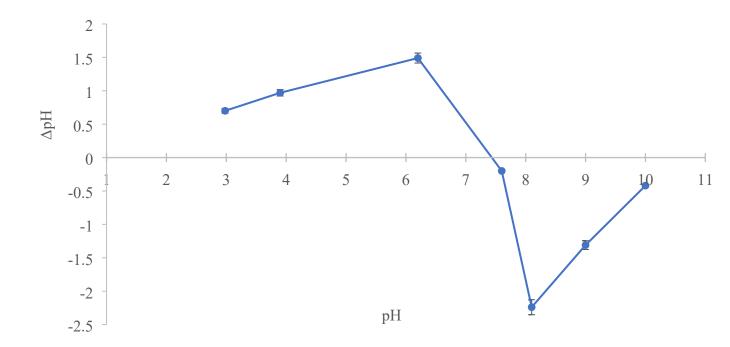
Supplementary Information (SI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2025

Supplementary file:

Establishment of the new dispersive solid Phase microextraction (DSP- μ E) method with novel adsorbent CaAl-LDH hybrid with g-C₃N₄ utilised for the determination of Pb²⁺ in food and environmental samples

Muhammad Balal Arain a,b*, Abdul Niaz a, c, Mustafa Soylak a,d,e,*

- ^a Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye
- ^b Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan.
- ^c Department of Chemistry, University of Science & Technology, 28100, Bannu, KPK, Pakistan
- ^d Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye
- ^e Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Türkiye
- *Corresponding author E-mail: soylak@erciyes.edu.tr, bilal ku2004@yahoo.com


Supplementary Table S1. Matrix ions effect on developed DSP-μE (N=3).

Ion	Added as	Concentration (mg/L)	Recovery, %
CO ₃ ² -	Na ₂ CO ₃	2500	97 ± 9
NO ₃ -	NaNO ₃	3500	98 ± 9
Cl	NaCl	2500	101± 9
Na ⁺	NaCl	4000	99 ± 1
K ⁺	KCl	4000	101 ± 1
Mg^{2+}	$Mg(NO_3)_2 \cdot 6H_2O$	2.5	98 ± 8
Cu ²⁺	Cu(NO ₃) ₂ ·6H ₂ O	2.5	97 ± 6
Mn ²⁺	$Mn(NO_3)_2 \cdot 6H_2O$	2.5	101 ± 8
Z n ²⁺	$Zn(NO_3)_2 \cdot 6H_2O$	2.5	99 ± 8
Ni ²⁺	$Ni(NO_3)_2 \cdot 6H_2O$	2.5	97 ± 7
Cd ²⁺	$Cd(NO_3)_2 \cdot 6H_2O$	2.5	101 ± 5
Fe ³⁺	Fe(NO ₃) ₃ ·6H ₂ O	2.5	99 ± 8

a Mean ± Standard deviation

Supplementary Fig. S1. Determination of the point of zero charge (PZC) of the adsorbent

Point of zero charge (PZC)

