Supplementary Material

Colorimetric determination using digital image processing of sensor based on polymer-stabilized silver nanoparticles: monitoring of glucose in saliva

Nadezhda Saranchina, Darya Kuznetsova, Sofia Bragina, Kirill Serebriakov, Nataliya Gavrilenko, Mikhail Gavrilenko*

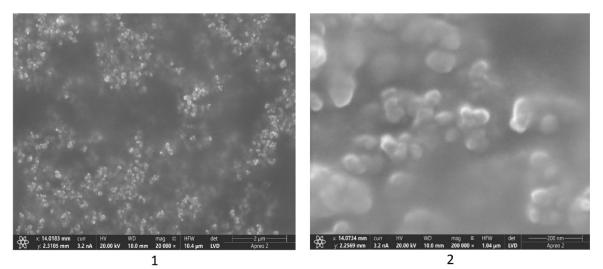


Fig. S1. SEM images of PMM-Ag with different scales $2\mu m$ (1) and 200 nm (2)

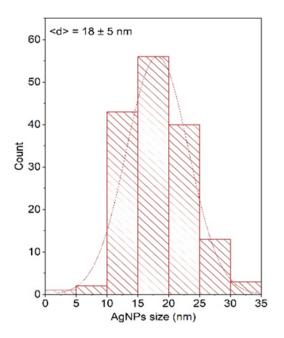


Fig. S2. Size distribution of Ag NPs in PMM prepared by thermal reduction.

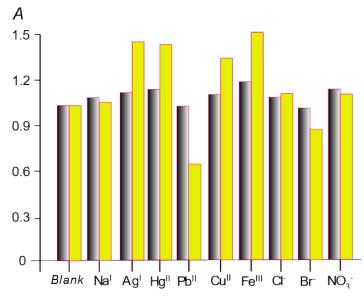


Fig. S3. Selectivity of the spectrophotometric (1) and the colorimetric (2) glucose determination using PMM-Ag⁰ in the presence of interfering substances $C_{GLU} = 0.40$ mM, n=3, ratio 1:10)

Table S1. Comparison between our sensor and that of other jobs				
object	Sensor system	AR, µM	LOD, µM	References
H2O2,	NPs Ag / L-cysteine solution	50 -1000	10	[1]
glucose				
H2O2,	NPs Ag / 5-amino-2-	250-20000	90	[2]
glucose	fluorophenylboronic acid			
H2O2,	NPs Ag / L-cysteine solution	5-70	3	[3]
glucose				
H2O2,	NPs Ag / PVA solution	0.3–25	0.2	[4]
glucose				
H2O2,	NPs Ag / Graphene quantum dots	0.5-50	0.16	[5]
glucose				
H2O2,	NPs Ag / Reduced Graphene	125-1000	40	[6]
glucose	Oxide			
H2O2	NPs Ag / PMMA solution	30 - 500	10	[7]
H2O2,	growth AgNPs	0.5-60	0.2	[8]
glucose				
glucose	NPs Ag / PMM	100-5600	50	This work

Table S1. Comparison between our sensor and that of other jobs

References:

 Hoang V. Tran, Luyen T. Tran, Tinh V. Nguyen, Cuong D. Nguyen, Silver triangular nanoplates – A multifunctional probe for development of a label-free colorimetric glucose biosensors. Application to glucose in foods and medical samples, Materials Chemistry and Physics, Volume 293, 2023, 126912

- Ke Cao, Xiaomei Jiang, Suting Yan, Laiying Zhang, Weitai Wu, Phenylboronic acid modified silver nanoparticles for colorimetric dynamic analysis of glucose, Biosensors and Bioelectronics, Volume 52, 2014, pp. 188-195
- Yan Gao, Yiting Wu, Junwei Di, Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 173, 2017, pp. 207-212
- Sanaz Sajedi-Amin, Maryam Khoubnasabjafari, Vahid Jouyban-Gharamaleki, Elaheh Rahimpour, Abolghasem Jouyban, Propofol-induced in-situ formation of silver nanoparticles: A sensing colorimetric method, Journal of Pharmaceutical and Biomedical Analysis, Volume 229, 2023, 115377
- Nghia Duc Nguyen, Tuan Van Nguyen, Anh Duc Chu, Hoang Vinh Tran, Luyen Thi Tran, Chinh Dang Huynh, A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose, Arabian Journal of Chemistry, Volume 11, Issue 7, 2018, pp. 1134-1143
- Tran, H. V., Nguyen, N. D., Tran, C. T. Q., Tran, L. T., Le, T. D., Tran, H. T. T., ... Phan, N. T., Silver Nanoparticles-Decorated Reduced Graphene Oxide: A Novel Peroxidase-Like Activity Nanomaterial for Development of a Colorimetric Glucose Biosensor, Arabian Journal of Chemistry, 2020, 13(7).
- Giorgio Giuseppe Carbone, Antonio Serra, Alessandro Buccolieri, Daniela Manno A silver nanoparticle-poly(methyl methacrylate) based colorimetric sensor for the detection of hydrogen peroxide. Helion, 2019, 5(11), E02887
- Zhang Y. A quantitative colorimetric assay of H2O2 and glucose using silver nanoparticles induced by H2O2 and UV / Y. Zhang [et all] // Chinese Chemical Letters. 2013. Vol. 24, № 12. – P. 1053 – 1058.