Dual-Functional 8-Hydroxyquinoline Fluorescent Probe for Simultaneous Detection of Solvent Microenvironments and Trace Water in Organic Media

K. M. Meghna,^{a\$} M. M. Akhil Kumar,^{a\$} Sunandan Sarkar ^a, V. M. Biju *^a

E-mail: vmbiju@nitt.edu

^{\$}Both authors contributed equally

^aDepartment of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India- 620015

SUPPORTING INFORMATION

Table of Contents

Figur	Contents	Page
e No.		No.
S1	¹ H-NMR spectrum of BDN	4
S2	¹³ C-NMR spectrum of BDN	4
S3	¹ H-NMR spectrum of DBNA	5
S4	¹³ C-NMR spectrum of DBNA	5
S5	HRMS spectrum of DBNA	6
S6	¹ H-NMR spectrum of DBIMHQ	6
S7	¹³ C-NMR spectrum of DBIMHQ	7
S8	HRMS spectrum of DBIMHQ	7
S9	FT-IR spectrum of DBIMHQ	8
S10	¹ H-NMR spectrum of DBIMMQ	8
S11	¹³ C-NMR spectrum of DBIMMQ	9
S12	HRMS spectrum of DBIMMQ	9
S13	UV-visible absorption spectra of DBIMHQ with increasing water content (A) THF, (B) Acetone, (C) ACN, (D) EtOH	10
S14	Normalized fluorescence emission spectra of DBIMHQ in (A) Acetone, (B) ACN, (C) DMSO, (D) EtOH	10
S15	Fluorescence emission spectra of DBIMHQ at higher water contents (A) THF, (B) Acetone, (C) ACN	11
S16	(A) Fluorescence emission spectra of DBIMHQ in DMSO, (B) Plot of fluorescence intensity vs water content in DMSO	11
S17	(A) Fluorescence emission spectra of DBIMHQ in EtOH, (B) Plot of fluorescence intensity vs water content in EtOH	12
S18	(A)Fluorescence emission spectra of DBIMMQ in THF with increasing water content and (B) Plot of fluorescence intensity vs water content in THF	12
S19	DLS-based particle size analysis of DBIMHQ (1 μ M) in (a) 10% H ₂ O-THF and (b) 50% H ₂ O-THF	13
S20	DFT study for geometric optimisation and energy calculation	13
S21	(A) Stern-Volmer plot for fluorescence intensity in THF solvent with the addition of water, and (B) Stern-Volmer plot for fluorescence intensity in acetone solvent with the addition of water.	14
S22	(A) Stern-Volmer plot for lifetime in THF solvent with the addition of water, and (B) Stern-Volmer plot for lifetime in acetone solvent with the addition of water.	14
S23	(A) Stern-Volmer plot combining fluorescence intensity and lifetime measurements with increasing water concentration (A) THF solvent	15

	and (B) Acetone solvent.	
S24	Temperature sensitivity of DBIMHQ in pure THF solvent.	15
S25	Non-metal interference study for DBIMHQ (1µM) in THF with 5% water (A) EDTA masking control for metal ions and (B) Incremental addition of ethanol to THF solvent.	15
S26	Non-metal interference study for DBIMHQ (1µM) in THF with 5% water (A) Acid contaminants and (B) Base contaminants.	16
S27	Quantitative analysis of water in real samples (A) Honey, (B) Salt, and (C) Sugar.	16
S28	(A) Fluorescence emission spectra of chitosan thin film in THF solvent with increasing water content, and (B) Plot of fluorescence intensity <i>vs</i> water content in THF.	17
S29	(A) Response time analysis of chitosan thin film in THF: water mixture at various time intervals, and (B) Stability studies of chitosan thin film THF-water solvent mixture.	17
S30	¹ H NMR spectrum of DBIMHQ in the presence of NaOH.	17

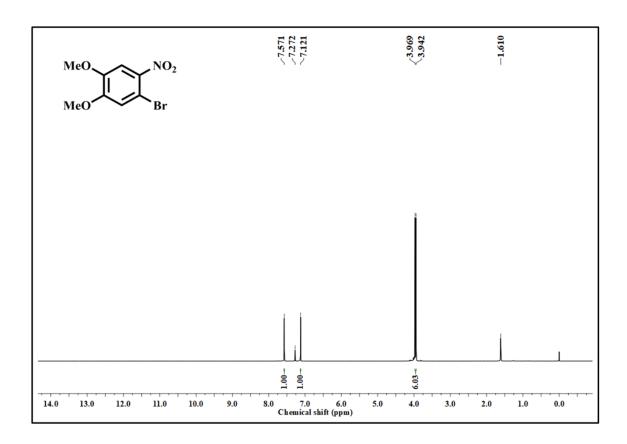


Fig. S1 1 H-NMR spectrum of BDN

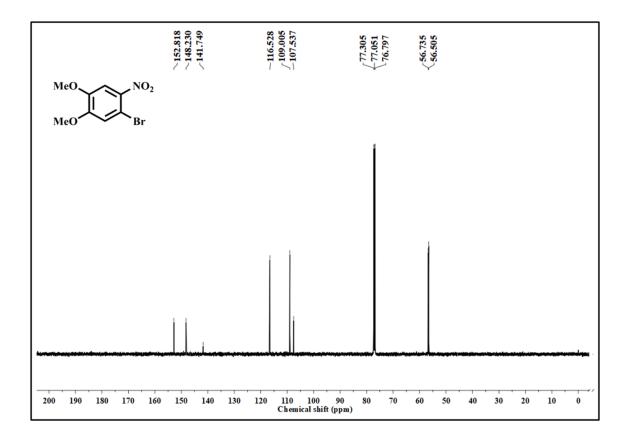


Fig. S2 ¹³C-NMR spectrum of BDN

Fig. S3 ¹H-NMR spectrum of DBNA

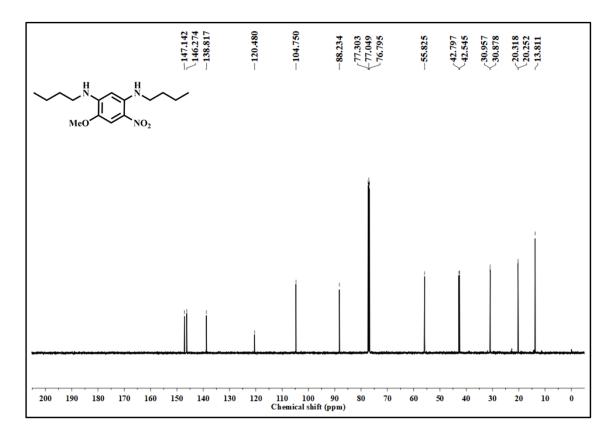


Fig. S4 ¹³C-NMR spectrum of DBNA

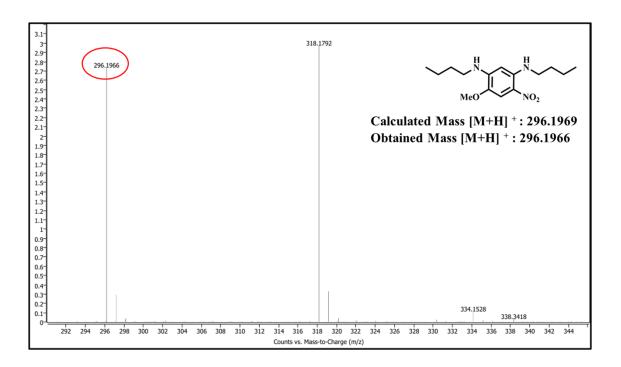


Fig. S5 HRMS spectrum of DBNA

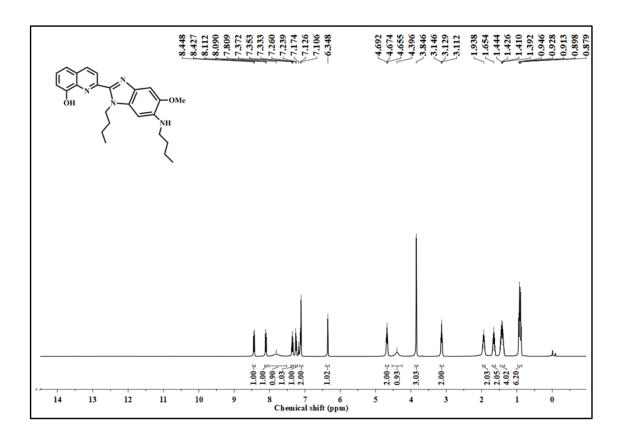


Fig. S6 ¹H NMR spectrum of DBIMHQ

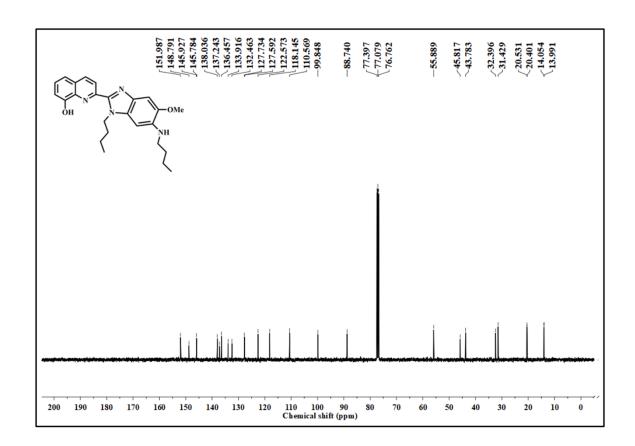


Fig. S7 ¹³C NMR spectrum of DBIMHQ

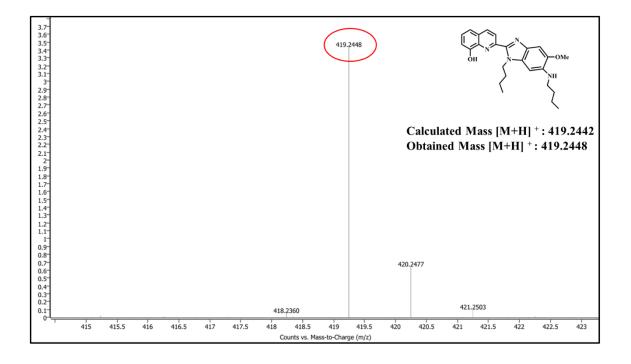


Fig. S8 HRMS spectrum of DBIMHQ

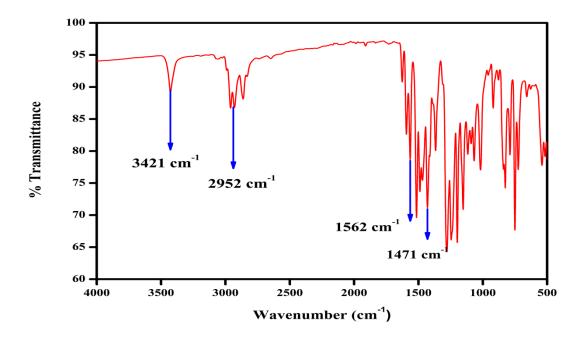


Fig. S9 FT-IR spectrum of DBIMHQ

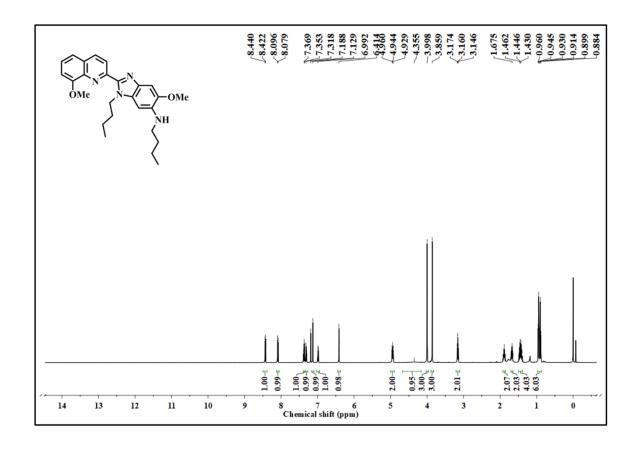
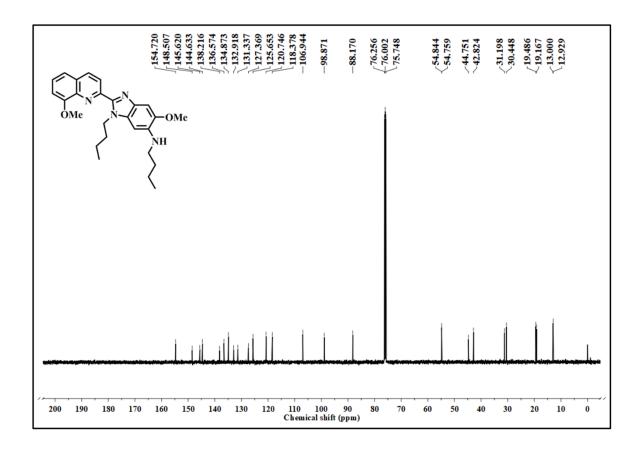



Fig. S10 ¹H NMR spectrum of DBIMMQ

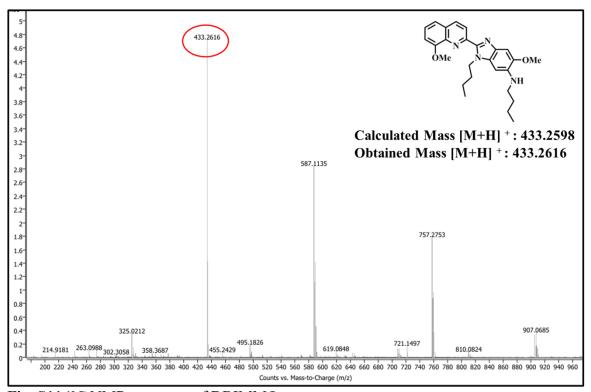
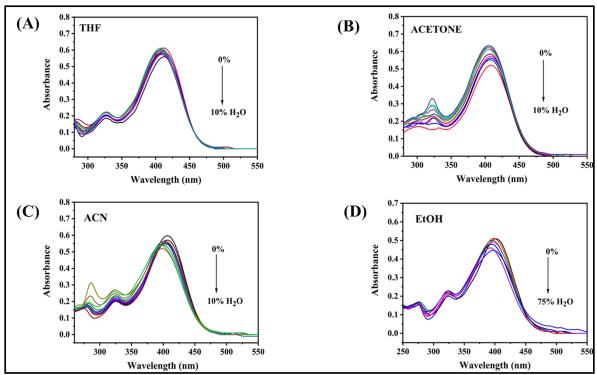
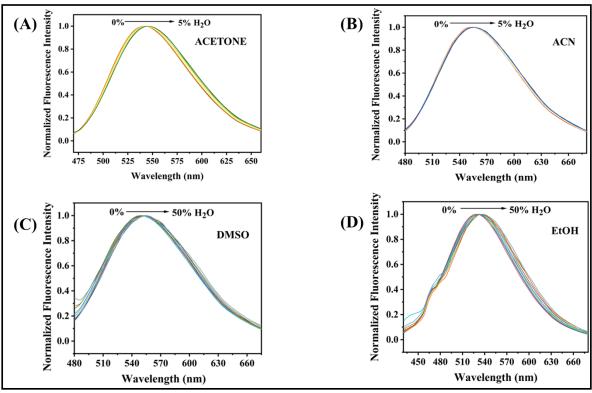


Fig. S11 ¹³C NMR spectrum of DBIMMQ

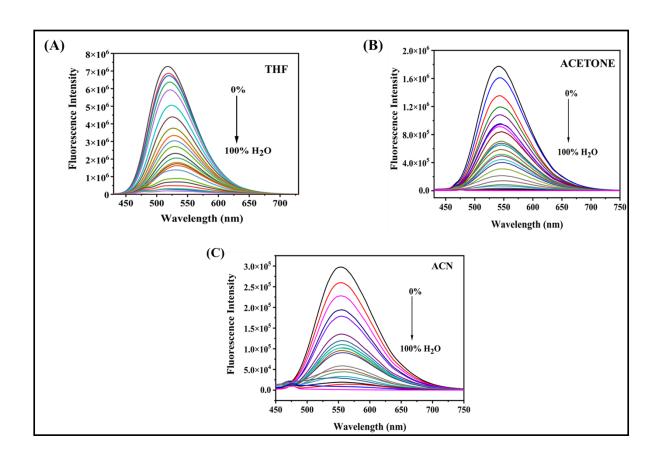
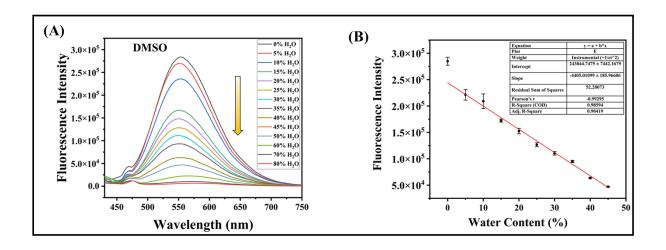

Fig. S12 HRMS spectrum of DBIMMQ

Fig. S13 UV-visible absorption spectra of DBIMHQ with increasing water content (A) THF,



(B) Acetone, (C) ACN, (D) EtOH.

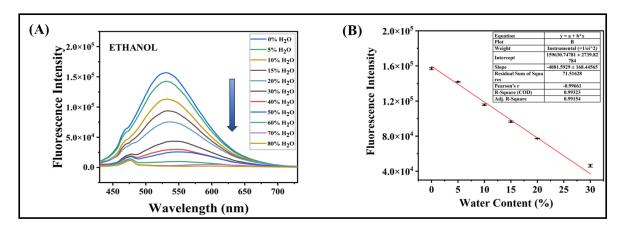

Fig. S14 Normalized fluorescence emission spectra of DBIMHQ in (A) Acetone, (B) ACN, (C) DMSO, (D) EtOH

Fig. S15 Fluorescence emission spectra of DBIMHQ at higher water contents (A) THF, (B) Acetone, (C) ACN.

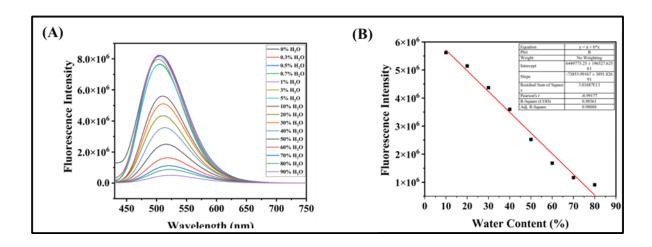

Fig. S16 (A) Fluorescence emission spectra of DBIMHQ in DMSO, (B) Plot of fluorescence intensity *vs* water content in DMSO.

Fig. S17 (A) Fluorescence emission spectra of DBIMHQ in EtOH, (B) Plot of fluorescence intensity *vs* water content in EtOH.

Table S1. Relative Quantum yield calculation for DBIMHQ

Sample	Excitation Wavelengt h	QYs	$\mathbf{A}_{\mathbf{S}}$	Fs	η_{S}	A _X	F _X	η_X	QY _X
DBIMHQ	410 nm	0.577	1.16 x 10 ⁹	0.08	1.33	4.10 x 10 ⁸	0.06	1.407	0.304

Fig. S18 (A)Fluorescence emission spectra of DBIMMQ in THF with increasing water content and (B) Plot of fluorescence intensity *vs* water content in THF.

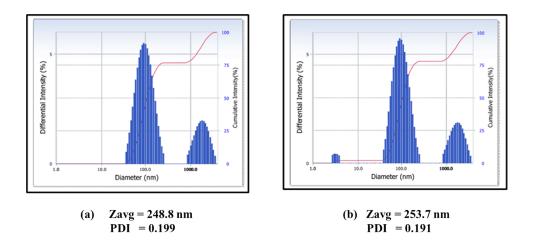
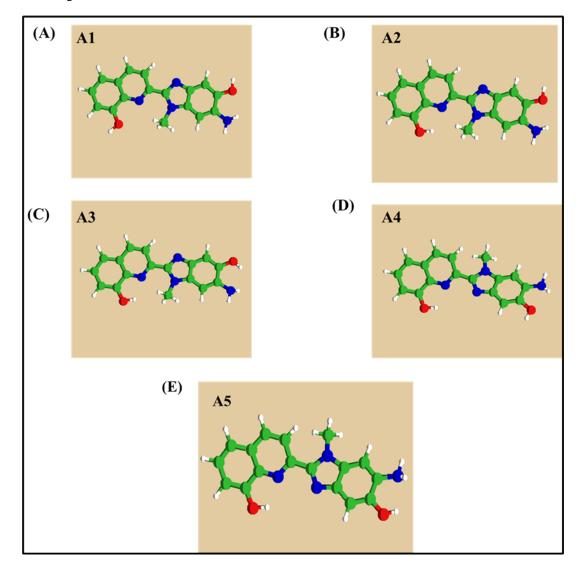
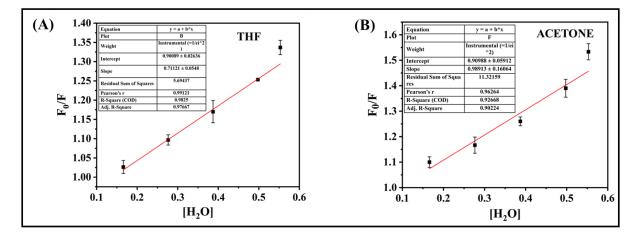


Fig. S19 DLS-based particle size analysis of DBIMHQ (1 μ M) in (a) 10% H₂O-THF and (b) 50% H₂O-THF.

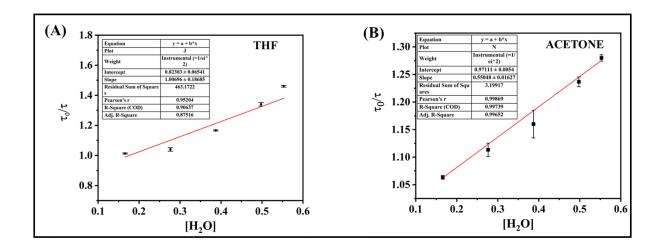

Fig. S20 DFT study for geometric optimisation and energy calculation.

Table S2. Relative energy of various conformers of DBIMHQ

Conformer	Electronic Energy (kcal/mol)			
A1	4.10			
A2	0			
A3	1.14			
A4	3.09			
	2.07			
A5	4.10			
AS	7.10			

Fig. S21 (A) Stern-Volmer plot for fluorescence intensity in THF solvent with the addition of water, and (B) Stern-Volmer plot for fluorescence intensity in acetone solvent with the addition of water.

Fig. S22 (A) Stern-Volmer plot for lifetime in THF solvent with the addition of water, and (B) Stern-Volmer plot for lifetime in acetone solvent with the addition of water.

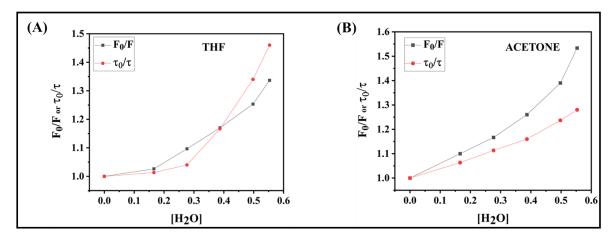


Fig. S23 (A) Stern-Volmer plot combining fluorescence intensity and lifetime measurements with increasing water concentration (A) THF solvent and (B) Acetone solvent.

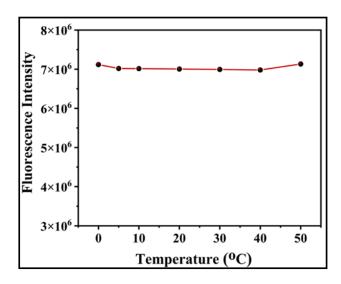


Fig. S24 Temperature sensitivity of DBIMHQ in pure THF solvent.

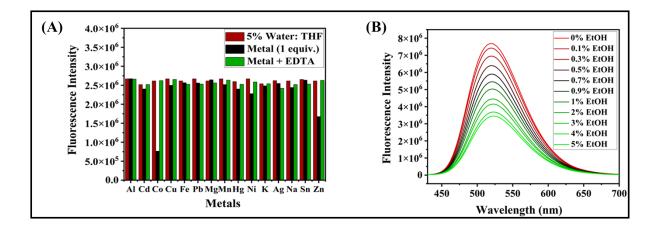


Fig. S25 Non-metal interference study for DBIMHQ ($1\mu M$) in THF with 5% water (A) EDTA masking control for metal ions and (B) Incremental addition of ethanol to THF solvent.

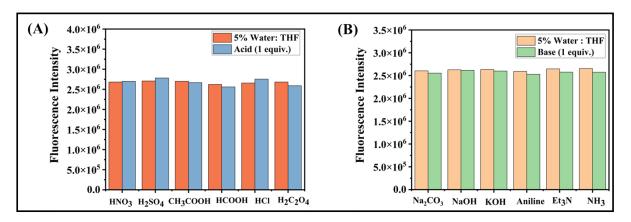


Fig. S26 Non-metal interference study for DBIMHQ ($1\mu M$) in THF with 5% water (A) Acid contaminants and (B) Base contaminants.

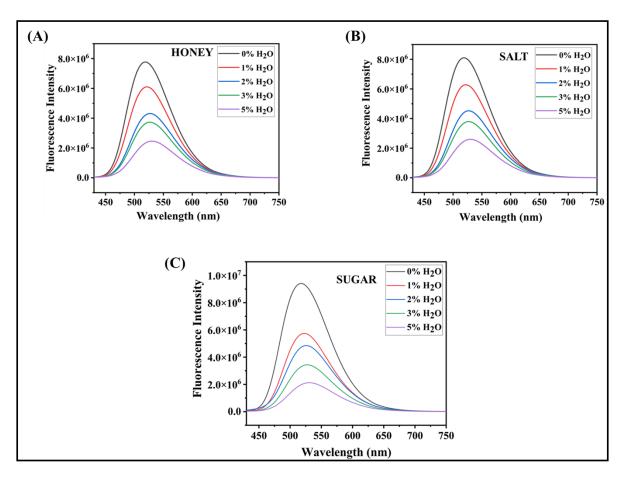


Fig. S27 Quantitative analysis of water in real samples (A) Honey, (B) Salt, and (C) Sugar.

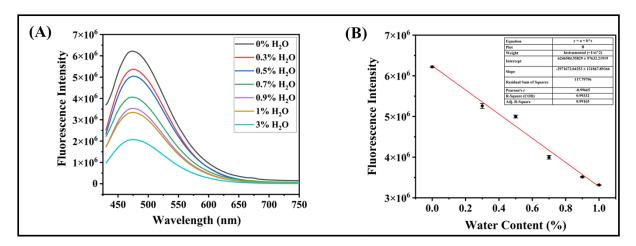


Fig. S28 (A) Fluorescence emission spectra of chitosan thin film in THF solvent with increasing water content and (B) Plot of fluorescence intensity vs water content in THF.

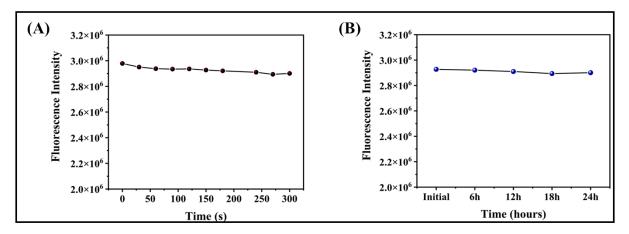


Fig. S29 (A) Response time analysis of chitosan thin film in THF: water mixture at various time intervals, and (B) Stability studies of chitosan thin film THF-water solvent mixture.

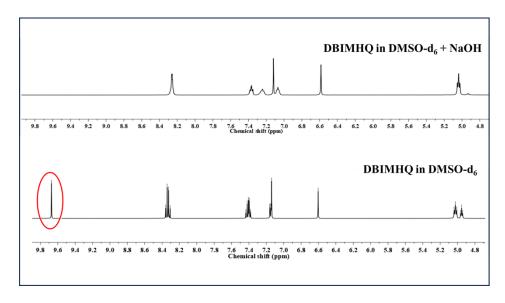


Fig. S30 ¹H NMR spectrum of DBIMHQ in the presence of NaOH.

Table S3. Comparison of previous reports with DBIMHQ

Sl. No.	Sensor	Solvent	LOD (%)	LOQ (%)	Response (s)	Reference s
1	NH ₂	ACN THF	0.08 0.13	0.24	-	1
	NH ₂		0.05045			
2		ACN Dioxane DMSO EtOH THF	0.06246 0.18329 0.17478 0.39660 0.47389	0.20823 0.61097 0.58262 1.32201 1.57965	-	2
3	N.N.N.NH2	DMSO DMF ACN EtOH	0.0220 0.0246 0.1404 0.1513	-	<5s	3
	OH N. H. N.	DMSO DMF ACN EtOH	0.0274 0.0461 0.0221 0.0595	-	108	3
4	NO ₂ NH NH	ACN Dioxane Acetone DMSO THF	0.0019 0.007 0.0013 0.0068 0.0037	-	≤1.2s	4
5	Karl Fischer Titration	Acetone EtOH THF DMF	0.026 0.026 0.016 0.036	-	30s	5
6	OH NH	THF Acetone ACN DMSO EtOH	0.0130 0.1743 0.1100 1.4271 1.6742	0.0435 0.5812 0.3668 4.7570 5.5807	30s	Present Work

References

- 1. E. Kopcsik, P. Kun and M. Nagy, Photochem, 2025, 5, 22.
- 2. R. AbhijnaKrishna, N. Vijay and S. Velmathi, New J. Chem., 2022, 46, 17903–17911.
- 3. J. T. Wang, Y. Y. Pei, S. F. Ren, M. Y. Yan, W. Luo, B. Zhang and Q. F. Li, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2020, 229, 117956.
- 4. Z. Zhang, Q. Liu, W. Wang, R. Shi, T. Jiang, J. Li, P. Jiang, H. Yu and Y. Qi, *Spectrochim Acta A Mol Biomol Spectrosc.*, 2024, **323**, 124880.
- 5. N. Dantan, W. Frenzel, and S. Kuppers, Talanta, 2000, 52, 101-109.