d, 1H), 7.22 (t, 1H), 7.09 (d, 2H), 4.40 (t, 2H), 3.82 (s, 3H), 3.10 (t, 2H).

¹³C NMR spectrum of Mito-NAP-ONOO: (600 MHz, DMSO-d₆) δ: 169.03, 163.58, 161.56, 159.08, 151.58, 149.50, 137.30, 137.03, 131.84, 131.72, 129.04, 128.75, 127.86, 124.89, 123.65, 123.03, 122.10, 121.11, 120.31, 116.64, 115.76, 55.94, 35.92.

High-resolution mass spectrum of Mito-NAP-ONOO: ESI-MS calcd. for [M + H⁺]: 485.1093, found: 485.1166.

Fig. S1. ¹H NMR spectrum of Mito-NAP-ONOO

4. Characterizations of the reaction product of Mito-NAP-ONOO with ONOO-

¹H NMR (600 MHz, DMSO-d₆) δ: 11.91 (s, 1H), 8.60 (s, 2H), 8.54 (dd, 1H), 8.46 (s, 1H), 8.34 (s, 1H), 7. 76 (dd, 1H), 7.31 (s, 1H), 7.23 (d, 1H), 7.15 (s, 1H), 4.38 (t, 2H), 3.07 (t, 2H).

¹³C NMR (600 MHz, DMSO-d₆) δ: 164.00, 163.31, 160.72, 159.20, 149.45, 137.01, 133.98, 131.46, 129.58, 129.29, 125.94, 123.60, 122.79, 122.06, 112.99, 110.36, 36.13.

ESI-MS calcd. for [M + H⁺]: 319.1004, found: 319.1079.

Fig. S4. ¹H NMR spectrum of the reaction product of probe with ONOO-

Fig. S5. ¹³C NMR spectrum of the reaction product of probe with ONOO-

Fig. S6. HR-MS spectrum of the reaction product of probe with ONOO-

5. The dose-dependent absorption responses of Mito-NAP-ONOO to ONOO-

Fig. S7. Absorption spectra of the probe (10 μ M) reacting with ONOO⁻ (0-50 μ M).

6. The dose-dependent fluorescence responses of Mito-NAP-ONOO to ONOO-

Fig. S8. The dose-dependent fluorescence responses of the probe with $ONOO^{-}$ (0-50 μ M).

7. The interference experiments

Fig. S9. Fluorescence response of the probe (10 μM) toward ONOO⁻ (50 μM) in the presence of different analytes. (1) Blank; (2) H₂O₂; (3) OCl⁻; (4) TBHP; (5) NO; (6) Hcy; (7) Cys; (8) GSH; (9) NO₃⁻; (10) NO₂⁻; (11) ¹O₂; (12) •OH; (13) H₂S. Inset: the corresponding photographs under handheld UV lamp.

8. The colocalization analyses

Fig. S10. The colocalization imaging of HeLa cells treated with probe (10 μ M) and Mito-Tracker Deep Red (1 μ M) by confocal microscope.