Optimized BN-CQD Fluorescence Quenching Method for Rivaroxaban Determination in Pharmaceutical and Biological Samples: Mechanistic Insights, Validation, and Greenness Assessment

Reem M. Alnemari^a, Rami M. Alzhrani^a, Maram H Abduljabbar^b, Farooq M. Almutairi^c, Muneef M. Aldhafeeri^c, Mohammed Almaghrabi^d, Yusuf S. Althobaiti^{b, e}, Atiah H. Almalki^{e, f}, Mona A. Abdel Rahman^g, Ahmed Serag^{h,*}

^a Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

^b Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box

11099, Taif 21944, Saudi Arabia

^c Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, University of Hafr AlBatin, Hafr AlBatin 39524, Saudi Arabia

^d Pharmacognosy and pharmaceutical chemistry department, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia

^e Addiction and Neuroscience Research Unit, Health Science Campus, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

^f Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

^g Analytical Chemistry Department, Faculty of Pharmacy, October 6 University, P.O. Box 12585,

6 October City, Giza, Egypt

^h Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11751, Cairo, Egypt

*Corresponding author email address: (Ahmed Serag) <u>Ahmedserag777@hotmail.com</u>

		Factor 1	Factor 2	Factor 3
Std	Run	A:pH	B:BN-CQDs Volume	C:Time
			mL	min
12	1	7.5	1.6	3
10	2	10.5	1	3
1	3	5	0.5	1
14	4	7.5	1	5.4
2	5	10	0.5	1
20	6	7.5	1	3
4	7	10	1.5	1
8	8	10	1.5	5
13	9	7.5	1	0.6
11	10	7.5	0.4	3
7	11	5	1.5	5
15	12	7.5	1	3
5	13	5	0.5	5
16	14	7.5	1	3
19	15	7.5	1	3
6	16	10	0.5	5
3	17	5	1.5	1
18	18	7.5	1	3
17	19	7.5	1	3
9	20	4.5	1	3

Table S1: Central composite design matrix showing experimental conditions for pH, BN-CQDs volume, and incubation time optimization.

df Sum of Squares Mean Square F-value p-value Source < 0.0001 significant Model 4.73 4 1.18 32.46 1 A-pH 0.2354 0.2354 6.46 0.0226 **B-BN-CQDs** 1.95 1 1.95 53.46 < 0.0001 Volume 0.2588 0.2588 7.10 0.0177 AB 1 A² 2.29 2.29 62.81 1 < 0.0001 Residual 0.5465 15 0.0364 0.4385 0.0439 Lack of Fit 10 2.03 not significant 0.2249 0.1080 5 0.0216 **Pure Error** Cor Total 5.28 19

Table S2: ANOVA results for the reduced quadratic model of fluorescence quenching response (F0/F).

Fig. S1: (A) Predicted vs. actual values showing good agreement between experimental data and model predictions. (B) Normal probability plot of externally studentized residuals demonstrating normal distribution of residuals and validating model assumptions.

Fig. S2: (A) Run versus studentized residuals plot showing the distribution of model residuals across experimental runs. (B) Run versus leverage plot demonstrating the influence of individual experimental runs on the model fit.

Fig. S3: Environmental impact and analytical practicality assessment using AGREE and BAGI tools. (A, B) AGREE wheels showing greenness scores of 0.75 and 0.59 for the BN-CQDs and HPLC methods, respectively (green: compliant, yellow: partially compliant, red: non-compliant). (C, D) BAGI star diagrams displaying analytical practicality scores of 77.5 and 72.5 for the BN-CQDs and HPLC methods, respectively (darker blue indicates better performance).

•