Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

Fast and sensitive visual detection of Fe²⁺ using silver nanoparticles modified by 3,3',5,5'-tetramethylbenzidine and 3-mercaptopropionic acid

Qian Wang^{a,1}, Xiaoyun Li^{a,1}, Haiyan Zhang^a, Heng Wei^a, Jin Han^a, Guangzhou Xu^a, Jianlei Chao^b, Kun Wang^{a,*}, and Tao Jiang^{a,*}

- ^a Department of Physical and Chemical Inspection, Center for Disease Control and Prevention of Yancheng, Yancheng, 224003, Jiangsu, China
- ^b Department of Environmental Health, Center for Disease Control and Prevention of Yancheng, Yancheng, 224003, Jiangsu, China
- ¹ These authors contributed equally to this work.

E-mail address: 1059452181@qq.com; yccdcjt@163.com (T. Jiang) ORCID: 0009-0004-0158-3495.

^{*}Corresponding authors.

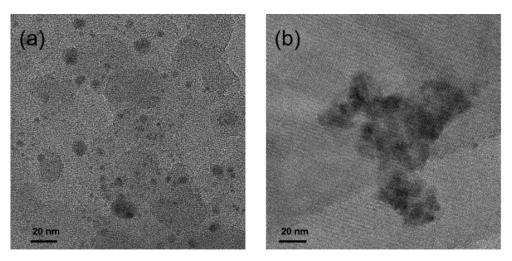


Figure S1.TEM images of (a) 3-MPA-TMB-AgNPs and (b) 3-MPA-TMB-AgNPs incubated with Fe^{2+} .

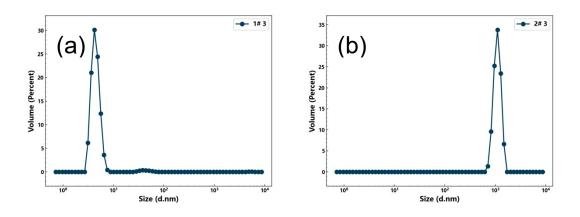


Figure S2. DLS images of (a) 3-MPA-TMB-AgNPs and (b) 3-MPA-TMB-AgNPs incubated with Fe^{2+} .

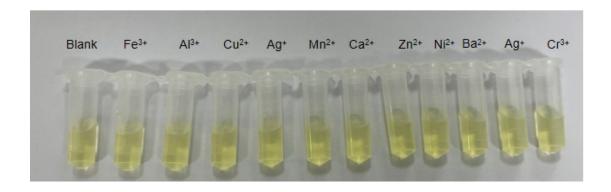


Figure S3. The colorimetric results of various metal ions (1.00×10^{-6} M) under different pH conditions in lake water.

Table S1. Analytical results for detection of Fe²⁺ in tap and lake water sample

Sample		Backgroud values(μM)	Added (μM)	Detection (μM)	Found (µM)	Average (μM)	Recovery (%)	RSD (%, n = 3)
Tap water	1		0.5	0.57	0.51	0.52	104	2.21
				0.60	0.53			
				0.60	0.53			
	2	0.07	2	2.12	2.05	2.06	103	1.28
				2.16	2.09			
				2.11	2.04			
	3		10	10.01	9.94	10.02	100.2	0.74
				10.15	10.08			
				10.12	10.05			
Lake water	1		0.5	0.68	0.54	0.55	110	2.76
				0.73	0.55			
				0.75	0.57			
	2	0.18	2	2.26	2.08	2.07	103.5	0.74
				2.24	2.06			
				2.27	2.09			
	3		10	10.21	10.03	10.23	102.3	1.74
				10.47	10.29			
				10.55	10.37			