Supplementary Information (SI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

## Bacterial Cellulose-Polydopamine based Injectable Composite Hydrogel for Enhanced Hemostasis in Acute Wounds

Kaushal R Shakya<sup>1</sup>, Niranjan Chatterjee<sup>2</sup>, Santosh K. Misra<sup>2</sup>, Vivek Verma<sup>1,3,4,5\*</sup>

<sup>1</sup>Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India.

<sup>2</sup>Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur- 208016, India.

<sup>3</sup>Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur- 208016, India.

<sup>4</sup>National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur- 208016, India.

<sup>5</sup>Centre of Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur-208016, India.

corresponding author: vverma@iitk.ac.in

Table S1: Comparative description of previously reported hydrogels used for hemostatic outcomes in respect to preparation methods, advantages, and limitations.

| Method/Material                                                                                                                                                                                                     | Advantages                                                                                                                                                            | Limitations                                                                                                                                                                                                                                                                                                  | Ref. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Blue-light-activated double-<br>network strategy<br>AC/PDM Hydrogel:<br>-Allyl cellulose (AC)<br>-P (Dopamine methacrylamide)<br>(PDM)<br>Photo-initiator:<br>lithiumphenyl-2,4,6-<br>trimethylbenzoylphosphinate   | -Strong tissue adhesive<br>strength<br>-Fast gelation<br>-Antibacterial properties<br>-Tissue-like mechanical<br>strength                                             | <ul> <li>The use of AC and PDM prolongs and complicates the fabrication process.</li> <li>The photo-initiator limited penetration depth may result in incomplete curing. material based on photo initiator can be delicate,</li> </ul>                                                                       | 1    |
| (LAP)<br>One-step physical cross-<br>linking method<br>Quaternary ammonium chitosan<br>/tannic acid (TA)<br>Cross-linked by dynamic ionic<br>bonds and hydrogen bonds<br>between QCS and TA                         | -Superior reactive oxygen<br>species scavenging activity<br>-Broad-spectrum<br>antibacterial ability<br>-Rapid hemostatic<br>capability                               | limiting their robustness.<br>-The whole system is<br>based on ionic and<br>hydrogen bonds which<br>may not provide full<br>potential of material.                                                                                                                                                           | 2    |
| Chitosan-based hydrogels<br>Cross-linked by 3-(3,4-<br>dihydroxyphenyl) propionic<br>acid-modified chitosan (DCS)<br>Sebacic acid-terminated<br>polyethylene glycol modified by<br>p-hydroxybenzaldehyde<br>(PEGSH) | -Suitable stretchability<br>(~780%)<br>-High blood absorbability<br>(1300% ± 50%)<br>-Strong adhesion (~68.5<br>kPa)<br>-Stretchable, self-adhesive,<br>antibacterial | -Requires precise<br>regulation of PEGSH<br>proportion for favorable<br>cytocompatibility<br>-Involves extensive<br>processing and complex<br>modifications.                                                                                                                                                 | 3    |
| Incorporation of Keratin–<br>catechin nanoparticles (KE-<br>NPs) into cellulose hydrogel<br>-Sodium carboxymethyl<br>cellulose<br>-Keratin–catechin nanoparticles<br>(KE-NPs)                                       | -Enhances mechanical<br>properties<br>-Provides antioxidant and<br>antimicrobial properties                                                                           | -Nanoparticles<br>agglomeration poses<br>Dispersion challenges.<br>-Stirring the mixture in the<br>dark under nitrogen<br>protection at 37 °C makes<br>the process complex.<br>-Adding nanoparticles<br>suspension with 0-2.5%<br>w/w concentration<br>complicates the weighing<br>and solution preparation. | 4    |
| Current work: BC/PDA/CMC<br>hydrogel<br>-Bacterial cellulose (BC)<br>-Polydopamine (PDA)<br>-Carboxymethyl cellulose<br>(CMC)                                                                                       | -Simple synthesis method<br>-Easy storage conditions<br>-No complex procedures<br>used<br>-Good hemostatic and<br>antioxidant property                                | -less adhesive nature                                                                                                                                                                                                                                                                                        | -    |

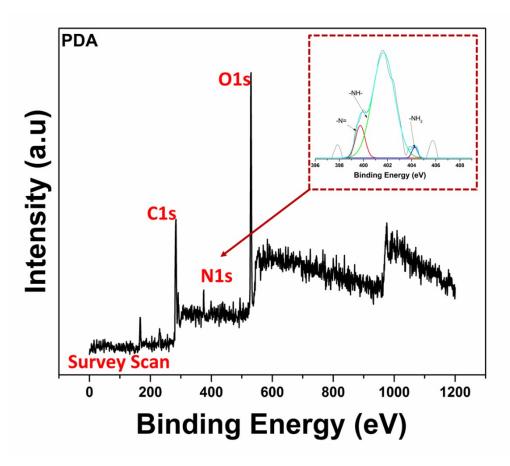



Figure S1: XPS survey spectra of polydopamine (PDA) with inset showing deconvoluted peak of nitrogen.

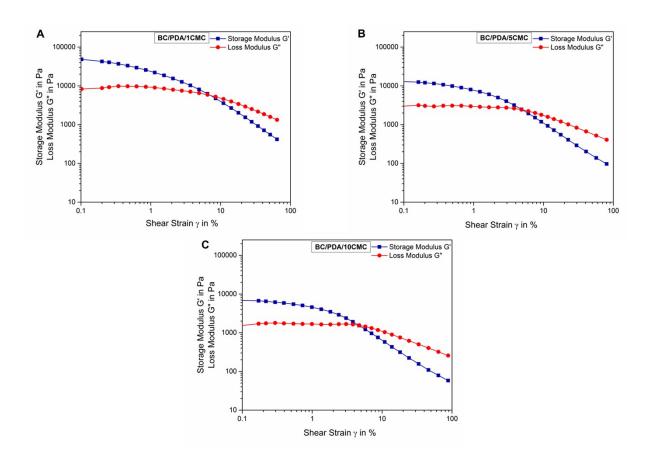



Figure S2: Strain sweep graph of (A) BC/PDA/1CMC (B) BC/PDA/5CMC and (C) BC/PDA/10CMC samples.

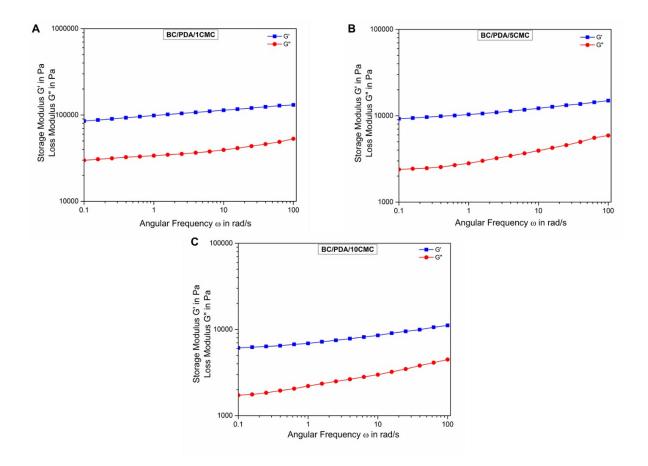



Figure S3: Frequency sweep graph of (A) BC/PDA/1CMC (B) BC/PDA/5CMC and (C) BC/PDA/10CMC samples.

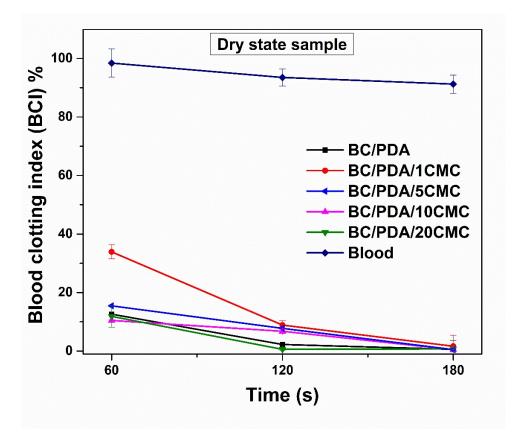



Figure S4: *In vitro* blood clotting study showing blood clotting index (BCI) at different time points on dry from of samples.

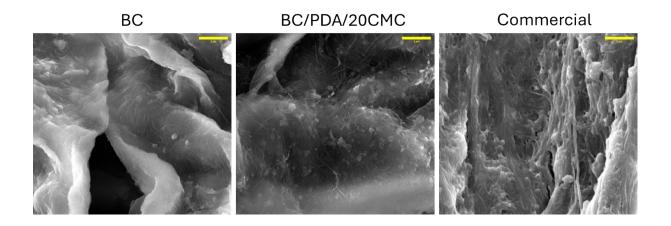



Figure S5: SEM images of platelet adhesion on samples at 7000× magnification. of BC, BC/PDA/20CMC, and commercial. Scale bar is equal to 2 μm.

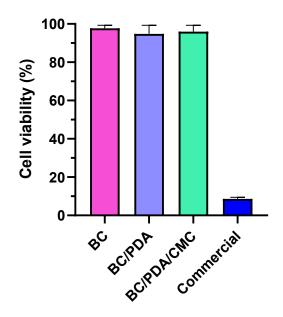



Figure S6: % Cell viability of NIH3T3 cells in presence of samples and controls using MTT assay.

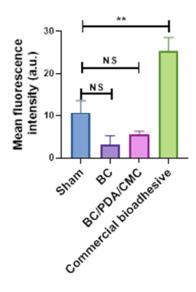



Figure S7: Semi-quantitative analysis of the expression of TNF- $\alpha$  (red).

## Supplementary Information

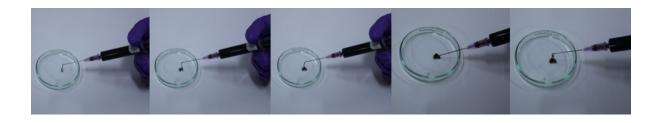



Figure S8: BC/PDA/20CMC hydrogel injecting through 2 mL syringe (23G).

## References

- 1 S. Lu, X. Zhang, Z. Tang, H. Xiao, M. Zhang, K. Liu, L. Chen, L. Huang, Y. Ni and H. Wu, *Chemical Engineering Journal*, 2021, **417**, 129329.
- 2 S. Guo, Y. Ren, R. Chang, Y. He, D. Zhang, F. Guan and M. Yao, *ACS Appl Mater Interfaces*, 2022, 14, 34455–34469.
- 3 F. Song, Y. Kong, C. Shao, Y. Cheng, J. Lu, Y. Tao, J. Du and H. Wang, *Acta Biomater*, 2021, **136**, 170–183.
- 4 Z. Sun, X. Chen, X. Ma, X. Cui, Z. Yi and X. Li, *J Mater Chem B*, 2018, **6**, 6133–6141.