Supplementary Information

Dual detection of hypervirulent genes of *Klebsiella pneumoniae* using a single CRISPR-Cas12a system modulated by entropy-driven circuits

Wenqiao Long^{ab,1}, Qin Li^{a, 1}, Tingting Jin^a, Zhishun Lu^a, Fangfang Hu^a, Hua Zhang^{*a}, Yongjie Xu^{*ab}

^aDepartment of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou, China

^bDepartment of Laboratory Medicine, Zunyi Medical University, Zunyi 563000, Guizhou, China

Keywords: Hypervirulent genes, One-pot detection, Self-assembly, Trans-cleavage activity, Multiplex detection, Point-of-care testing

EDC	Name	Sequence (5'-3')
EDC p1	scaffold p1	CAATGGATGTGGCTTGACGTTTCGGAGGGCGCCG
		TAAGTTAGTTGGAGACGTAGG
	reporter p1	cy3-CCCTCCGAAACGTCAAGCCA-BHQ2
	trigger p1	AGTCCTACGTCTCCAACTAACTTACGG
	fuel p1	TCTCCAACTAACTTACGGCGCCCTCCGAAACGTC
		AAGCCACAT
	rmpA p1	CCGAAACGTCAAGCCACATCCATTG
EDC p2	scaffold p2	GGAAAGGACAGAAAGCCAGTGGACGACCGCCCC
		GTAAGTTAGTTGGAGACGTAGG
	reporter p2	BHQ1-CGGTCGTCCACTGGCTTTCT- FAM
	trigger p2	AGTCCTACGTCTCCAACTAACTTACGG
	fuel p2	TCTCCAACTAACTTACGGGGGGGGGTCGTCCACTGG
		CTTTCTGTC
	<i>peg-344</i> p2	CGTCCACTGGCTTTCTGTCCTTTCC
EDC p3	scaffold p3	AGGGAAATGGGGAGGGTACAAAATGAGGGCGCC
		GTAAGTTAGTTGGAGACGTAGG
	reporter p3	GCCC/iBHQ2dT/CATTTTGTACC/iCy3/CTCCC
	trigger p3	AGTCCTACGTCTCCAACTAACTTACGG
	fuel p3	TCTCCAACTAACTTACGGCGCCCTCATTTTGTACC
		CTCCCC
	<i>rmpA</i> p3	CATTTTGTACCCTCCCCATTTCCCT
EDC p4	scaffold p4	GGAGGCGCGGGAAAGGACAGAAAGCAGAGGCCC
		GTAAGTTAGTTGGAGACGTAGG
	reporter p4	CCTCTGC/iBHQ1dT/TTCTGTCCTT/i6FAMdT/CC
	trigger p4	AGTCCTACGTCTCCAACTAACTTACGG
	fuel p4	TCTCCAACTAACTTACGGGCCTCTGCTTTCTGTCC
		TTTCCC
	<i>peg-344</i> p4	GCTTTCTGTCCTTTCCCGCGCCTCC
EDC p5	scaffold p5	AGGGAAATG-iBHQ2-
(EDC1)		GGGAGGGTACAAAATGAGGGCGCCGTAAGTTAGT
		TGGAGACGTAGG
	reporter p5	BHQ2-GCCCTCATTTTGTACCCTCCC-Cy3

 Table S1 Sequences used in this work

	trigger p5	AGTCCTACGTCTCCAACTAACTTACGG
	fuel p5	UCUCCAACUAACUUACGGCGCCCUCAUUUUGUA
		CCCUCCCC
	<i>rmpA</i> p5	CAUUUUGUACCCUCCCAUUUCCCU
EDC p6	scaffold p6	GGAGGCGCG-iBHQ1-
(EDC2)		GGAAAGGACAGAAAGCAGAGGCCCGTAAGTTAG
		TTGGAGACGTAGG
	reporter p6	BHQ1-CCTCTGCTTTCTGTCCTTTCC-FAM
	trigger p6	AGTCCTACGTCTCCAACTAACTTACGG
	fuel p6	UCUCCAACUAACUUACGGGCCUCUGCUUUCUGU
		CCUUUCCC
	<i>peg-344</i> p6	GCUUUCUGUCCUUUCCCGCGCCUCC
	crRNA	UAGUUGGAGACGUAGGACUUAGAUGUGAAUCAU
		CUUUAAU
	uge-mRNA	CAAGUUCACGAAAGCGAUGCUGGAA
	fimH-mRNA	GAAACGAUCACCGACUACGUGACCC
	iroB-mRNA	GUUUGCAUCACGACCGGGAUAUCGUA

	10	1 2
	Reagent	Volume
EDC1	scaffold1 (10 μ mol/L)	1 µL
	repoter1 (10 µmol/L)	1 µL
	trigger (10 µmol/L)	1 µL
	fuel1 (10 µmol/L)	1 µL
EDC2	scaffold2 (10 μ mol/L)	1 µL
	trigger (10 µmol/L)	1 µL
	repoter2 (10 μ mol/L)	1 µL
	fuel2 (10 μ mol/L)	1 µL
CRISPR-Cas12a	crRNA (10 µmol/L)	1 µL
	Cas12a (10 μ mol/L)	2 μL
target (rmpA-mRNA or peg-3	<i>rmpA</i> -mRNA (2, 0.2, 0.02, 0	0.0 1 μL
44-mRNA)	02, 0.0002, 0.00002 nmol/L)	
	peg-344-mRNA (2, 0.2, 0.02,	0 1 μL
	.002, 0.0002, 0.00002 nmol/L)
	10×NEbuffer r2.1	2 μL
	DEPC	6 μL

Table S2. EDCs combined with CRISPR-Cas12a for peg-344 and rmpA assays

Concentration -	Fluorescence intensity (a.u.)						RSD (%)
concontraction	1	2	3	4	5	6	Red ()()
100 pmol/L	4105	4288	4145	3988	4191	4379	3.30

Table S3. Repeatability of EDC/CRISPR-Cas12a assay system for rmpA

Table S4. Repeatability of EDC/CRISPR-Cas12a assay system for peg-344

Concentration	Fluorescence intensity (a.u.)					RSD (%)	
	1	2	3	4	5	6	
100 pmol/L	5110	4990	5219	5080	4991	4879	2.33

Table S5. Recovery rate of rmpA detected by EDC/CRISPR-Cas12a system

Samples	1	2	3
Concentration 1	5 fmol/L	500 fmol/L	50 pmol/L
Concentration 2	4.64 fmol/L	488.98 fmol/L	49.36 pmol/L
Recovery rate	92.80%	97.80%	98.72%

Table S6. Recovery rate of peg-344 detected by EDC/CRISPR-Cas12a system

Samples	1	2	3
Concentration 1	5 fmol/L	500 fmol/L	50 pmol/L
Concentration 2	4.55 fmol/L	492.03 fmol/L	48.01 pmol/L
Recovery rate	91.00%	98.41%	96.02%

Method	Target	Assay time	LoD	Ref.
q-PCR	peg-344	1-2 h	47.5 pg/μL	1
LAMP	peg-344	15-60 min	0.475 pg/µL	1
EDC	DNA	0.5 h	1 pmol/L	2
CRISPR-Cas12a/electrochemical		1 h	22 1/2	2
biosensor	DNA	1 11	50 pmol/L	5
CRISPR/Cas12a Coupled with			6.28 pM	
Strand Displacement	miRNA	15 min		4
Amplification				
Catalytic hairpin assembly			100 fmol/L	
circuit coupled with CRISPR-	microRNA	120 min		5
Cas12a				
Multiplex gRNAs synergically	SARS-CoV-2	25 min	10 copies	6
enhance detection	RNA		10 00 00 00	Ũ
EDCs/CRISPR-Cas12a	rmpA,	25 min	0.10 fmol/L,	This
	peg-344		0.17 fmol/L	work

Table S7. Comparison of varied nucleic acids detection methods

Designing the scaffold strand for EDCs systems In the initial EDC designs (EDC p1 and EDC p2), the triple-stranded substrate contained scaffold strands with two exposed bases at the toehold sites. To minimize non-specific binding between fuel and scaffold strands by reducing the number of exposed bases, we developed second-generation EDCs (EDC p3 and EDC p4) featuring a one-nucleotide extension of the reporter strand to block the exposed toehold site. Furthermore, to address fluorescence leakage from the reporter in the three-stranded substrate, we introduced additional modifications (EDC p5 and EDC p6) incorporating a quencher on the scaffold strand (Figure S1).

Figure S1 Design of scaffold strand for EDCs

Designing the fuel strand for EDC systems In the third-generation designs (EDCp5 and EDCp6), we replaced the DNA sequence of the fuel strand with an RNA sequence to prevent ssDNA degradation by CRISPR-Cas12a (Figure S2).

Figure S2 Design of fuel strands for EDCs

Electrophoretic characterization of the optimized EDC systems

Agarose gel electrophoresis (AGE) was employed to investigate the EDC reaction process. As shown in Figure S3, the purified strands of reporter, trigger, and scaffold displayed clear bands in lanes 1, 2, and 3, respectively. Lane 4 showed dsDNA after the assembly of the scaffold strand and reporter strand. After the hybridization of equal concentrations of reporter, trigger and scaffold strands, a three-strand structured substrate appeared in lane 5. Lane 6 showed the fuel strand. Following the addition of an equal concentration of the fuel strand to the three-stranded substrate system, lane 7 displayed a prominent band corresponding to the three-stranded substrate and a weaker band corresponding to the single-stranded fuel strand. These results indicated that the fuel strand did not react with the three-stranded

substrate in the absence of the target. Upon addition of the target, a band with faster migration appeared in lane 8 compared to that in lane 7, indicating that the three-stranded substrate had been converted into dsDNA waste composed of scaffold and fuel strands via the EDC reaction. During the EDC reaction, the reporter and trigger strands were also released, although they could not be clearly observed due to their single-stranded nature and low concentration. These results demonstrate that the EDC process proceeded as expected.

Figure S3 AGE analysis of each EDC corresponding to rmpA or peg-344. (A) EDC p1 in response to $rmpA \ p1$, (B) EDC p2 in response to $peg-344 \ p2$, (C) EDC p3 in response to $rmpA \ p3$, and (D) EDC p4 in response to $peg-344 \ p4$. Lane 1: reporter; lane 2: trigger; lane 3: scaffold; lane 4: scaffold + reporter, lane 5: three-stranded DNA complexes consisting of reporter, trigger, and scaffold strands; lane 6: fuel; lane 7: lane6 + fuel; lane 8: lane7 + target.

References

- W. Liao, D. Long, Q. Huang, D. Wei, X. Liu, L. Wan, Y. Feng, W. Zhang, and Y. Liu, Rapid detection to differentiate hypervirulent *Klebsiella pneumoniae* (hvKp) from classical *K. pneumoniae* by identifying peg-344 with loop-mediated isothermal amplification (LAMP), *Front Microbiol.*, 2020, **11**, 1189.
- 2 D.Y. Zhang, A.J. Turberfield, B. Yurke, and E. Winfree. Engineering entropydriven reactions and networks catalyzed by DNA, Science. 2007, **16**, 1121-5.
- 3 D. Zhang, Y. Yan, H. Que, T. Yang, X. Cheng, S. Ding, X. Zhang, and W. Cheng, CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing, ACS Sens. 2020, 28, 557-562.
- 4 Feng S, Chen H, Hu Z, Wu T, Liu Z. Ultrasensitive Detection of miRNA via CRISPR/Cas12a Coupled with Strand Displacement Amplification Reaction. ACS Appl Mater Interfaces. 2023 Jun 21;15(24):28933-28940.
- 5 Chen P, Wang L, Qin P, Yin BC, Ye BC. An RNA-based catalytic hairpin assembly circuit coupled with CRISPR-Cas12a for one-step detection of microRNAs. Biosens Bioelectron. 2022 Jul 1;207:114152
- 6 Morales-Moreno MD, Valdés-Galindo EG, Reza MM, Fiordelisio T, Peon J, Hernandez-Garcia A. Multiplex gRNAs Synergically Enhance Detection of SARS-CoV-2 by CRISPR-Cas12a. CRISPR J. 2023 Apr;6(2):116-126.