Supplementary Information (SI) for Analytical Methods.
This journal is © The Royal Society of Chemistry 2026

import pandas as pd

import numpy as np

import torch

import torch.nn as nn

import torch.optim as optim

from torch.utils.data import Datal.oader, TensorDataset
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.linear model import LassoCV

import pywt

import os

import random

from itertools import product

========== 1. Utility Functions =========—=
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual seed all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False

def wavelet denoise_rowwise(row, wavelet="db4', level=1):
coeff = pywt.wavedec(row, wavelet, level=level)
coeff[1:] = [pywt.threshold(i, value=0.1 * max(i), mode="soft') for i in coeff]1:]]
return pywt.waverec(coeff, wavelet)[:len(row)]

def spxy(x, y, test_size=0.3):
y_backup = y.flatten()
M = x.shape[0]
N =round((1 - test_size) * M)
samples = np.arange(M)
y_norm = (y - np.mean(y)) / np.std(y)
D, Dy = np.zeros((M, M)), np.zeros((M, M))
for i in range(M - 1):
for j in range(i + 1, M):
D[i, j] = np.linalg.norm(x[1] - x[j])
Dyli, j] = np.linalg.norm(y norm[i] - y norm(j])
D =D/ np.max(D) + Dy / np.max(Dy)
maxD = D.max(axis=0)
index_row = D.argmax(axis=0)
index column = maxD.argmax()

m = np.zeros(N, dtype=int)

m[0], m[1] = index_row[index_column], index column

for i in range(2, N):
pool = np.delete(samples, m[:i])
dmin = np.array([min(D[min(p, m[k]), max(p, m[k])] for k in range(i)) for p in pool])
m[i] = pool[np.argmax(dmin)]

m_complement = np.delete(np.arange(M), m)

return x[m], x[m_complement], y_backup[m], y_backup[m_complement]

def'lasso_selection(X, y):
scaler = StandardScaler()
X scaled = scaler.fit_transform(X)
lasso = LassoCV(cv=5, max_iter=500000, random_state=42).fit(X_scaled, y.flatten())
selected indices = np.where(lasso.coef !=0)[0]
if len(selected _indices) == 0:
selected indices = np.arange(min(10, X.shape[1]))
return X[:, selected_indices], selected indices

==========2. CNN Model ==========
class ImprovedCNNModel(nn.Module):
def init _(self, num_outputs, input_length):

super(). _init_ ()
self.pool _layers = self._determine pool_layers(input_length)
layers =[]
in_channels =1
channels = [16, 32, 64]

for 1 in range(3):
out_channels = channels[i]
layers.append(nn.Conv1d(in_channels, out_channels, kernel size=3, padding=1))
layers.append(nn.BatchNorm1d(out_channels))
layers.append(nn.ReLU())
if i <self.pool layers:
layers.append(nn.MaxPoolld(kernel size=2))

in_channels = out_channels

self.conv_layers = nn.Sequential(*layers)
self.fc_input _size = self. _get fc input_size(input length)
self.fc_layers = nn.Sequential(

nn.Flatten(),

nn.Linear(self.fc_input_size, 256),

nn.ReLU(),

nn.Dropout(0.6),

nn.Linear(256, 128),

nn.ReLU(),

nn.Dropout(0.4),
nn.Linear(128, num_outputs)

def forward(self, x):
x = x.unsqueeze(1)
x = self.conv_layers(x)
return self.fc layers(x)

def get fc_input_size(self, input_length):
with torch.no_grad():
self.eval()
dummy input = torch.randn(l1, 1, input_length)
out = self.conv_layers(dummy _input)

return out.view(1, -1).size(1)

def determine pool layers(self, input_length):
max_pools =0
length = input_length
while length >= 2 and max_pools < 3:
length //=2
max_pools +=1

return max_pools

========== 3. Main Program ==========
Modify the paths below to your actual file locations
input_file = r'path/to/your/input_data.xlsx'
output_dir = r'path/to/your/output_folder'
os.makedirs(output_dir, exist ok=True)

Data loading and preprocessing

data = pd.read_excel(input_file, header=0)

target = data.iloc[:, 1].values.reshape(-1, 1)

reflectivity = data.iloc[:, 2:].values

reflectivity denoised = np.apply_along axis(wavelet denoise_rowwise, axis=1, arr=reflectivity)
corrected = reflectivity denoised - np.min(reflectivity denoised, axis=1, keepdims=True)

reflectivity scaled = StandardScaler().fit_transform(corrected)

Grid search parameters

epochs_list =[3000, 4000, 5000]

batch_size list=[16, 24, 32]

param_combinations = list(product(epochs_list, batch_size list))

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

global_best = {'score": -1}

for epochs, batch_size in param_combinations:
print(f"\n{'="*50}")
print(f"Grid Search: epochs={epochs}, batch_size={batch_size}")
print('="*50)

for run in range(10):
set_seed(42 + run)
X train, X test, y train, y_test = spxy(reflectivity scaled, target)
X train, selected features = lasso_selection(X_train, y_train)
X test =X test[:, selected features]

X train_tensor = torch.tensor(X _train, dtype=torch.float32).to(device)

X test_tensor = torch.tensor(X test, dtype=torch.float32).to(device)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32).to(device).unsqueeze(1)
y_test_tensor = torch.tensor(y_test, dtype=torch.float32).to(device).unsqueeze(1)

net = ImprovedCNNModel(1, X _train.shape[1]).to(device)

loss_fn = nn.MSELoss()

optimizer = optim. Adam(net.parameters(), lr=0.003, weight decay=0.001)

scheduler = optim.Ir_scheduler.ReduceLROnPlateau(optimizer, mode="min’, factor=0.5,

patience=10)

best loss, no_improve epochs = float('inf"), 0

patience = 200

best weights = net.state_dict()

train_loader = DatalLoader(TensorDataset(X_train_tensor, y_train tensor),
batch_size=batch_size, shuffle=True)

for epoch in range(epochs):
net.train()
for Xb, yb in train_loader:
if Xb.size(0) == 1: continue
optimizer.zero_grad()
loss = loss_fn(net(Xb), yb)
loss.backward()

optimizer.step()

net.eval()
with torch.no_grad():
train_loss = loss_fn(net(X_train_tensor), y_train_tensor)
if train_loss < best_loss:
best loss = train_loss

best weights = net.state_dict()
no_improve epochs =0
else:
no_improve epochs += 1
if no_improve epochs >= patience:
break
scheduler.step(train_loss)

net.load_state dict(best weights)

net.eval()

with torch.no_grad():
y_pred_train = net(X _train_tensor).cpu().numpy ()
y_pred_test =net(X test_tensor).cpu().numpy()
y_true train =y_train_tensor.cpu().numpy()
y_true test =1y test tensor.cpu().numpy()

r2_train =12 _score(y_true train, y pred_train)

r2_test =12 score(y_true test,y pred test)

r_train = np.sqrt(r2_train) if 12 _train >= 0 else -np.sqrt(-r2_train)
r_test =np.sqrt(r2_test) if r2_test >= 0 else -np.sqrt(-r2_test)
rmse_train = np.sqrt(mean_squared_error(y_true train, y pred train))

rmse_test = np.sqrt(mean_squared error(y_true test,y pred test))

Update global best
if r_test > global best['score']:
global best = {
'score’: r_test,
'epochs': epochs,
'batch_size': batch_size,
'run’: run + 1,
'train'pd.DataFrame({'True'y true train.flatten(),Pred'y pred train.flatten()}),
'test': pd.DataFrame({'True": y_true_test.flatten(), 'Pred":y_pred_test.flatten()}),

'summary': [r_train, r_test, rmse train, rmse test]

Save global best results
with pd.ExcelWriter(os.path.join(output_dir, 'best_predictions.xIsx')) as writer:
pd.DataFrame(] {
'Best epochs': global best['epochs'],
'Best batch_size': global best['batch_size'],
'Best run': global best['run'],
"Train R": global best['summary'][0],
'"Test R": global best['summary'][1],
"Train RMSE': global best['summary'][2],

"Test RMSE': global best['summary'][3]
+1).to_excel(writer, sheet name='Summary', index=False)
global best["train"].to_excel(writer, sheet name="Train Set', index=False)
global_best["test"].to_excel(writer, sheet name='Test Set', index=False)

print("\n" + "="*50)

print("Grid search completed!")

print(f'Best parameters: epochs={global best['epochs']}, batch_size={global best['batch_size']},
run={global best['run']}")

print(f'Best Test R: {global best['score']:.4f}")

print("="*50)

