Supporting data

Quantitative estimations of Squalene levels in acute respiratory distress syndrome (ARDS) and treated lung tissues by Gas chromatography–Mass spectrometry

Bala Manikantha Adimoolam ^{a,c,#}, Aruna Jangam ^{b,c,#}, S Babu Dadinaboyina ^{a,c}, Sai Balaji Andugulapati ^{b,c,#}, Anthony Addlagatta ^{b,c*} and Jagadeshwar Reddy Thota ^{a,c,*}

a. Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical

Technology, Hyderabad-500 007, India.

b. Division of Applied Biology, CSIR-Indian Institute of Chemical Technology,

Hyderabad-500007, India.

c. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

Contributed equally

*Corresponding author:

Dr. Jagadeshwar Reddy Thota

Centre for Mass Spectrometry,

Department of Analytical and Structural Chemistry,

CSIR-Indian Institute of Chemical Technology, Hyderabad-500 007, India,

Phone: +91-8953563333,

Email: tjreddy@iict.res.in

This is CSIR-IICT Communication Number: IICT/Pubs./2024/413

Name of the compound	Quantifier ions (<i>m/z</i>) (relative abundance in %)	Other ions (<i>m/z</i>) (relative abundance in %)
squalene	69(99)	81(54), 41(26), 95(15), 137(12), 121(12)
squalane	71(78)	57(99), 85(44), 43(30), 113(28), 127(16)

Table S1: EI-MS data of squalene and squalane.

Table S2: Squalene extraction data ($1\mu g/mL$, n=3) obtained from the lung tissue.

Solvent	Spiked Concentration (µg/mL)	Back- concentration (µg/mL) SD; RSD (%)	Recovery (%)
ethyl acetate	1	0.887386856±0.006;4.2	88
hexane	1	1.0661457±0.017;9.7	106
methanol	1	0.604511999±0.05;6.2	60
chloroform	1	0.703571449±0.02;17.7	70
PBS-buffer	1	0.6295603±0.02;2.1	62

S.No	Compound	Linearity equation	R ^{2 a)}	Linearity range	LOD ^{b)}	LOQ ^{c)}	Validation accuracy (% RSD) ^{d)}		ő RSD) ^{d)}
							Low (0.5 µg/mL)	Middle (2µg/mL)	High (10 µg/mL)
1	Squalene	Y = 0.1786x - 0.0114	0.996	0.5-10	0.05	0.5	115 (3.8)	95 (4.2)	94 (3.3)

Table S3: GC-MS linearity parameters of Squalene.

a) Coefficient of Determination, b) LOD - Limit of Detection, c) LOQ - Limit of quantification, d) The values in the parentheses represent %RSD valves (n=3).

Table S4: GC-MS intra-day and inter-day precision studies (n=3) of Squalene obtained from the lung tissue.

Concentration	Intra-day Precision	Inter-day Precision
(µg/mL)		
	observed concentration	observed concentration
	(µg/mL) SD; RSD (%)	(µg/mL) SD; RSD (%)
0.5	0.58±0.011;13.43	0.55±0.004;5.45
2	2.01±0.009;2.76	2.26±0.051;12.84
10	9.91±0.007;0.39	10.44±0.074;3.38

 Table S5. GC-MS robustness study of Squalene.

Concentration (µg/ml)	F	low variation (SD±%RSD)	15	Oven temper	rature variati (SD±%RSD)	ons (⁰ C/min)
	1.1 mL/min (minus)	1.2 mL/min (Control)	1.3 mL/min (plus)	95 °C/min (minus)	100 ºC/min (Control)	105 °C/min (plus)
0.5	0.004±4.67	0.002±2.45	0.003±4.01	0.006±5.02	0.011±11.09	0.015±1.81
2	0.024±6.68	0.023±6.85	0.027±7.28	0.051±14.67	0.026±7.57	0.018±6.10
10	0.037±2.13	0.032±1.81	0.037±2.13	0.048±2.67	0.180±9.03	0.028±10.27

Spiked Concentration (µg/mL)	Calculated spiked concentration (µg/mL) SD; RSD (%)	Recovery (%)
0.5	0.57 ±0.003;3.83	115
2	1.91±0.014;4.22	95
10	9.41±0.058;3.37	94

Table S6: Recovery data of Squalene (n=3) obtained from the lung tissue.

Table S7: Observed concentrations of Squalene (n=3) obtained from the lung tissue by linearity graph.

	Observed conc. (µg/mL)	SD	%RSD
	1.511416206	0.011693	4.52
	1.929371287	0.015964	4.74
Control	1.664174188	0.041845	14.59
Control	1.508391472	0.025849	10.02
	1.603274766	0.030336	11.01
	1.452444932	0.013273	5.36
	1.46437065	0.017643	7.07
	1.487494785	0.006773	2.67
	0.83763504	0.004	3.01
Disease	0.796840248	0.002944	2.35
Disease	0.963312673	0.00686	4.38
	0.780327621	0.003989	3.26

	0.795925217	0.004271	3.41
	0.433416462	0.003343	5.78
	1.689737809	0.016059	15.21
	0.780863288	0.003265	2.66
	0.991814855	0.017614	10.89
	0.842386408	0.004449	3.32
	0.885240558	0.005764	4.06
Treatment	0.970826626	0.004647	2.94
(HAEGS-125 mg/kg)	0.888033606	0.005348	3.75
	0.761918171	0.004568	3.84
	1.12412573	0.008063	4.36
	0.794598865	0.00117157	0.95
	1.425791013	0.015967	6.58
	1.49379667	0.010291	4.03
Treatment	1.487494785	0.006773	2.67
(HAFGS-250 mg/kg)	1.043229402	0.01523	8.89
(Intelot 250 mg/kg)	1.254027438	0.012118	5.76
	1.420774808	0.00792	3.28
	1.067762695	0.022905	13.02
	0.963312673	0.00686	4.38

Table S8: Comparison studies of limits of detection (LODs), quantification (LOQs), and recovery (%) found in the previous studies using different extraction techniques in different matrices.

S.N	Analyte	Matrix	Extraction	Analys	LOD	LOQ	Recove	Year,
0.			Technique	is	(µg/mL	(µg/mL	ry (%)	Referen
))		ce
1.	SQ	formulations	Hexane	HPLC	0.14	0.5	88-95	20021
		of anthrax						
		vaccine						
		adsorbed						
2.	SQ	Human hair	Acidic/basic	GC-	0.1	1	96.4±	
			hydrolysis	MS,			1.46	2016 ²
			followed	Raman				
			by hexane					
			extraction					
3.	SQ	shark liver	Hexane:	IR,		0.4	82-111	2016 ³
		oils	ethanol (4:1)	Raman,	¢			

			(v:v).	MS				
4.	SQ, FAME	fish oil,	Hexane	GC-	0.4	1.3	95-105	20194
		edible oils		FID				
5.	SQ	Olive oil	Hexane:	GC-	3	8	98± 3	20205
			methanol	MS,				
			(4:1) (v:v).	FID				
6.	SQ,	Clerodendru	Ethanolic	GC-	0.79	1.89	96-101	20216
	phytocompon	m serratum	extract	MS,				
	ents	Linn roots		GC-				
				FID				
7.	SQ, SQA	e-cigarette or	hexane	GC-	0.25		104–	20227
		vaping,		MS			113	
		products						
		(EVPs)						
8.	SQ, SQA	Bronchoalve	hexane	GC-	0.3	1μ	97–105	20228
		olar Lavage		MS				
		Fluid						
9.	SQ	edible	Methanol:hex	GC-	0.013	0.04	102-	20229
		vegetable oil	ane	MS			105	
10.	SQ,	coldpressed	Hexane	HPTL	13.84	41.95	90-110	202410
	phytocompon	seed oil of		C	(ng/ban	(ng/ban		
	ents	Celastrus			d)	d)		
		paniculatus						
11	squalene,	Oxidation	saponification	GC-	0.08	0.25	89-92	202411
	cholesterol	Products in	, extraction	TQ				
	and seven	Food of	and silylation					
	COPs	Animal						
		Origin						

Abbrivations: SQ-squalene, SQA-squalane, HPLC- High-Performance Liquid Chromatography, GC-MS- Gas Chromatography-Mass Spectrometry, GC-FID-Gas Chromatography with Flame Ionization Detection, FAME- Fatty acid methyl esters, HPTLC-High-Performance Thin Layer Chromatography, COPs -cholesterol oxidation products.

Figure S1: a) Total ion chromatogram (TIC) of squalene (Rt=14.30) at 50 μ g/mL, b) Total ion chromatogram (TIC) of squalane (Rt= 12.89) at 50 μ g/mL, c) EI-MS spectrum of squalene and d) EI-MS spectrum of squalane.

Figure S2: GC-MS SIM-Ion chromatogram of squalane (m/z 71, Rt= 12.870) and squalene (m/z 69, Rt=14.283) at 10 µg/mL.

Figure S3: Recovery of Squalene at a concentration of 1µg/mL in different solvents.

Figure S4: Linearity graph of squalene (0.5-10 μ g/mL).

References

1. R.J. Spanggord, B. Wu, M. Sun, P. Lim, W.Y. Ellis, Development and application of an analytical method for the determination of squalene in formulations of anthrax vaccine adsorbed, *J Pharm Biomed Anal*, **52**(9), 2002. DOI:10.1016/s0731-7085(02)00009-2.

2. Y. Wu, G. Chen, C. Ji, M. Hoptroff, A. Jones, L.Z. Collins, H.G. Janssen, Gas chromatography-mass spectrometry and Raman imaging measurement of squalene content and distribution in human hair, *Anal Bioanal Chem*, 2016, **408**(9), 2357–2362. DOI:10.1007/s00216-016-9335-0.

3. D.W. Hall, S.N. Marshall, K.C. Gordon, D.P. Killeen, Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy, *Lipids*, 2016, **51**(1), 139–147. DOI:10.1007/s11745-015-4097-6.

4. S.M. Budge, C. Barry, Determination of squalene in edible oils by transmethylation and GC analysis, *MethodsX*, 2019, **6**, 15–21. DOI:10.1016/j.mex.2018.12.001.

5. A. Aresta, A. Damascelli, N. De Vietro, C. Zambonin, Measurement of squalene in olive oil by fractional crystallization or headspace solid phase microextraction coupled with gas chromatography, *Int J Food Prop*, 2020, **23**(1), 1845–1853. DOI:10.1080/10942912.2020.1833033.

6. K. Reddy, Gurupadayya B M, L. Choezom, H. Vikram P R, Determination of phytocomponents and validation of squalene in ethanolic extract of Clerodendrum serratum Linn roots—using gas chromatography-mass spectroscopy and GC-FID technique, *J Anal Sci Technol*, 2021, **12**(31), 1–10. DOI:10.1186/s40543-021-00286-2.

7. E.A. Cowan, H. Tran, N. Gray, J.J. Perez, C. Watson, B.C. Blount, L. Valentín-Blasini, A gas chromatography-mass spectrometry method for quantifying squalane and squalene in aerosol emissions of electronic cigarette, or vaping, products, *Talanta*, 2022, **238**, 1–5. DOI:10.1016/j.talanta.2021.122985.

8. E.A. Cowan, H. Tran, C.H. Watson, B.C. Blount, L. Valentín-Blasini, The Quantitation of Squalene and Squalane in Bronchoalveolar Lavage Fluid Using Gas Chromatography Mass Spectrometry, *Front Chem*, 2022, **10**, 1–7. DOI:10.3389/fchem.2022.874373.

9. L. Wu, J. Zhao, L. Wu, Y. Zhang, J. Li, Simultaneous determination of squalene, tocopherols and phytosterols in edible vegetable oil by SPE combined with saponification and GC-MS, *LWT*, 2022, **169**, 114–126. DOI:10.1016/j.lwt.2022.114026.

10. S. Jarande, M. Damle, Gas chromatography-mass spectrophotometric profile of coldpressed Celastrus paniculatus seed oil and its high-performance thin-layer chromatographic analysis emphasizing squalene content, *Sep Sci Plus*, 2024, 7(4), 1–10. DOI:10.1002/sscp.202300179.

11. M. Czerwonka, A. Białek, B. Bobrowska-Korczak, A Novel Method for the Determination of Squalene, Cholesterol and Their Oxidation Products in Food of Animal Origin by GC-TOF/MS, *Int J Mol Sci*, 2024, **25**(5). DOI:10.3390/ijms25052807.