

Diagnostic performance of thioflavin T in one-step RT-PCR for detection of a viral RNA

Supplementary Information

Reyhaneh Tavakoli-Koopaei¹, Fatemeh Javadi-Zarnaghi^{1*}, Fariba Dehghanian¹, Reza Mohammadi
Manesh^{2,3}

¹ Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

² Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

³ Core Facilities Research Laboratory, Mycology Reference Laboratory, Isfahan University of Medical Sciences, Isfahan, Iran

*Corresponding author: fa.javadi@sci.ui.ac.ir

Contents

Supplementary Table. SI. The list of GQ sequences detected with Thioflavin T.

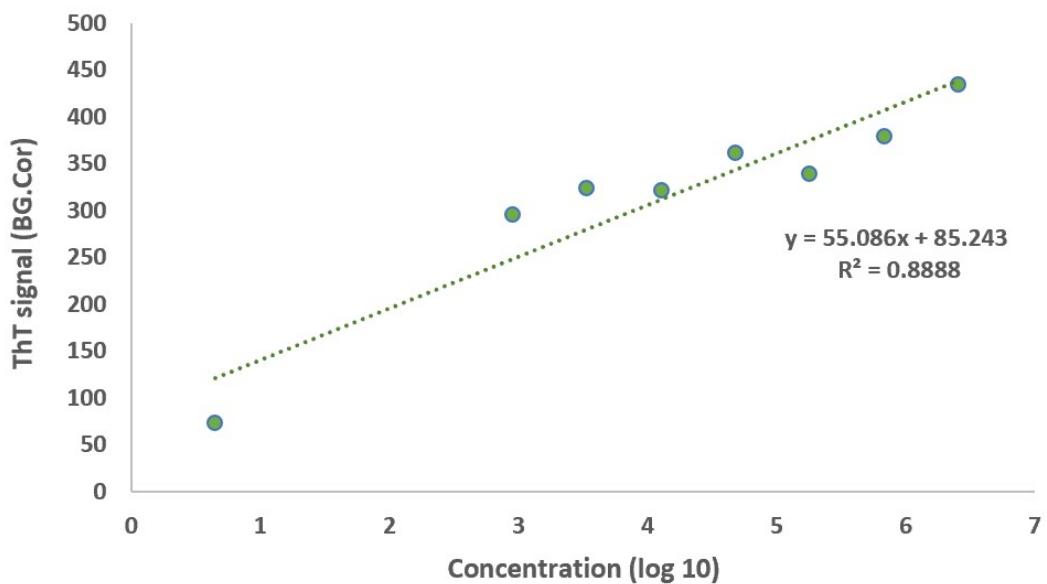
Supplementary Table. SII. The amplicon sequence of ScienCell™ SARS-CoV-2 RT-PCR kit.

Supplementary Table. SIII. The fluorescent signal of negative viral RNA samples (Background signal determination).

Supplementary Figure. SI. The calibration curve of signal response versus concentration of viral load.

Supplementary Table. SI. Previously reported GQ sequence detected with ThT with sequence name, nucleotide content, melting temperature and the GC content. The GQ sequences are ordered according to the length.

GQ name	GQ sequence	Length	Tm	GC (%)	Ref
GQ-1	GGGTTTGGGTTTGGGTTTGGGTTT	28	65.6	43	[3]
GQ-2	TTGGGTAGGGCGGGTTGGGTT	21	65.0	62	[13]
GQ-3	ATGGGAAGGGAGGGATGGGT	20	60.9	60	[14]
PW17	GGGTAGGGCGGGTTGGG	17	60.5	76	[15, 16]
22AG	AGGGTTAGGGTTAGGGTTAGGG	22	59.5	55	[6-11]


TBA-29	GTCCGTGGTAGGGCAGGTTGGGTGACT	29	72.7	64	[1, 2]
AGRO 100	GGTGGTGGTGGTTGTGGTGGTGGTGG	26	71.4	65	[5]
ATP aptamer	ACCTGGGGAGTATTGCG GAGGAAGGT	27	71.8	65	[4]
c-Myc	TGAGGGTGGTAGGGTGGTAA	22	63.3	59	[12]

Supplementary Table. SII. The amplicon sequence of the *ScienCell™ SARS-CoV-2 RT-PCR kit*. The *ScienCell™* primer set amplified the 71-length nucleotide sequence of the SARS-CoV-2 N gene. The GC content of this amplicon is 52% (it is less than 60%), which is a good candidate region to be amplified with the TQsyn RT-PCR method.

Target Gene	Amplicon sequence	Amplicon size	Target gene position	GC content
N	GACCCCAAAATCAGCG AAAT GCACCCCGCATT ACGTTGGTGGACCT CAGATTCAACTGGCAG TAACCA G	71	28287 - 28358	52.11%

Supplementary Table. SIII. The fluorescent signal of negative viral RNA samples and the calculated average of them. The TQsyn RT-PCR reactions were done for eleven RNA-negative samples (samples from individuals who were negative for SARS-CoV-2). The calculated average of these samples (1643.45) is considered as the background (B.G.) and is subtracted from the fluorescent signal of any other sample in the report (test or controls).

Negative sample ID	ThT Fluorescent signal
Neg. 1	1741
Neg. 2	1436
Neg. 3	1503
Neg. 4	1659
Neg. 5	1476
Neg. 6	1599
Neg. 7	1632
Neg. 8	1734
Neg. 9	1734
Neg. 10	1795
Neg. 11	1769
Average background	1643.45
Standard deviation	125.61

Supplementary Figure. SI. Calibration curve illustrating the relationship between Thioflavin T (ThT) fluorescence signal and log-transformed analyte concentration. Data points represent measured fluorescence intensities at known concentrations, while the fitted linear regression line demonstrates the correlation. The regression equation and coefficient of determination (R^2) are shown on the graph and were used to estimate the Limit of Detection (LOD) and Limit of Quantitation (LOQ) according to the method described by Armbruster & Pry [18] and CLSI EP17-A2 (2012)¹.

¹ <https://clsi.org/shop/standards/ep17/>

References

1. Li, Y., et al., *Thioflavin T as a fluorescence light-up probe for both parallel and antiparallel G-quadruplexes of 29-mer thrombin binding aptamer*. Analytical and bioanalytical chemistry, 2016. **408**: p. 8025-8036.
2. Liu, X., et al., *Thioflavin T as an efficient G-quadruplex inducer for the highly sensitive detection of thrombin using a new foster resonance energy transfer system*. ACS Applied Materials & Interfaces, 2015. **7**(30): p. 16458-16465.
3. Ge, J., et al., *A highly sensitive label-free sensor for Mercury ion (Hg2+)* by inhibiting thioflavin T as DNA G-quadruplexes fluorescent inducer. Talanta, 2014. **122**: p. 85-90.
4. Liu, H., et al., *A facile label-free G-quadruplex based fluorescent aptasensor method for rapid detection of ATP*. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017. **175**: p. 164-167.
5. Tong, L.-I., et al., *Stable label-free fluorescent sensing of biothiols based on ThT direct inducing conformation-specific G-quadruplex*. Biosensors and Bioelectronics, 2013. **49**: p. 420-425.
6. Mohanty, J., et al., *Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA*. Journal of the American Chemical Society, 2013. **135**(1): p. 367-376.
7. Renaud de la Faverie, A., et al., *Thioflavin T as a fluorescence light-up probe for G4 formation*. Nucleic acids research, 2014. **42**(8): p. e65-e65.
8. JoonáLee, I., *Label/quencher-free detection of single-nucleotide changes in DNA using isothermal amplification and G-quadruplexes*. Analyst, 2016. **141**(24): p. 6503-6506.
9. Jiang, H.-X., et al., *G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection*. Analytica Chimica Acta, 2016. **943**: p. 114-122.
10. Zhou, F., et al., *One-strand oligonucleotide probe for fluorescent label-free “turn-on” detection of T4 polynucleotide kinase activity and its inhibition*. Analyst, 2015. **140**(16): p. 5650-5655.
11. Ma, C., et al., *Thioflavin T as a fluorescence probe for label-free detection of T4 polynucleotide kinase/phosphatase and its inhibitors*. Molecular and Cellular Probes, 2015. **29**(6): p. 500-502.
12. Verma, S., et al., *Spectroscopic studies of Thioflavin-T binding to c-Myc G-quadruplex DNA*. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019. **212**: p. 388-395.
13. Du, Y.-C., L.-N. Zhu, and D.-M. Kong, *Label-free thioflavin T/G-quadruplex-based real-time strand displacement amplification for biosensing applications*. Biosensors and Bioelectronics, 2016. **86**: p. 811-817.
14. Chen, T.-X., et al., *Label-free fluorescent strategy for sensitive detection of tetracycline based on triple-helix molecular switch and G-quadruplex*. Chinese Chemical Letters, 2017. **28**(7): p. 1380-1384.
15. Ma, C., et al., *Label-free molecular beacon for real-time monitoring of DNA polymerase activity*. Analytical and bioanalytical chemistry, 2016. **408**: p. 3275-3280.
16. Wen, Y., et al., *A sensitive and label-free Pb (II) fluorescence sensor based on a DNAzyme controlled G-quadruplex/thioflavin T conformation*. Sensors, 2016. **16**(12): p. 2155.
17. Liu, Y., et al., *Ratiometric fluorescence sensor for the microRNA determination by catalyzed hairpin assembly*. ACS sensors, 2017. **2**(10): p. 1430-1434.
18. Armbruster, D.A. and T. Pry, *Limit of blank, limit of detection and limit of quantitation*. The clinical biochemist reviews, 2008. **29**(Suppl 1): p. S49.

