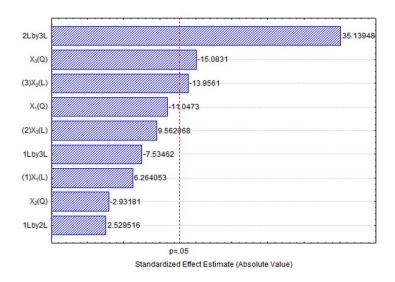
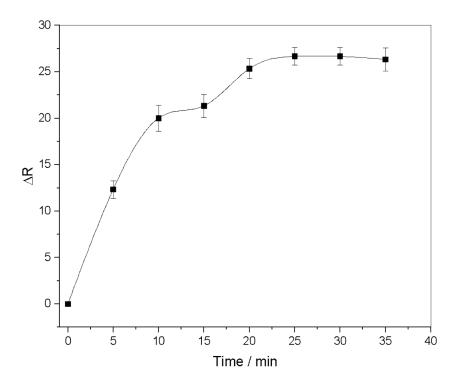
Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

Supplementary material


Colorimetric sensor based on cotton thread for the quantification of ascorbic acid using Prussian Blue and digital image detection

Josiane Lopes de Oliveira^a, Davi Pinheiro Coelho^a, Willian Toito Suarez^a, João Paulo Barbosa de Almeida^b, Tiago Almeida Silva^a and Vagner Bezerra dos Santos^{b,*}


^aDepartment of Chemistry, Centre for Exact Sciences and Technology, 36570-900, Federal University of Viçosa - UFV, Viçosa, MG, Brazil

^bFundamental Chemistry Department, 50740-560, Federal University of Pernambuco - UFPE, Recife, PE, Brazil

*E-mail: vagner.bsantos@ufpe.br

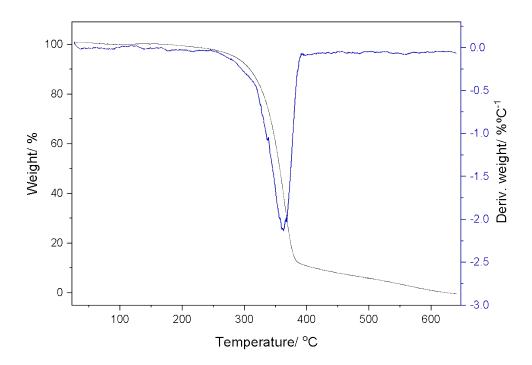

Fig. S1. Pareto chart of main effects for the central composite design. The red vertical line on the chart represents the p-value for the confidence level of 95%.

Fig. S2. Evaluation of the reaction time on the detection of L-AA (3 mg L⁻¹). Experimental conditions: μ TAD functionalized with K_4 [Fe(CN)₆] (0.7 μ L, 1.0 mmol L⁻¹) and Fe(III) (0.6 μ L, 0.8 mmol L⁻¹).

Thermogravimetric analysis

The thermal stability of the sensor was evaluated through TG (black) and DTG (blue) curves, illustrated in Fig. S3. As evidenced, the thermal analysis of the developed sensor, conducted under an inert atmosphere, highlights its remarkable thermal stability up to a temperature of 270 $^{\circ}$ C. In the first stage, the mass loss of approximately 5% was attributed to the volatilization of water molecules adsorbed in the cotton fiber. In a second stage (270 – 390 $^{\circ}$ C), the decomposition of the organic material, mainly by production of CO₂ was observed. This loss of mass was due to the matrix of cotton fibers of the μ TAD leading to a maximum mass loss of 83%. This result demonstrates the good thermal stability of the proposed sensor.

Fig. S3. TG/DTG curves related to the thermal decomposition of the designed μ TAD. Experimental conditions: μ TAD functionalized with K_4 [Fe(CN)₆] (0.7 μ L, 1.0 mmol L⁻¹) and Fe(III) (0.6 μ L, 0.8 mmol L⁻¹).

Table S1. Principles used by the metric system of the AGREEN analytical calculator.

Principles	Criterion
1	Sample handling
2	Minimum sample size and number
3	In situ analysis
4	Low-energy operations and reduced reagent count
5	Automated and miniaturized method
6	No derivatization
7	Low generation of analytical waste
8	Multi-analytical or multi-parameter method
9	Minimal energy use
10	Reagents obtained from renewable sources
11	No toxic reagents
12	Increased operator safety