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Experimental

Stability of RhB in PMMA/HA-MNs under different environmental conditions

Different groups of microneedle patches were placed under various temperature
and humidity environments (25 °C, 60%; 25 °C, 30%; 25 °C, 15%; 37 °C, 30%) for
one week. After that, the tips of the microneedles from each group were scraped off,
and dissolved in PBS. The fluorescence intensity of RhB in the tips was then
measured using fluorescence spectrophotometry (Excitation: 555 nm; Emission:
570-650 nm).
Synthesis and characterization of tyramine-modified hyaluronic acid (HAT)

Tyramine (Tyr) was covalently attached to the side chains of hyaluronic acid (HA)
via an EDC/NHS coupling reaction. HA (3 g, 74K Da, 2.6 mmol of repeating
disaccharide units) was dissolved in 300 mL of ultrapure water under stirring.
EDC-HCI (1644 mg, 8.58 mmol) and NHS (996 mg, 8.58 mmol) were then added to
the solution to fully activate the carboxyl groups on the HA side chains. Subsequently,
tyramine hydrochloride (1353 mg, 7.8 mmol) was added, and the pH was adjusted to
approximately 4.7. The reaction was allowed to proceed overnight at room
temperature. The next day, the solution was adjusted to pH 5.5 and transferred to a
dialysis bag (MWCO = 3500 Da). Dialysis was performed sequentially with 0.1%
NaCl for 2 days, followed by an ethanol/water mixture (1:3) and deionized water,
each for 1 day. Finally, the product was freeze-dried to obtain a white flocculent
HA-Tyr (HAT) substance.

The structure of HAT was confirmed using ultraviolet-visible spectroscopy

(UV-vis) and proton nuclear magnetic resonance spectroscopy ('"H NMR, 400 MHz,



D>0). The absorbance of the synthesized HAT was determined using UV-vis, and the
degree of substitution of tyramine on the HA backbone was calculated.
Synthesis and characterizations of Ce6@NPs

Ce6(@NPs were provided by Prof. Lingzhi Zhao team, and the synthesis method
was detailed in the previous work.! The particle size and polydispersity index (PDI) of
Ce6@NPs were recorded using a Nano ZS90 Malvern particle size analyzer. The
morphology of NP/TMPyP was then characterized using transmission electron
microscopy (JEM-2100F, Japan).

Investigation of different matrix materials

The effect of different matrices on the stability of Ce6@NPs was assessed using a
Malvern zeta sizer. Ce6@NPs (40 pg/mL) were dispersed in 5 wt% solutions of
chitosan (CS), polyvinyl alcohol (PVA), HA, respectively, and incubated in a constant
temperature and humidity chamber at 25°C. The particle size was measured on day 0,
1,3,5,7,9, 11, and 13. The zeta potential of 1 mg/mL solutions of CS, PVA, HA, and
Ce6@NPs at pH 7.4 was measured using a Malvern zeta sizer.

The effect of different matrices on the fluorescence intensity of Ce6@NPs was
determined using fluorescence spectrophotometry. Ce6@NPs (30 pg/mL) were
dispersed in 5 wt% solutions of CS, PVA, and HA, respectively. The excitation
wavelength was set to 403 nm, the emission wavelength range to 600-750 nm, and the
detection wavelength to 663 nm.

The 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) was used as a

ROS indicator to evaluate the effect of different matrices on the ability of Ce6@NPs



to generate ROS under near-infrared (NIR) irradiation. Ce6@NPs (10 pg/mL) were
first dispersed in 5 wt% solutions of CS, PVA, and HA, respectively. ABDA solution
(50 pg/mL) was then added and mixed thoroughly. After irradiation with a 650 nm
laser at 0.5 W/cm? for different durations, the absorbance of the different solutions
was measured using a UV-visible spectrophotometer.
Stability of Ce6 in PCHAT-Ce6@NPs-MNs under light irradiation

Ce6@NPs-MNs and PCHAT-Ce6@NPs-MNs were prepared and divided into
dark and laser groups. The laser groups were irradiated with a 40-W blue light for
1 hour. Afterwards, the tips of the microneedles were scraped off, and the fluorescence
intensity of Ce6 was measured (Excitation: 403 nm; Emission: 600-750 nm). The
relative fluorescence intensity was then calculated by comparing the values of
irridiation group with the corresponding dark group.
Biocompatibility evaluation of PCHAT-Ce6@NPs-MNs

Healthy C57BL/6 mice (Male) were used as the animal model and randomly
divided into a control group and a PCHAT-Ce6@NPs-MNs treatment group. In the
treatment group, the mice received administration of PCHAT-Ce6@NPs-MNs
alongside laser irradiation (650 nm, 800 mW/cm?, 5 min). Both groups were housed
under identical conditions. After 14 days, skin tissues were collected for histological
analysis using H&E staining. On the same day, the blood samples were collected for
serum separation, followed by ALT and AST analysis using a commercial detection

kit (Biosharp, Beijing Labgic Technology Company, China).
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Figure S1. Optical microscopy images of PMMA/HA-MNs and HA-MNs after
insertion into agarose gel at different time points. (A) HA-MNs, (B)
PMMA/HA-MNES.
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Figure S2. Stability of RhB in PMMA/HA-MNs under different environmental
conditions. (A) Relative fluorescence intensity of RhB in PMMA/HA-MN stored at
25 °C under different humidity levels. (B) Relative fluorescence intensity of RhB in
PMMA/HA-MN stored at 30% humidity under different temperatures. *P < 0.05, **P

< 0.01, ns: no significance.
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Figure S3. Force-displacement curves of PMMA/HA-MNs and HA-MNs.
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Figure S6. Characterizations of HAT. (A) 'H NMR spectrum of HAT. (B) UV
absorption spectrum of HAT.
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Figure S7. Morphological characterizations of Ce6@NPs. (A) TEM micrograph, inset
shows the optical image of Ce6@NPs. Scale bar, 50 nm. (B) Size distribution.
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Figure S8. Effects of various matrix materials on the properties of Ce6(@NPs. (A)
Particle size of Ce6(@NPs dispersed in various matrix materials. (B) Zeta potential of
Ce6@NPs. (C) Fluorescence intensity of Ce6@NPs. (D) Absorbance changes of
ABDA after Ce6 and Ce6(@NPs received laser irradiation. **P < 0.01.

Figure S9. Representative  images of the  core-shell  structured

PCHAT-Ce6@NPs-MNs. FITC-labeled PCHAT shell (green). Scale bar: 100 pm.
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Figure S10. Relative fluorescence changes of Ce6 in Ce6@NPs-MNs and
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Figure S13. The puncture force-displacement curves of various microneedles on
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Figure S14. (A) Optical microscopy images of four MNs after insertion into agarose
gel at different time points. (i) Ce6@NPs-MNs, (i1)) PCHAT-Low-Ce6@NPs-MN:ss, (iii)
PCHAT-Medium-Ce6@NPs-MNs and (iv) PCHAT-High-Ce6@NPs-MNs. (B) Optical
microscopy images of four MNs after insertion into porcine skin after 5 min. (i)
Ce6(@NPs-MNs, (i1) PCHAT-Low-Ce6@NPs-MNs, (111)
PCHAT-Medium-Ce6@NPs-MNs and (iv) PCHAT-High-Ce6@NPs-MNs. Scale bar:
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Figure  S15. Percentage of drug release from  Ce6@NPs-MNs,
PCHAT-Low-Ce6@NPs-MN:ss, PCHAT-Medium-Ce6@NPs-MNs and
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Figure S17. Changes of body weight in A375-xenografted mice after various

treatments.
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Figure S18. Representative H & E-stained images of major organ tissues (heart, liver,
spleen, lung, kidney) from mice after different treatments. Groups: (i) PBS; (ii)
PCHAT-Ce6@NPs-MNs + Laser. Scale bar: 100 pm.

Figure S19. Histological analyses of skin tissue at the laser sites. (A) H & E staining
of skin tissue before laser irradiation. (B) H & E staining of skin tissue after 5 min of

laser irradiation. Scale bar, 500 pm.

A

Figure S20. Histological analysis of skin tissue at the site of microneedle application.
(A) H & E staining of skin tissue from the control group. (B) H & E staining of skin

tissue 15 days after microneedle application. Scale bar: 500 um.
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Figure S22. Quantifications of GSH (A), GPx (B), and MDA (C) levels in tumor

tissues after various treatment. ***P < (0.001.



Figure S23. (A) Representative H & E-stained images of tumor tissue sections after
various treatments. (B) Representative TUNEL-stained images of tumor tissue
sections, with arrows indicating apoptotic cells. Groups: (i1)) PCHAT-MN:s; (iii) Laser;

(iv) PCHAT-Ce6(@NPs-MNs. Scale bar: 100 pm.
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Figure S24. Percentages of apoptotic cells in tumor tissues after various treatment.
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Reference

1 Zhao, J. Li, Y. Su, L. Yang, L. Chen, L. Qiang, Y. Wang, H. Xiang, H. Tham, J. Peng and Y.
Zhao, MTHI1 inhibitor amplifies the lethality of reactive oxygen species to tumor in photodynamic
therapy, Sci. Adv., 2020, 6, eaaz0575.



