
Supplementary Information for Journal of Analytical Methods

A novel low-rank coal-based CDs for the detection of Fe^{3+}

Wenwen Wu, Xiang Han*, Siyu Zhang, Lele Li, Meili Du, Fuxin Chen
College of Chemistry and Chemical Engineering, Xi'an University of Science and
Technology, Xi'an 710054, China

Fig. S1: A: Fluorescence spectra of coal-based CDs prepared at different reaction times; B: Fluorescence spectra of coal-based carbon dots prepared at different voltages.

Fig. S2: A: Coal-based CDs prepared by DMSO, EtOH, AC, ACN; B: Coal-based CDs prepared at different times C: Fluorescence spectra of coal-based CDs prepared at different temperatures.

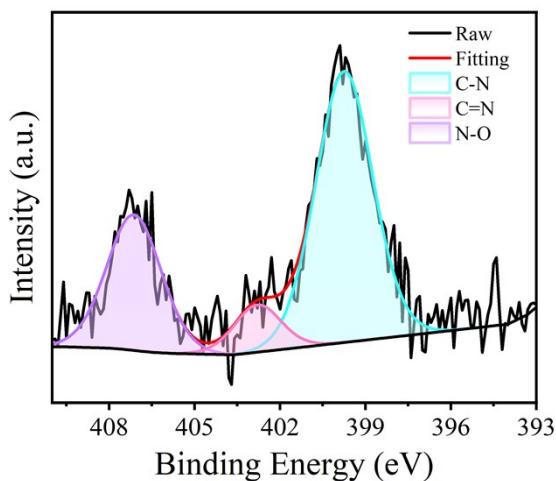


Fig. S3 The high-resolution N1s spectrum of CDs XPS.

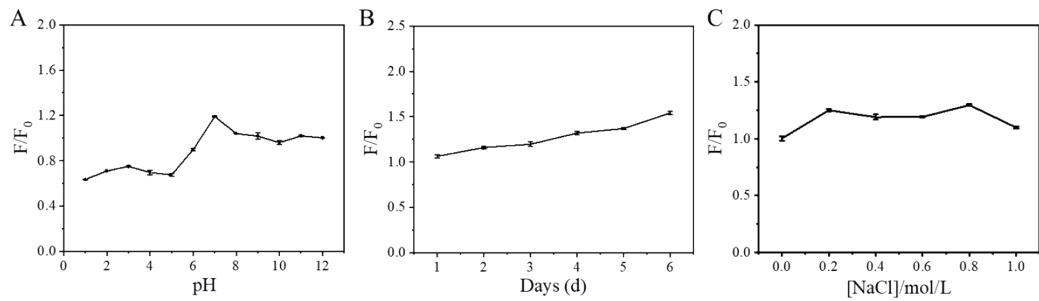
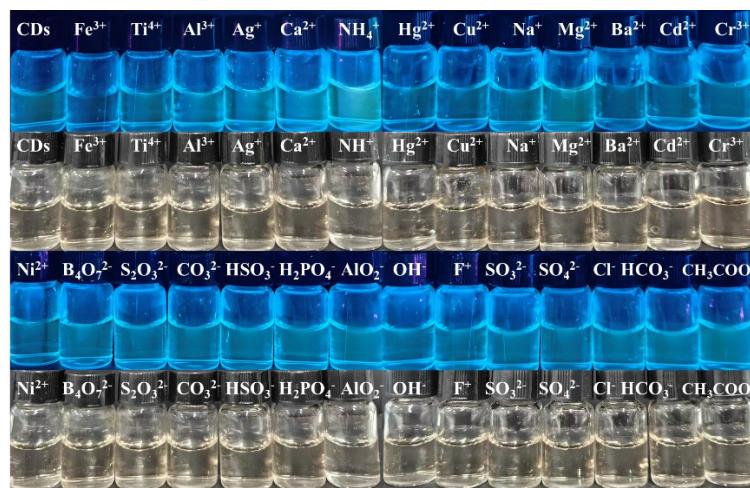
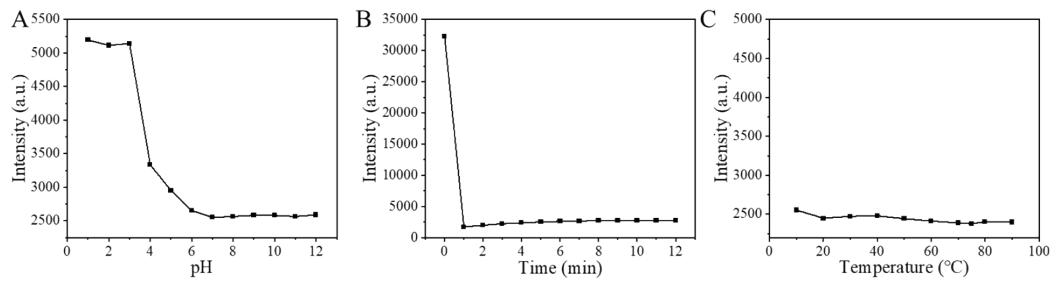
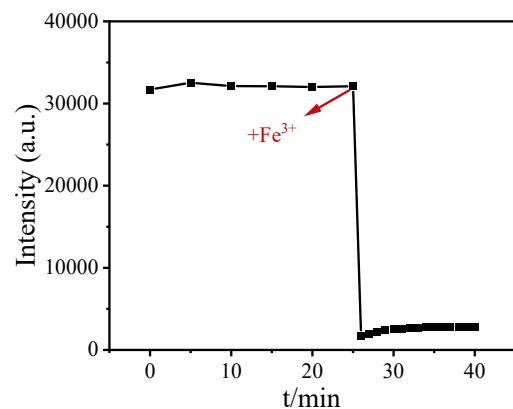
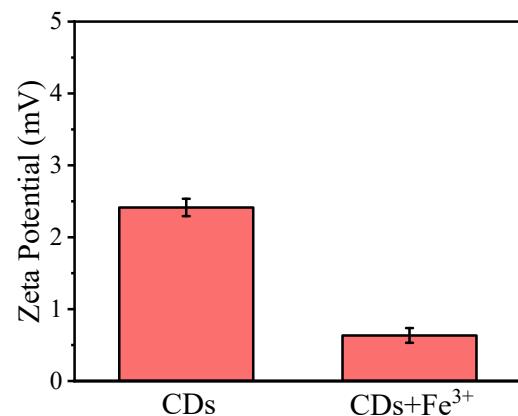


Fig. S4: A: The influence of pH on the fluorescence intensity of coal-based CDs; B: The influence of time on the fluorescence intensity of coal-based CDs; C: The influence of ion concentration on the fluorescence intensity of coal-based CDs.


Fig. S5 Changes in color and fluorescence of CDs solution (100 μM) upon addition of different ions (CDs, Fe³⁺, Ti⁴⁺, Al³⁺, Ag⁺, Ca²⁺, NH₄⁺, Hg²⁺, Cu²⁺, Na⁺, Mg²⁺, Ba²⁺, Cd²⁺, Cr³⁺, Ni²⁺, B₄O₇²⁻, S₂O₃²⁻, CO₃²⁻, HSO₃⁻, H₂PO₄⁻, AlO₂⁻, OH⁻, F⁻, SO₃²⁻, SO₄²⁻, Cl⁻, HCO₃⁻, CH₃COO⁻)

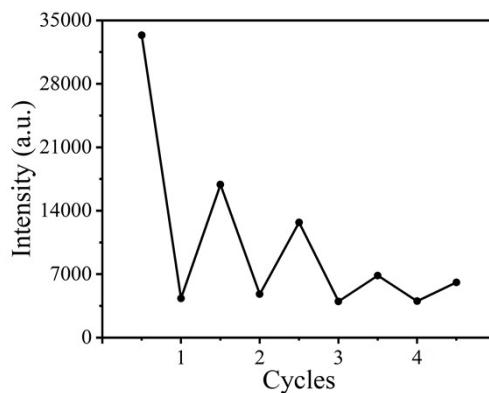

Fig. S6 CDs at different (A) pH values; (B) Response time; (C) Temperature; The fluorescence intensity after adding Fe^{3+} under certain conditions.

Fig. S7 The fluorescence intensity of CDs before and after the addition of Fe^{3+} over time.

Fig. S8 Zeta-Potential of CDs in the presence or absence of Fe^{3+}

Fig.S9 Repeated on-off switching of the fluorescence emission of CDs in SiO_3^{2-} and Fe^{3+} solution cycles.

Table S1. Comparison of CDs with existing coal-based carbon points

Carbon Precursor	Synthesis method	appliance	quantum yield	Ref.
coal-based humic acid	solvent heat	sensing of H_2O_2	7.6%	S1
Coal-based humic acid	hydrothermal		14%	S2
Low-rank coal	nitric acid oxidation	fluorescent inks	9.11%	S3
Lignite	ultrasound-assisted hydrogen peroxide	Detection of Cr^{6+}	1.37%	S4
Anthracite and lignite	Sulfuric acid and nitric acid are mixed and oxidized	Anti-counterfeiting	1.62%	S5
raw coal	Mixed oxidation of H_2O_2 and $\text{NH}_3\text{H}_2\text{O}$	Optoelectronic devices	8.9%	S6
coal washery rejects			14.9%	
Coal	Mixed oxidation of H_2O_2 and HCOOH	Detection of Fe^{3+}	7.2%	S7
Lignite	Oxidation of H_2O_2	Detection of Cu^{2+}	0.81%	S8
Coal pitch	Mixed oxidation of H_2O_2 and HCOOH		3.77%	S9
Coal pitch	Hydrothermal in H_2O_2 and HCOOH solution	LED	8.36%	S10
Lignite	Chemical oxidation with H_2O_2	Detection of Fe^{3+} in soil	23.49%	This work

Table S2. Comparison of the Fe³⁺ detection limit between CDs and the existing CDs

detection				
Carbon Precursor	Synthesis method	Detection object	Detection limit	Ref.
citric acid	hydrothermal	Fe ³⁺	0.753 μM	S11
waste egg tray paper pulp	hydrothermal	Fe ³⁺	1.418 μM	S12
methionine	solvent heat	Fe ³⁺	7.12 μM	S13
citric acid	solvent heat	Fe ³⁺	4.5 μM	S14
sodium citrate	hydrothermal	Fe ³⁺	1.41 μM	S15
mushroom	hydrothermal	Fe ³⁺	16 μM	S16
coffee grounds	solvent heat	Fe ³⁺	4.31 μM	S17
Lignite	Chemical oxidation with H ₂ O ₂	Fe ³⁺	0.123 μM	This work

Table S3. Detection of Fe³⁺ present in the original soil at different pH levels

Sample	pH value	Measured value of Fe ³⁺ (n=3) (μM)	Relative standard deviation (%)
Soil leachate	2	0.79	1.52%
	4	0	--
	6	0	--
	8	0	--

[S1] He Z, Yuen M, Zhang C, et al. Room-temperature phosphorescence in coal-based humic acid-derived carbon dots[J]. *Journal of Materials Chemistry C*, 2024, 12(17): 6333-6340.

[S2] Song S, Wang Z, Pan C, et al. Achieving full-color emission in coal-based humic acid derived carbon dots through intradot aggregation[J]. *Journal of Materials Chemistry C*, 2022, 10(27): 10124-10131.

[S3] Jiang W, He H, Wang C, et al. Preparation of coal-based carbon quantum dots and their fluorescence properties[J]. *Microchemical Journal*, 2024, 207: 111818.

[S4] Xu S, Zhang J, Li M, et al. In situ synthesis of S-doped coal-based carbon quantum dots and its application to Cr⁶⁺ detection[J]. *Journal of Chemical Technology & Biotechnology*, 2023, 98(10): 2532-2545.

[S5] Du M, Wang C, Liu X, et al. Morphological insights into uncompetitive fluorescence of coal-based carbon dots and strategies for improvement[J]. *Carbon*, 2024, 228: 119396.

[S6] Boruah A, Bora S, Thakur A, et al. Solid-state phosphors from coal-derived carbon quantum dots[J]. *ACS omega*, 2023, 8(28): 25410-25423.

[S7] Cheng Z, Wu X, Liu L, et al. A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe³⁺ ion detection[J]. *New Carbon Materials*, 2023, 38(6): 1104-1115.

[S8] Shi C, Wei X Y, Liu F J, et al. Carbon Dots Derived from Facile Tailoring of Shaerhu Lignite as a Novel Fluorescence Sensor with High-Selectivity and Sensitivity for Cu²⁺ Detection[J]. *ChemistrySelect*, 2020, 5(39): 12125-12130.

[S9] Meng X, Chang Q, Xue C, et al. Full-colour carbon dots: from energy-efficient synthesis to concentration-dependent photoluminescence properties[J]. *Chemical communications*, 2017, 53(21): 3074-3077.

[S10] Zheng Y, Ye S, Chang Q, et al. Tailoring the Optical Properties of Coal Pitch-Derived Carbon Dots by

Graphitization Controlling[J]. Energy & Fuels, 2024, 38(15): 14475-14482.

[S11] Li B, Wu F, Xie Z, et al. High acid-base tolerance and long storage time lanthanum cerium co-doped carbon quantum dots for Fe^{3+} detection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2025, 327: 125403.

[S12] Mahilary B, Patir K, Kandinya R, et al. Waste Egg Tray Paper Pulp Derived Carbon Dots for Detection of Fe^{3+} Ions via Fluorescence On-Off Process[J]. Journal of Fluorescence, 2025: 1-10.

[S13] Yang C, Xu G, Hou C, et al. Ratiometric fluorescence nanoprobe based on nitrogen-doped carbon dots for Cu^{2+} and Fe^{3+} detection[J]. Scientific Reports, 2025, 15(1): 6261.

[S14] Jiang Y, Wang H, Nie T, et al. White-emissive boron and nitrogen co-doped carbon dots for detection of water in organic solvents and Fe^{3+} ions[J]. Materials Today Communications, 2025, 44: 111992.

[S15] Guo S, Liang L, Guo Q, et al. Incorporating silicon-doped carbon dots into europium chelated silica microspheres for the ratiometric fluorescent and colorimetric detection of Fe^{3+} ions[J]. Microchemical Journal, 2025: 115194.

[S16] Klongklaw K, Phiromkaew B, Kiatsuksri P, et al. Green one-step synthesis of mushroom-derived carbon dots as fluorescent sensors for Fe^{3+} detection[J]. RSC advances, 2023, 13(44): 30869-30875.

[S17] Zhang B, Liu Z, Qian D, et al. Application of polyamide 56 nanofiber membrane loaded with coffee grounds carbon dots in Fe^{3+} detection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2025, 328: 125440.