Supplementary Material

Cu₂O/hemin-GO nanozyme with aptamer-enhanced peroxidase-mimic activity for colorimetric detection of kanamycin in milk

Yaoting Mou^a, Lu Han^a, Yanhao Yin^a, Jianghua Liu^a, Yanqing Xu^a, Yuhang Tian^a, Yanfang Wu^c, Dongfei Chen^d, Yemin Guo^{a,b}, Xia Sun^{a,b}, Falan Li^{a,b,*}

^a School of Agricultural Engineering and Food Science, Shandong University of Technology,
 No. 266 Xincun West Road, Zibo 255049, Shandong, China.

^b Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun West Road, Zibo 255049, Shandong, China.

^c Department of Chemistry, University of Otago, Dunedin 9016, New Zealand.

^d Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.

* Corresponding author: Dr. Falan Li, Tel/Fax: 86-533 -2782-535, Email: lfl@sdut.edu.cn

Figure S1. The preparation process of the Cu₂O/hemin-GO nanozyme.

Figure S2. EDS elemental mapping of the Cu₂O/hemin-GO nanozyme. Scale bars, 2 µm.

Figure S3. (A) Stability of the Cu₂O/hemin-GO nanozyme over a period of 10 days. (B) Recyclability of the Cu₂O/hemin-GO nanozyme.

Figure S4. (A) Zeta-potential of Cu₂O/hemin-GO before and after the addition of aptamer. (B) Photograph of (a) Cu₂O/hemin-GO and (b) Cu₂O/hemin-GO-aptamer solutions.

Figure S5. (A) CD spectra of Aptamer (black), KAN (red), and Aptamer + KAN (blue). (B) UV-vis absorption spectra of solutions containing various components. Sample #1: Cu_2O /hemin-GO + aptamer + H_2O_2 + TMB; Sample #2: Cu_2O /hemin-GO + TMB; Sample #3: KAN + H_2O_2 + TMB; Sample #4: aptamer + H_2O_2 + TMB; Sample #5: H_2O_2 + TMB; Sample #6: KAN + TMB. The volumes of Cu_2O /hemin-GO, aptamer (1 μ M), H_2O_2 , TMB, and KAN (1 μ M) were 35 μ L, 7.5 μ L, 10 μ L, 200 μ L, and 10 μ L, respectively.

Figure S6. Influence of the ratio of hemin-GO and Cu₂O.

Figure S7. LC-MS detection of kanamycin in the blank milk sample.

Sample	Added (nM)	This method			LC-MS		
		Founded	Recovery	RSD	Founded	Recovery	RSD
		(nM)	(%)	(%)	(nM)	(%)	(%)
Milk	0.10	0.10	103.57	0.46	0.18	179.50	9.06
	1.00	1.11	110.71	3.73	0.93	93.00	12.77
	100.0	104.35	104.35	5.72	94.50	94.50	1.28
	500.0	460.27	92.05	3.37	480.55	96.11	0.14

Table S1. Detection of KAN using the developed method and LC-MS.