Supporting Information

Functionalization of viscoelastic gels with decellularized extracellular matrix microparticles enhances tissue adhesion, cell spreading, and tissue regeneration

Debabrata Palai¹, Hana Yasue^{1,2}, Shima Ito^{1,3}, Hiyori Komatsu^{1,3}, Tetsushi Taguchi^{1,3*}, Akihiro Nishiguchi^{1,2*}

¹ Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

² Department of Materials Science and Technology, Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 Japan

³ Graduate School of Pure and Applied Sciences, University of Tsukuba, 1 Chome-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

*Corresponding author: <u>nishiguchi.akihiro@nims.go.jp</u>, taguchi.tetsushi@nims.go.jp

Figure S1. Rheological measurements of (a) dECM in PBS (10 wt%), (b) elastic gel (10 wt%) and dECM modified elastic gel, (c) viscoelastic gel (10 wt%) and dECM modified viscoelastic gel, respectively at fixed strain and frequency (1%, 1 Hz) at 37 °C.

Figure S2. Burst strength of elastic gels and viscoelastic gels with non-cryo-milled dECM (n = 3). Data are presented as the mean \pm SD.

Figure S3. Mean intensity of fluorescence of phalloidin-stained cells in viscoelastic gel+dECM (n=3). Data are presented as mean \pm s.d. *P < 0.05, ** P < 0.01 analysed using one-way ANOVA, followed by Tukey's multiple comparison post hoc test.