Supplementary Information (SI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2025

Supplementary Information (SI) for Biomaterials Science.

This journal is © The Royal Society of Chemistry 2025

Microfluidics-Driven Templating Preparation of Polymer Vesicles with Tailorable Dimensions and Rapid Cellular Internalization

Donghua Dong, Tong Zhu, Guoxing Liao, Fangrong Tan, Lei Chen, Qianqian Yu*, LinGe Wang*

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, Guangzhou 510640, China.

*Corresponding authors: lingewang@scut.edu.cn (L. G. Wang), yuqianqian@scut.edu.cn (Q. Q. Yu)

Figure S1 OM images of PEG₁₁₃-b-PLA₁₆₇ emulsion templates with different flow rates of oil solution, by 0.5, 2, 3, 4, 5

and 6 mL/h, respectively. The flow rate of aqueous solution 35 mL/h.

Figure S2 OM images of PEG_{113} -b- PLA_{167} template in PVA aqueous solution. Optical image of PEG_{113} - PLA_{125} template with 80 µm, 113 µm, 250 µm, 310 µm, 390 µm and 470 µm, respectively. The oil and PVA aqueous solution flow rates are 3 mL/h and 30 mL/h.

Figure S3 OM images of O/W single emulsions with different PEG₁₁₃-*b*-PLA₁₆₇ concentrations. PEG₁₁₃-*b*-PLA₁₆₇ concentrations were 0.008% w/w, 0.025% w/w, 0.125% w/w, 0.25% w/w, 0.5% w/w, 1% w/w, 2% w/w, 5% w/w, 10% w/w, respectively. The concentration of PVA aqueous solution is 0.5% w/w and the scale bar is 300 µm.

Figure S4 OM image of $PEG_{113}^{}-b$ -PLA₁₆₇ emulsion templates at different evaporation times. (a) OM image of $PEG_{113}^{}-b$ -PLA₁₆₇ EA emulsion templates transformation at different evaporation times. The arrow indicates the selected emulsion template used for measuring diameter. (b) The diameter of the EA emulsion template varies with different evaporation times. (c) OM image of $PEG_{113}^{}-b$ -PLA₁₆₇ DCM emulsion templates transformation at different evaporation at different evaporation times. (d) The diameter of the DCM emulsion template varies with different evaporation times. The scale bar is 300 µm. Both samples were 5 mg/mL (The concentration of EA sample is equal to 0.037% w/w).

Figure S5 SEM and OM image of PEG_{113} -*b*-PLA₁₆₇ microsphere templates at 0.15% w/w. (a) OM image of PEG_{113} -*b*-PLA₁₆₇ O/W microsphere droplets at different evaporation times. (b) CLSM image of PEG_{113} -*b*-PLA₁₆₇ O/W microsphere droplets. (c) SEM image of PEG_{113} -*b*-PLA₁₆₇ O/W microsphere templates.

Figure S6 CLSM image of PEG_{113} -b-PLA emulsion (0.075% w/w) templates during evaporation at different times.

Figure S7 CLSM image of $PEG_{113}^{}-b$ -PLA₁₆₇ O/W microsphere templates. (a) CLSM of $PEG_{113}^{}-b$ -PLA₁₆₇ O/W emulsion at 10 min in Figure S7 (0.075% w/w, 12 h). (b) CLSM of $PEG_{113}^{}-b$ -PLA₁₆₇ O/W emulsion (0.037% w/w, 12 h).

Figure S8 Kcps of PEG_{113} -*b*-PLA₁₆₇ polymer vesicles in the solution hydrated from the microsphere templates method with different concentrations at room temperature. (a) Samples are stirred at 500 rpm. (b) Samples are stirred with 100 rpm.

Figure S9 UV-vis absorption and fluorescence emission intensity of vesicles. (a) UV absorption of Cour-6 in DCM solution.(b) Standard curve of Cour-6 in DCM solution. (c) Fluorescence emission intensity of vesicles at 0, 10, 20, 30, 60, 120, 240, 360 min after rehydration.

Figure S10 The curve of $\ln[g_1(\tau)]$ verse τ and polynomial fitting of polymer vesicle (store 5 days, 4 °C).

Figure S11 Cell viability of polymer vesicle and Cour-6@Polymer vesicles after incubation with 4T1 and HUVEC. (a-b) Cell viability of 4T1 cell line after incubation in polymer vesicle and Cour-6@Polymer vesicles 24 h and 36 h. (c-d) Cell viability of HUVEC cell line after incubation in polymer vesicle and Cour-6@Polymer vesicles 24 h and 36 h.

Figure S12 CLSM image of 4T1 cell lines after incubation with Cour-6@Polymer vesicles at 1 h, 3 h, 6 h, 12 h.

EquationS1-S6 for the rehydration of polymer vesicle from DLS, calculate as follow

the scattered intensity, $g_2(\tau)$ is related to the electric field $g_1(\tau)$. According to Siegert relation, the normalized autocorrelation function of the scattered intensity, $g_2(\tau)$ is related to the electric field $g_1(\tau)$:^{1,2}

$$g_2(\tau) = B + \beta |g_1(\tau)|^2$$
 Equation S1

$$g_1(t) = \sum_{0}^{t} A_i exp(-\Gamma_i t)$$
 Equation S2

$$\Gamma = Dq^2$$
 Equation S3

$$q = \frac{4\pi n_0}{\lambda} \sin\left(\frac{\theta}{2}\right)$$
 Equation S4

Where β is the coherence factor and *B* is the baseline. θ is the angle of the detector's position (90°) and *q* is the scattering vector with wavelength λ (633 nm). Γ is associated with diffusion coefficient of the particle. *D* is diffusion coefficient and n_{θ} is the refractive index of the aqueous solution (1.331). The weighting factor A_i is proportional to the portion of the scattered intensity that this subset of particles contributes. After get the calculated $g_I(\tau)$, cumulant expansions were used through polynomial fitting (Figure S10)

$$ln[g_1(t)] = -K_1 t + (\frac{1}{2})K_2^2 t^2 + \cdots$$
 Equation S5

The coefficients Kn represent the cumulants. The first cumulant K_1 is equal to the average of the reciprocal relaxation time. The second cumulant K_2 indicates the dispersion of the reciprocal relaxation time around this average value $(\Gamma - \overline{\Gamma})^2$. If K_2 (and any higher-order cumulants) are equal to zero, the first-order correlation function simplifies to a single exponential.³ For $g_2(\tau)$ of polymer vesicles is $g_2(\tau)=0.18*e^{(-x/481)}$. According to equation S1 and Figure 8b, polymer vesicle's $g_1(\tau)$ is the Equation S6.

$$g_1(\tau) = 0.424 \times \exp\left(-\frac{x}{962}\right)$$
 Equation S6

Therefore, Γ of the polymer vesical is 1/962=0.001. through the equation S4 and Equation 3, the rehydration diameter of polymer vesicle is calculated as 81 nm (store 5 days, 4 °C). Γ of the polymer vesical is 1/962=0.001 S⁻¹.

Reference

- P. A. Hassan, S. Rana and G. Verma, Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering, *Langmuir*, 2015, **31**, 3-12.
- J. Rodriguez-Loya, M. Lerma and J. L. Gardea-Torresdey, Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review, *Micromachines*, 2024, 15. 24.
- R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids, J. Nanopart. Res., 2000, 2, 123-131.