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import pandas as pd

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import Datal.oader, TensorDataset
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.linear model import LassoCV

import pywt

import os

import random

from itertools import product

# ========== 1. Utility Functions =========—=
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual seed all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

def wavelet denoise_rowwise(row, wavelet="db4', level=1):
coeff = pywt.wavedec(row, wavelet, level=level)
coeff[1:] = [pywt.threshold(i, value=0.1 * max(i), mode="soft') for i in coeff]1:]]
return pywt.waverec(coeff, wavelet)[:len(row)]

def spxy(x, y, test_size=0.3):
y_backup = y.flatten()
M = x.shape[0]
N =round((1 - test_size) * M)
samples = np.arange(M)
y_norm = (y - np.mean(y)) / np.std(y)
D, Dy = np.zeros((M, M)), np.zeros((M, M))
for i in range(M - 1):
for j in range(i + 1, M):
D[i, j] = np.linalg.norm(x[1] - x[j])
Dyli, j] = np.linalg.norm(y norm[i] - y norm(j])
D =D/ np.max(D) + Dy / np.max(Dy)
maxD = D.max(axis=0)
index_row = D.argmax(axis=0)
index column = maxD.argmax()

m = np.zeros(N, dtype=int)



m[0], m[1] = index_row[index_column], index column

for i in range(2, N):
pool = np.delete(samples, m[:i])
dmin = np.array([min(D[min(p, m[k]), max(p, m[k])] for k in range(i)) for p in pool])
m[i] = pool[np.argmax(dmin)]

m_complement = np.delete(np.arange(M), m)

return x[m], x[m_complement], y_backup[m], y_backup[m_complement]

def'lasso_selection(X, y):
scaler = StandardScaler()
X scaled = scaler.fit_transform(X)
lasso = LassoCV(cv=5, max_iter=500000, random_state=42).fit(X_scaled, y.flatten())
selected indices = np.where(lasso.coef !=0)[0]
if len(selected _indices) == 0:
selected indices = np.arange(min(10, X.shape[1]))
return X[:, selected_indices], selected indices

# ==========2. CNN Model ==========
class ImprovedCNNModel(nn.Module):
def init _(self, num_outputs, input_length):

super(). _init_ ()
self.pool _layers = self._determine pool_layers(input_length)
layers =[]
in_channels =1
channels = [16, 32, 64]

for 1 in range(3):
out_channels = channels[i]
layers.append(nn.Conv1d(in_channels, out_channels, kernel size=3, padding=1))
layers.append(nn.BatchNorm1d(out_channels))
layers.append(nn.ReLU())
if i <self.pool layers:
layers.append(nn.MaxPoolld(kernel size=2))

in_channels = out_channels

self.conv_layers = nn.Sequential(*layers)
self.fc_input _size = self. _get fc input_size(input length)
self.fc_layers = nn.Sequential(

nn.Flatten(),

nn.Linear(self.fc_input_size, 256),

nn.ReLU(),

nn.Dropout(0.6),

nn.Linear(256, 128),

nn.ReLU(),



nn.Dropout(0.4),
nn.Linear(128, num_outputs)

def forward(self, x):
x = x.unsqueeze(1)
x = self.conv_layers(x)
return self.fc layers(x)

def get fc_input_size(self, input_length):
with torch.no_grad():
self.eval()
dummy input = torch.randn(l1, 1, input_length)
out = self.conv_layers(dummy _input)

return out.view(1, -1).size(1)

def determine pool layers(self, input_length):
max_pools =0
length = input_length
while length >= 2 and max_pools < 3:
length //=2
max_pools +=1

return max_pools

========== 3. Main Program ==========
# Modify the paths below to your actual file locations
input_file = r'path/to/your/input_data.xlsx'
output_dir = r'path/to/your/output_folder'
os.makedirs(output_dir, exist ok=True)

# Data loading and preprocessing

data = pd.read_excel(input_file, header=0)

target = data.iloc[:, 1].values.reshape(-1, 1)

reflectivity = data.iloc[:, 2:].values

reflectivity denoised = np.apply_along axis(wavelet denoise_rowwise, axis=1, arr=reflectivity)
corrected = reflectivity denoised - np.min(reflectivity denoised, axis=1, keepdims=True)

reflectivity scaled = StandardScaler().fit_transform(corrected)

# Grid search parameters

epochs_list =[3000, 4000, 5000]

batch_size list=[16, 24, 32]

param_combinations = list(product(epochs_list, batch_size list))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")



global_best = {'score": -1}

for epochs, batch_size in param_combinations:
print(f"\n{'="*50}")
print(f"Grid Search: epochs={epochs}, batch_size={batch_size}")
print('="*50)

for run in range(10):
set_seed(42 + run)
X train, X test, y train, y_test = spxy(reflectivity scaled, target)
X train, selected features = lasso_selection(X_train, y_train)
X test =X test[:, selected features]

X train_tensor = torch.tensor(X _train, dtype=torch.float32).to(device)

X test_tensor = torch.tensor(X test, dtype=torch.float32).to(device)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).to(device).unsqueeze(1)
y_test_tensor = torch.tensor(y_test, dtype=torch.float32).to(device).unsqueeze(1)

net = ImprovedCNNModel(1, X _train.shape[1]).to(device)

loss_fn = nn.MSELoss()

optimizer = optim. Adam(net.parameters(), lr=0.003, weight decay=0.001)

scheduler = optim.Ir_scheduler.ReduceLROnPlateau(optimizer, mode="min’, factor=0.5,

patience=10)

best loss, no_improve epochs = float('inf"), 0

patience = 200

best weights = net.state_dict()

train_loader = DatalLoader(TensorDataset(X_train_tensor, y_train tensor),
batch_size=batch_size, shuffle=True)

for epoch in range(epochs):
net.train()
for Xb, yb in train_loader:
if Xb.size(0) == 1: continue
optimizer.zero_grad()
loss = loss_fn(net(Xb), yb)
loss.backward()

optimizer.step()

net.eval()
with torch.no_grad():
train_loss = loss_fn(net(X_train_tensor), y_train_tensor)
if train_loss < best_loss:
best loss = train_loss



best weights = net.state_dict()
no_improve epochs =0
else:
no_improve epochs += 1
if no_improve epochs >= patience:
break
scheduler.step(train_loss)

net.load_state dict(best weights)

net.eval()

with torch.no_grad():
y_pred_train = net(X _train_tensor).cpu().numpy ()
y_pred_test =net(X test_tensor).cpu().numpy()
y_true train =y_train_tensor.cpu().numpy()
y_true test =1y test tensor.cpu().numpy()

r2_train =12 _score(y_true train, y pred_train)

r2_test =12 score(y_true test,y pred test)

r_train = np.sqrt(r2_train) if 12 _train >= 0 else -np.sqrt(-r2_train)
r_test =np.sqrt(r2_test) if r2_test >= 0 else -np.sqrt(-r2_test)
rmse_train = np.sqrt(mean_squared_error(y_true train, y pred train))

rmse_test = np.sqrt(mean_squared error(y_true test,y pred test))

# Update global best
if r_test > global best['score']:
global best = {
'score’: r_test,
'epochs': epochs,
'batch_size': batch_size,
'run’: run + 1,
'train'pd.DataFrame({'True'y true train.flatten(),Pred'y pred train.flatten()}),
'test': pd.DataFrame({'True": y_true_test.flatten(), 'Pred":y_pred_test.flatten()}),

'summary': [r_train, r_test, rmse train, rmse test]

# Save global best results
with pd.ExcelWriter(os.path.join(output_dir, 'best_predictions.xIsx')) as writer:
pd.DataFrame(] {
'Best epochs': global best['epochs'],
'Best batch_size': global best['batch_size'],
'Best run': global best['run'],
"Train R": global best['summary'][0],
'"Test R": global best['summary'][1],
"Train RMSE': global best['summary'][2],



"Test RMSE': global best['summary'][3]
+1).to_excel(writer, sheet name='Summary', index=False)
global best["train"].to_excel(writer, sheet name="Train Set', index=False)
global_best["test"].to_excel(writer, sheet name='Test Set', index=False)

print("\n" + "="*50)

print("Grid search completed!")

print(f'Best parameters: epochs={global best['epochs']}, batch_size={global best['batch_size']},
run={global best['run']}")

print(f'Best Test R: {global best['score']:.4f}")

print("="*50)



