Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

Chrysanthemum-like Fe-Co LDH with peroxidase mimicking activity for visual and photothermal determination of H_2O_2 and glucose

Youxiu Lin^{a, *}, Yangyang Chen^a, Jiangwei Huang^a, Dianping Tang^b, Wenqiang Lai^{a,*}

a Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, People's Republic of China

b Key Laboratory of Analysis and Detection for Food Safety (MOE & Fujian Province), Institute of Nanomedicine and Nanobiosensing, Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China

*Corresponding author: Youxiu Lin, E-mail: youxiu90@163.com

Materials and reagents

Ferric(III) chloride hexahydrate (FeCl₃·6H₂O), Cobalt(II) nitrate hexahydrate (Co(NO₃)₃·6H₂O), urea (CO(NH₂)₂), ammonium fluoride (NH₄F) 3,3',5,5'-tetramethylbenzidine (TMB), sodium hydroxide (NaOH), ethanol (C₂H₅OH), hydrogen peroxide (30 wt%) (H₂O₂), acetic acid (CH₃COOH), sodium acetate (CH₃COONa), horseradish peroxidase (HRP), glucose oxidase (GOx), fructose, sucrose, lactose, ascorbic acid (AA), glutathione (GSH) sucrose were purchased from Aladdin Bio-Chem Technology Co. Ltd (Shanghai, China). Ultrapure water was used in all the experiments. All chemicals were of analytical standard, used as received.

Instruments and equipment

All the temperature was detected by a digital multimeter (Shengli Technology, China). The surface morphology of the sample was obtained from scanning electron microscopy (SEM, Tescan Mira4, USA). UV-vis spectra were obtained on a Infinite

200 PRO microplate reader (Tecan, Switzerland). X-ray diffraction (XRD) patterns were obtained by using D8 focus diffractometer (Bruker AXS, Germany). X-ray photoelectron spectra (XPS) were elucidated using an ESCALAB 250 electron energy spectrometer (Thermo Fisher Scientific K-Alpha, USA). Infrared spectra spectrometer (FTIR) was scanned using a Nicolet iS50 FTIR spectrometer (Thermo Fisher Scientific, USA); X-ray photoelectron spectroscopy (XPS) was performed using an Escalab 250Xi instrument (Thermo Fisher Scientific, USA), the ultraviolet spectrophotomete (UV-vis) performed using Infinite 200 PRO microplate reader (Tecan, Switzerland)

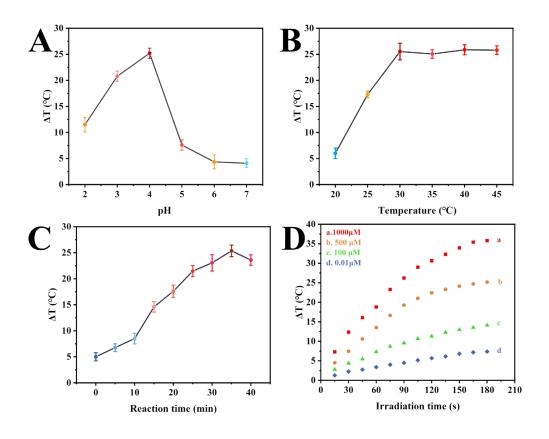


Fig. S1 Optimization of conditions for H₂O₂ detection. Effects of(A) buffer pH (A), (B) temperature, (C) reaction time, and (D) irradiation time on the detection of H₂O₂.

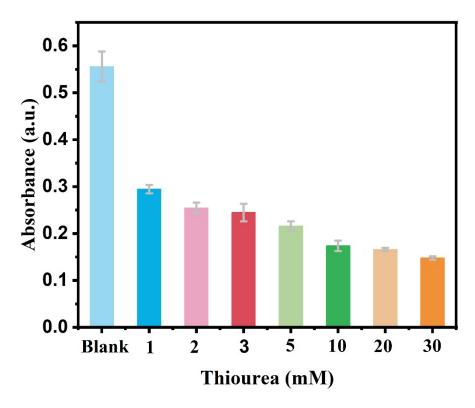


Fig. S2 Absorbance at 652 nm of TMB- H_2O_2 solution catalyzed by Fe-Co LDH in presence of different concentrations scavengers thiourea.

Table S1 Comparison of determination methods for H₂O₂.

Materials	Methods	Linear rang (µM)	LOD(μM)	Reference
MOF-808	colorimetry	10-1000	4.5	[1]
$\mathrm{Co_3O_4}$	colorimetric	100-5000	4.08	[2]
$CuFe_2O_4$	colorimetric	200-500	50.9	[3]
Fe-N-C SANs	colorimetric	10-600	4.36	[4]
Fe _{1.5} -N-GDY	colorimetric	100-2000	52.96	[5]
Fe-Co LDH	photothermal	10-1000	2.56	This work

Table S2 Comparison of determination methods for glucose

Materials	Methods	Linear rang (μM)	LOD(µM)	Reference
$GelRed/[G_3T]_5/Tb^{3+}$	Fluorescence	10-100	3.8	[6]

Fe ₃ O ₄ @MSN	colorimetric	10-500	40	[7]
Bi-BDC-NH ₂ @Au	photothermal	10-12000	5.7	[8]
Cu_9 - Zn_1 - MOF	colorimetric	10-300	7.1	[9]
CuO/SnS ₂	Electrochemistry	0-20000	9.7	[10]
Fe-Co LDH	photothermal	10-1000	2.51	This work

Table S3 Comparison of the peroxidase-like activity and sensing performance of various nanozyme systems for glucose detection

Nanozyme	Nanozyme	Linear rang	LOD(µM)	Reference
Type	Composition	(μM)		
Fe-Based	Fe ₃ O ₄ @MSN	10-500	40	[7]
Co-Based	Co-	300-3000	49	[11]
	MOF@Hemin			
Fe-Co-Based	CuZnFeS	16-60	4.1	[12]
LDH-Based	carbon fiber	5-100	3.8	[13]
	@CuAl-LDH			
LDH-Based	CuNiAl LDH	10-200	2.9	[14]
Fe-LDH-	NiFe-LDH	50-2000	23	[15]
Based				
Co-LDH-	Co-Al ELDH	50-500	50	[16]
Based				
Fe-Co LDH	photothermal	10-1000	2.51	This work

References

- 1. H. Zheng, C. Liu, Y. Zeng, J. Chen, J. Lu, R. Lin, R. Cao, Z. Lin, J. Su, MOF-808: A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity at Neutral pH for Colorimetric Biosensing. *Inorg. Chem.* 2018, **57**, 9096–9104.
- 2. M. Shao, Y. Xu, Q. Shi, Y. Guo, F. Guo, H. Zeng, C. Li, M. Chen. Co₃O₄ hollow nanoparticles embedded in carbon nanoboxes as peroxidase-like nanozymes for the colorimetric determination of H₂O₂ and dopamine, *Microchem. J.* 2024, **205**, 111363.
- 3. F. Xia, Q. Shi, Z.Nan, Facile synthesis of Cu-CuFe₂O₄ nanozymes for sensitive assay of H_2O_2 and GSH. *Dalton. T.* 2020, **49**, 12780–12792.
- 4. W. Lu, S. Chen, H. Zhang, J. Qiu, X. Liu, Fe-N-C single atom nanozymes with dual enzyme-mimicking activities for colorimetric detection of hydrogen peroxide and glutathione. *J. Materiomics*, 2022, **8**, 1251–1259.
- 5. J. Liu, X. Guo, H. Huang, R. Cui, D. Wang, Y. Chen, Y, Chai, J. Dong, B. Sun, Y. Lian, Y. Enhanced Peroxidase-like Activity of Graphdiyne-Based Nanozymes by Fe and N Codoping for Colorimetric Determination of H₂O₂ and Ascorbic Acid. *ACS Appl.*

- Nano Mater. 2023, 6, 22142-22151.
- 6. J. Chen, S. Xue, Z. Chen, S. Zhang, G. Shi, M. Zhang, GelRed/[G₃T]₅/Tb³⁺ hybrid: a novel label-free ratiometric fluorescent probe for H₂O₂ and oxidase-based visual biosensing, *Biosens. Bioelectron.*, 2017, **100**, 526–532.
- 7. Y. Wang, B. Zhou, S. Wu, K. Wang, X. He, Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles, *Talanta*, 2015, **100**, 712–717.
- 8. C. Jin, S. Yang, J. Zheng, F. Chai, M. Tian, Paper-based triple-readout nanosensor for point-of-care detection of glucose in urine. *Biosens. Bioelectron.*, 2025, **269**, 116931.
- 9. T. Chen, Y. Jiang, Y. Wu, M. Lai, X. Huang, Z. Gu, J. Wu, Y. Gan, H. Chen, W. Zhi, P. Sun, F. Cai, T. Li, H. Zhou, J. Zheng, Doughnut-shaped bimetallic Cu–Zn-MOF with peroxidase-like activity for colorimetric detection of glucose and antibacterial applications, *Talanta*, 2024, **279**,126544.
- 10. S. Kondee, W. Pon-On, W. Siriwatcharapiboon, A. Tuantranont, C. Wongchoosuk, CuO/SnS₂ Nanoparticles on PEDOT:PSS for Nonenzymatic Electrochemical Glucose Sensors. *ACS Appl. Nano Mater.* 2024, 7, 6722–6735.
- 11. W. Qi, Z. Li, X. Wang, H. Wang, X. Li, A Co(II)-organic framework and peroxidase mimetic Hemin@metal-organic framework and its application in the colorimetric analysis of glucose, *Appl. Organomet Chem.* 2023, **37**, e7012.
- 12. A. Dalui, B. Pradhan, U. Thupakula, A. Khan, G. Kumar, T. Ghosh, B. Satpati, S. Acharya, Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose, *Nanoscale*, 2015, 7, 9062-9074.
- 13. L. Wu, G. Wan, S. Shi, Z. H, X. Xu, Y. Tang, C. Hao, G. Wang, Atomic layer deposition-assisted growth of CuAl LDH on carbon fiber as a peroxidase mimic for colorimetric determination of H2O2 and glucose, *New J. Chem.* 2019, **43**, 5826-5832.
- 14. L. Wu, X. Zhou, G. Wan, Y. Tang, S. Shi, X. Xu, G. Wang, Novel hierarchical CuNiAl LDH nanotubes with excellent peroxidase-like activity for wide-range detection of glucose, *Dalton Trans.*, 2021, **50**, 95-102.
- 15. T. Zhan, J. Kang, X. Li, L. Pan, G. Li, W. Hou, NiFe layered double hydroxide nanosheets as an efficiently mimic enzyme for colorimetric determination of glucose and H2O2, *Sensor Actuat B-Chem*, 2018, **255**, 2635-2642.
- 16. L. Chen, B. Sun, X. Wang, F. Qiao, S. Ai, 2D ultrathin nanosheets of Co–Al layered double hydroxides prepared in L-asparagine solution: enhanced peroxidase-like activity and colorimetric detection of glucose, *J. Mater. Chem. B*, 2013,1, 2268-2274.