Aptamer Based Biosensors for Tobramycin

Jizhao Zhang,^{1,2,3} Qiang Zhao*1,2,3

1. School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

2. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China

3. University of Chinese Academy of Sciences, Beijing, 100049, China

* Corresponding Author, Email address: <u>qiangzhao@rcees.ac.cn</u>

Table S1

Aptamer-based electrochemical sensors for tobramycin

Aptamer sequences (5'-3')	Linear range	LOD	Ref.
GAC TAG GCA CTA GTC	10-200 nM	5.13 nM	[1]
[mG] [mG] [mC] [mA] [mC] [mG] [mA] [mG] [mG]			
[mU] [mU] U [mA] [mG] [mC] [mU] [mA] [mC]	5 500 ···M	5 μΜ	[2]
[mA] [mC] [mU] [mC] [mG] [mU] [mG] [mC] [mC]	5-500 µM		
[mG] [mG] [mC] [mA] [mC] [mG] [mA] [mG] [mG]		0.1 μΜ	
[mU] [mU] U [mA] [mG] [mC] [mU] [mA] [mC]	0 1 1000 ···M		[3]
[mA] [mC] [mU] [mC] [mG] [mU] [mG] [mC] [mC]	0.1-1000 µlvi		
GGCACGAGG UUUAGCUACACUCGUGCC	$1-1 \times 10^4 \text{ nM}$	0.49 nM	[4]
ACU UGG UUU AGG UAA UGA GU	0.02-10.7 nM	14 pM	[5]
GGCACGAGGUUUAGCUACACUCGUGCC	0.5-70 μΜ	0.326 µM	[6]
ACU UGG UUU AGG UAA UGA GU	2.14×10^{-5} -21.4 nM	4.28 fM	[7]
ACUU GGUU UAGG UAAU GAGU	2.14 × 10 ⁻⁴ -2.14 pM	0.15 fM	[8]
GAT AAA GAC TAG GCA CTA GTC CAC TAC	5 1000 M	3.51 nM	[9]
CAA TAA TCC TAG TCT TTT ACA	5-1000 nM		
GGG ACT TGG TTT AGG TAA TGA GTC CC	0.1-500 nM	56 pM	[10]
GGG ACT TGG TTT AGG TAA TGA GTC CC	1.07×10^{-4} -10.7 nM	0.13 pM	[11]
GGG ACT TGG TTT AGG TAA TGA GTC CC	1.07×10^{-4} -2.14 nM	2.95 fM	[12]
GGG ACT TGG TTT AGG TAA TGA GTC CC	2.14×10-4-10.7 nM	6.57 fM	[13]
GGG ACT TGG TTT AGG TAA TGA GTC CC	750 μM-10 mM	125 µM	[14]

Table S2

Linear range LOD **Aptamer Sequences** Ref. (**nM**) (**pM**) ACU UGG UUU AGG UAA UGA GU (RNA) 0.02-107 0.012 nM [15] GGG ACT TGG TTT AGG TAA TGA GTC CC 0.002-107 0.71 [16] AAT CTT GTT GGG ACT TGG TTT AGG TAA TGA 2.05 [17] 0.002-0.011 GTC C GGG ACT TGG TTT AGG TAA TGA GTC CC 4.28 [18] 0.01-10.69 GGG ACT TGG TTT AGG TAA TGA GTC CC 4.28 [19] 5-50

Aptamer-based photoelectrochemical sensors for tobramycin

Table S3

DNA aptamer-based colorimetric sensors for tobramycin

DNA antomor soquences	Linear range	LOD	Ref
DIVA aptamet sequences	(n M)	(nM)	
CGT CGA CGG ATC CAT GGC ACG TTA TAG GTC	100 1400	37.9	[20]
GACG	100-1400		
GGG ACT TGG TTT AGG TAA TGA GTC CC	40-200	23.3	[21]
GGG ACT TGG TTT AGG TAA TGA GTC CC	2.84–57.05 μM	5.3	[22]
(A) ₁₅ -(T) ₁₀ -GGG ACT TGG TTT AGG TAA TGA GTC CC	0.1-100	0.07	[23]
GA CTA GGC ACT AGT C	20-800	12.24	[24]
T1: CCTCGTACTGAATGCTTTTTTGGG			
ACTTGGTTTAGGTAATGAGTCCC	4-32 μΜ	1.16	[25]
T2: GGGACTTGGTTTAGGTAATGAGTC		μΜ	
CCTTTTTTGCATTCAGTACGAGG			
GACTAGGCACTAGTC	0.1-4(high-		
	sensitivity)	0.02	[26]
	1-50(low-	0.09	
	sensitivity)		

Table S4

DNA aptamer-based fluorescence sensor for tobramycin

DNA antomor soquenees	Linear	LOD	Ref.
DIVA aptamer sequences	range		
AAA AAA TCT TGT TGG GAC TTG GTT TAG GTA ATG AGT CCC	0.3-50 μΜ	17.37 nM	[27]
TG ACT CCA GGC ACT TAG TCA	0.5-30 nM	0.06 nM	[28]
TG ACT CCA GGC ACT TAG TCA	10-300 pM (sensor-ss) 5-30 pM (sensor-ds)	3.179 pM 1.542 pM	[29]
GAC TAG GCA CTA GTC	125 pM -2500 nM	92.87 pM	[30]
GGG ACT TGG TTT AGG TAA TGA GTC CC	21.4-385 nM	6.5 nM	[31]
GGG ACT TGG TTT AGG TAA TGA GTC CC	0.1 - 6 μM	0.063 µM	[32]
GGG ACT TGG TTT AGG TAA TGA GTC CC (SP1)			
GGG ACT TGG TTT AGG TAA TGA GTC CCG GGA CT(SP2) AGT CCC GGG ACT TGG TTT AGG TAA TGA GTC	5 × 10 ⁻⁷ -300 μM	0.153 pM	[33]
CC(SP3)			
GGG ACT TGG TTT AG (T1)	0.08-2 μM	21.86 nM	[34]
AGG TAA TGA GTC CC (T2)	•		

Reference

- J. Nie, L. Yuan, K. Jin, X. Han, Y. Tian and N. Zhou, Electrochemical detection of tobramycin based on enzymes-assisted dual signal amplification by using a novel truncated aptamer with high affinity, *Biosens. Bioelectron.*, 2018, **122**, 254–262.
- [2] E. Gonzalez-Fernandez, N. de-los-Santos-Alvarez, M. Jesus Lobo-Castanon, A.J. Miranda-Ordieres and P. Tunon-Blanco, Aptamer-based inhibition assay for the electrochemical detection of tobramycin using magnetic microparticles, *Electroanalysis*, 2011,23, 43–49.
- [3] E. Gonzalez-Fernandez, N. de-los-Santos-Alvarez, A. Jose Miranda-Ordieres and M. Jesus Lobo-Castanon, Monovalent labeling system improves the sensitivity of aptamer-based inhibition assays for small molecule detection, *Sens. Actuators B Chem.*, 2013, 182, 668– 674.
- [4] F. Li, Y. Wu, D. Chen, Y. Guo, X. Wang and X. Sun, Sensitive dual-labeled electrochemical aptasensor for simultaneous detection of multi-antibiotics in milk, *Int. J.*

Hydrog. Energy, 2021, 46, 23301-23309...

- [5] M. Wang, B. Hu, C. Yang, Z. Zhang, L. He, S. Fang, X. Qu and Q. Zhang, Electrochemical biosensing based on protein-directed carbon nanospheres embedded with SnOx and TiO2 nanocrystals for sensitive detection of tobramycin, *Biosens. Bioelectron.*, 2018, 99, 176–185.
- [6] Y.L. Nong, N.N. Qiao and Y. Liang. An aptasensor based on AuNPs/PANI/TNTs nanocomposite for electrochemical detection of tobramycin, *J. Electrochem.*, 2019, 25, 720-730.
- [7] S. Wang, Z. Li, F. Duan, B. Hu, L. He, M. Wang, N. Zhou, Q. Jia and Z. Zhang, Bimetallic cerium/copper organic framework-derived cerium and copper oxides embedded by mesoporous carbon: Label-free aptasensor for ultrasensitive tobramycin detection, *Anal. Chim. Acta*, 2019, **1047**, 150–162.
- [8] L. Zhu, G. Liang, C. Guo, M. Xu, M. Wang, C. Wang, Z. Zhang and M. Du, A new strategy for the development of efficient impedimetric tobramycin aptasensors with metallo-covalent organic frameworks (MCOFs), *Food Chem.*, 2022, 366, 130575.
- [9] Y. Zhao, Q. Chen, Y. Liu, B. Jiang, R. Yuan and Y. Xiang, A sensitive tobramycin electrochemical aptasensor based on multiple signal amplification cascades, *Bioelectrochemistry*, 2024, 160, 108797.
- [10] Y. Zhang, B. Li, X. Wei, Q. Gu, M. Chen, J. Zhang, S. Mo, J. Wang, L. Xue, Y. Ding and Q. Wu, Amplified electrochemical antibiotic aptasensing based on electrochemically deposited AuNPs coordinated with PEI-functionalized Fe-based metal-organic framework, *Microchim. Acta*, 2021, **188**, 286.
- [11] F. Guo, G. Tian, C. Fan, Z. Zong, J. Wang and J. Xu, A zirconium-organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance, *Inorg. Chem. Commun.*, 2022, 145, 109970.
- [12] R. Yuan, Z. Yan and H. He, Crystal engineering of C60 fullerenes trapped in covalent organic frameworks for enhanced electrochemical impedimetric aptasensing performance, *Appl. Surf. Sci.*, 2022, 573, 151556.
- [13] H.K. Li, Y.X. An, E.H. Zhang, S.N. Zhou, M.X. Li, Z.J. Li, X. Li, R. Yuan, W. Zhang and H. He, A covalent organic framework nanosheet-based electrochemical aptasensor with sensitive detection performance, *Anal. Chim. Acta*, 2022, **1223**, 340204.
- [14] Y. Liu, A. George, M. Shojaee, P. Wu, A. Ashraf, D. Wickramaratne, F. Napoli, N. Patel and S. Liang, A wireless electrochemical aptamer-based biosensor platform utilizing printed circuit board electrodes for drug monitoring applications, *Microchem. J.*, 2024, 204, 111038.
- [15] M. Shang, J. Zhang, H. Qi, Y. Gao, J. Yan and W. Song, All-electrodeposited amorphous MoSx@ZnO core-shell nanorod arrays for self-powered visible-light-activated photoelectrochemical tobramycin aptasensing, *Biosens. Bioelectron.*, 2019, **136**, 53–59.
- [16] Z. Zhang, M. Zhang, Y. Xu, Z. Wen, C. Ding, Y. Guo, N. Hao and K. Wang, Bi3+ engineered black anatase titania coupled with graphene for effective tobramycin photoelectrochemical detection, *Sens. Actuators B Chem.*, 2020, **321**, 128464.
- [17] R. Hu, B.F. Xu, Y. Xue, Z.Z. Xu, A.J. Wang, L.P. Mei, P. Song and J.J. Feng, Tailoring enzymatic loading capacity on CdS nanorods@ZnIn2S4 nanosheets 1D/2D heterojunctions: Toward ultrasensitive photoelectrochemical bioassay of tobramycin, *Chemosphere*, 2023, 316, 137808.
- [18] L. Qiao, Y. Zhu, T. Zeng, Y. Zhang, M. Zhang, K. Song, N. Yin, Y. Tao, Y. Zhao, Y. Zhang

and C. Zhang, "Turn-off" photoelectrochemical aptasensor based on g-C3N4/WC/WO3 composites for tobramycin detection, *Food Chem.*, 2023, **403**, 134287.

- [19] X. Liu, Y. Jiang, J. Luo, X. Guo, Y. Ying, Y. Wen, H. Yang and Y. Wu, A SnO2/Bi2S3based photoelectrochemical aptasensor for sensitive detection of tobramycin in milk, *Food Chem.*, 2021, 344, 128716.
- [20] X. Han, Y. Zhang, J. Nie, S. Zhao, Y. Tian and N. Zhou, Gold nanoparticle based photometric determination of tobramycin by using new specific DNA aptamers, *Microchim. Acta*, 2018, 185, 4.
- [21] Q. Ma, Y. Wang, J. Jia and Y. Xiang, Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles, *Food Chem.*, 2018, 249, 98–103.
- [22] S. Liu, M. Wang, H. Deng, X. Deng, Y. Xiong, Q. Wen, W. Li, J. Ren, X. Fu and Y. Chen, A colorimetric and phosphorescent dual-mode nanosensing platform for the sensitive detection of tobramycin in dairy products, *Food Biosci.*, 2024, 57, 103589.
- [23] R. Mahjub, O.H. Shayesteh, K. Derakhshandeh, A. Ranjbar, F. Mehri and A. Heshmati, A novel label-free colorimetric polyA aptasensing approach based on cationic polymer and silver nanoparticles for detection of tobramycin in milk, *Food Chem.*, 2022, **382**, 132580.
- [24] Y. Ou, X. Jin, J. Fang, Y. Tian and N. Zhou, Multi-cycle signal-amplified colorimetric detection of tobramycin based on dual-strand displacement and three-way DNA junction, *Microchem. J.*, 2020, **156**, 104823.
- [25] P. Tavakoli, S.M. Taghdisi, P. Maghami and K. Abnous, A novel aptasensor for colorimetric monitoring of tobramycin: Strategy of enzyme-like activity of AuNPs controlled by three-way junction DNA pockets, Spectrochim. *Acta A Mol. Biomol. Spectrosc.*, 2022, 267, 120626.
- [26] X. Jin, L. Chen, Y. Zhang, X. Wang and N. Zhou, A lateral flow strip for on-site detection of tobramycin based on dual-functional platinum-decorated gold nanoparticles, *Analyst*, 2021, 146, 3608–3616.
- [27] J. Wang, H. Li, C. Du, Y. Li, X. Ma, C. Yang, W. Xu and C. Sun, Structure-switching aptamer triggering signal amplification strategy for tobramycin detection based on hybridization chain reaction and fluorescence synergism, *Talanta*, 2022, 243, 123318.
- [28] D. Li, S. Ling, D. Meng, B. Zhou, P. Liang and B. Lv, Sensitive fluorescent aptasensing of tobramycin on graphene oxide coupling strand displacement amplification and hybridization chain reaction, Int. J. Biol. Macromol., 2022, 220, 1287–1293.
- [29] D. Li, S. Ling, H. Wu, Z. Yang and B. Lv, CRISPR/Cas12a-based biosensors for ultrasensitive tobramycin detection with single- and double-stranded DNA activators, Sens. Actuators B Chem., 2022, 355, 131329
- [30] B. Lv, P. Liang, C. Chang and D. Li, Sensitive aptasensing of tobramycin through a rational design of catalytic hairpin assembly and hybridization chain reaction amplification monomers for CRISPR/Cas12a activation, *The Analyst*, **150**(12), 2580–2590.
- [31] T. Wan, W. Song, H. Wen, X. Qiu, Q. Zhan, W. Chen, H. Yu, L. Yu and A.R. Aleem, The exploration of upconversion luminescence nanoprobes for tobramycin detection based on Förster resonance energy transfer, *Mater. Today Adv.*, 2023, 19, 100409.
- [32] S. Naeeminejad, K. Abnous and S.M. Taghdisi, A simple and label-free fluorescent aptasensor for detection of tobramycin: Appropriate for on-site antibiotic monitoring,

Microchem. J., 2021, 165, 106128.

- [33] H. Zahraee, Z. Khoshbin, M. Ramezani, M. Alibolandi, K. Abnous and S.M. Taghdisi, A tag-free fluorescent aptasensor for tobramycin detection using a hybridization of three aptamer strands and SYBR Green I dye, *Spectrochim. Acta. A. Mol. Biomol. Spectrosc.*, 2023, 290, 122305.
- [34] Z. Khajavian, M. Esmaelpourfarkhani, M. Ramezani, M. Alibolandi, K. Abnous and S.M. Taghdisi, A highly sensitive, simple and label-free fluorescent aptasensor for tobramycin sensing based on PicoGreen intercalation into DNA duplex regions of three-way junction origami, *Microchem. J.*, 2021, 160, 105657.