Supplementary material for:

Sustainability from the start: Biochar-based conductive inks enable the streamlined fabrication of green electroanalytical devices

Florencia Bernassani¹, Mónica Mosquera-Ortega^{2,3}, Ismael Sánchez¹, Sabina Susmel², Eduardo Cortón¹, Federico Figueredo¹.

1. Laboratorio de Biosensores y Bioanálisis (LABB), Departamento de Química Biológica e IQUIBICEN – CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina

2. BioAnalytical Chemistry Lab, Department of Agri-food, Environment and Animal Sciences (Di4A), University of Udine. Udine, Italy

3.Basic Science Department and Mechanical Engineering Department, Faculty Regional General Pacheco, National Technological University, Argentina

Figure S1. Brunauer-Emmett-Teller (BET) Analysis. Nitrogen sorption isotherm of Bc (black), BC_{OH} (blue) and BC_{AC} (red) exhibit specific surface areas between 91.95 (BC_{OH}) to 5.57 m²/g (BC_{AC}), and a pore volume between 0.023 (BC_{OH}) to 0.007 cm³/g (BC_{AC}).

Material	Area BET m ² /g	Pore volume cm ³ /g	Pore Size nm
BC	39.69	0.023	2.32
BC _{AL}	91.95	0.048	2.09
BC _{AC}	5.57	0.007	5.10

Table 1. Porosity analysis results of BC and BC activated after pyrolysis by BET analysis

Figure S2. X-ray photoelectron spectroscopy (XPS) of BC, BCL, BC_{AC} and BC_{OH} . High-resolution spectra of P 2p, with a minimal signal at 133 eV for BC and BC_{OS} (compatible with PO₃).

Figure S3. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) analysis of BC, BC_{OS} , BC_{AC} and BC_{AL} .

Figure S4. EIS studies of PEs. Nyquist diagrams obtained for Control, BC15%, BC_{0S}15%, BC_{AL}15%, and BC_{AC}15%, in the presence of 5.0 mM of $[Fe(CN)_6]^{3-/4-}$. Insert shows the equivalent circuit model where R1 is Rs, R2 is Rct, W1 is W and Q1 is CPE.