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Stability of RhB in PMMA/HA-MNs under different environmental conditions

Different groups of microneedle patches were placed under various temperature

and humidity environments (25 °C, 60%; 25 °C, 30%; 25 °C, 15%; 37 °C, 30%) for

one week. After that, the tips of the microneedles from each group were scraped off,

and dissolved in PBS. The fluorescence intensity of RhB in the tips was then

measured using fluorescence spectrophotometry (Excitation: 555 nm; Emission:

570-650 nm).

Synthesis and characterization of tyramine-modified hyaluronic acid (HAT)

Tyramine (Tyr) was covalently attached to the side chains of hyaluronic acid (HA)

via an EDC/NHS coupling reaction. HA (3 g, 74K Da, 2.6 mmol of repeating

disaccharide units) was dissolved in 300 mL of ultrapure water under stirring.

EDC·HCl (1644 mg, 8.58 mmol) and NHS (996 mg, 8.58 mmol) were then added to

the solution to fully activate the carboxyl groups on the HA side chains. Subsequently,

tyramine hydrochloride (1353 mg, 7.8 mmol) was added, and the pH was adjusted to

approximately 4.7. The reaction was allowed to proceed overnight at room

temperature. The next day, the solution was adjusted to pH 5.5 and transferred to a

dialysis bag (MWCO = 3500 Da). Dialysis was performed sequentially with 0.1%

NaCl for 2 days, followed by an ethanol/water mixture (1:3) and deionized water,

each for 1 day. Finally, the product was freeze-dried to obtain a white flocculent

HA-Tyr (HAT) substance.

The structure of HAT was confirmed using ultraviolet-visible spectroscopy

(UV-vis) and proton nuclear magnetic resonance spectroscopy (1H NMR, 400 MHz,



D2O). The absorbance of the synthesized HAT was determined using UV-vis, and the

degree of substitution of tyramine on the HA backbone was calculated.

Synthesis and characterizations of Ce6@NPs

Ce6@NPs were provided by Prof. Lingzhi Zhao team, and the synthesis method

was detailed in the previous work.1 The particle size and polydispersity index (PDI) of

Ce6@NPs were recorded using a Nano ZS90 Malvern particle size analyzer. The

morphology of NP/TMPyP was then characterized using transmission electron

microscopy (JEM-2100F, Japan).

Investigation of different matrix materials

The effect of different matrices on the stability of Ce6@NPs was assessed using a

Malvern zeta sizer. Ce6@NPs (40 μg/mL) were dispersed in 5 wt% solutions of

chitosan (CS), polyvinyl alcohol (PVA), HA, respectively, and incubated in a constant

temperature and humidity chamber at 25°C. The particle size was measured on day 0,

1, 3, 5, 7, 9, 11, and 13. The zeta potential of 1 mg/mL solutions of CS, PVA, HA, and

Ce6@NPs at pH 7.4 was measured using a Malvern zeta sizer.

The effect of different matrices on the fluorescence intensity of Ce6@NPs was

determined using fluorescence spectrophotometry. Ce6@NPs (30 μg/mL) were

dispersed in 5 wt% solutions of CS, PVA, and HA, respectively. The excitation

wavelength was set to 403 nm, the emission wavelength range to 600-750 nm, and the

detection wavelength to 663 nm.

The 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) was used as a

ROS indicator to evaluate the effect of different matrices on the ability of Ce6@NPs



to generate ROS under near-infrared (NIR) irradiation. Ce6@NPs (10 μg/mL) were

first dispersed in 5 wt% solutions of CS, PVA, and HA, respectively. ABDA solution

(50 μg/mL) was then added and mixed thoroughly. After irradiation with a 650 nm

laser at 0.5 W/cm² for different durations, the absorbance of the different solutions

was measured using a UV-visible spectrophotometer.

Stability of Ce6 in PCHAT-Ce6@NPs-MNs under light irradiation

Ce6@NPs-MNs and PCHAT-Ce6@NPs-MNs were prepared and divided into

dark and laser groups. The laser groups were irradiated with a 40-W blue light for

1 hour. Afterwards, the tips of the microneedles were scraped off, and the fluorescence

intensity of Ce6 was measured (Excitation: 403 nm; Emission: 600-750 nm). The

relative fluorescence intensity was then calculated by comparing the values of

irridiation group with the corresponding dark group.

Biocompatibility evaluation of PCHAT-Ce6@NPs-MNs

Healthy C57BL/6 mice (Male) were used as the animal model and randomly

divided into a control group and a PCHAT-Ce6@NPs-MNs treatment group. In the

treatment group, the mice received administration of PCHAT-Ce6@NPs-MNs

alongside laser irradiation (650 nm, 800 mW/cm², 5 min). Both groups were housed

under identical conditions. After 14 days, skin tissues were collected for histological

analysis using H&E staining. On the same day, the blood samples were collected for

serum separation, followed by ALT and AST analysis using a commercial detection

kit (Biosharp, Beijing Labgic Technology Company, China).
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