Supplementary Information (SI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Theragenerative Injectable Bone-Adhesive Hydrogels for Combined

Photothermal Osteosarcoma Therapy and Bone Repair

Shiyi Chen¹, Nourhan Hassan^{2,3}, Alexander Kopp⁴, Tatiane Eufrásio-da-Silva⁵, Jihene Arfaoui¹, Benedetta Isella^{4,6}, Ziyaad Aytuna¹, Philipp Barnowski^{2,3,7,8}, Gerhard Sengle^{2,3,7,8,9}, Alireza Dolatshahi-Pirouz⁵, Nadja Kröger^{10,11#}, Hajar Homa Maleki^{1, 2#*}

¹Department of Chemistry, Institute of Inorganic and Materials Chemistry, University of Cologne, 50939, Cologne, Germany

²Center for Molecular Medicine Cologne, CMMC Research Center, 50931, Cologne, Germany

³Center for Biochemistry, Faculty of Medicine, University Hospital of Cologne, Joseph-Stelzmann-Street 52, 50931 Cologne, Germany

⁴Fibrothelium GmbH, Philipasstraße 8, 52068, Aachen, Germany

⁵Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark

⁶Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, Institute for Health Discovery and Innovation, University of Galway, Galway, Ireland

⁷Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany

⁸Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany

⁹Cologne Center for Musculoskeletal Biomechanics (CCMB), 50931 Cologne, Germany

¹⁰Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany

¹¹Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany

E-Mail: <u>h.maleki@uni-koeln.de</u>

Equally contributed authors

Chemical and Microstructural Characterizations: For chemical and microstructure characterization, the precursors were measured after drying, while the hydrogels were tested after freeze-casting in liquid nitrogen and dried by supercritical CO₂ drying method to obtain the corresponding aerogel. For ¹H nuclear magnetic resonance (¹H NMR) spectra of precursors (SF, SS, SSDopa and dopamine monomer), 0.005 g dry sample was dissolved in deuterium oxide (D₂O, 0.5 mL) and analyzed on a Bruker Avance II 300 MHz spectrometer. The molecular structure with main functional groups of SF, SS, SFO and final aerogels were characterized by Fourier-transform infrared (FT-IR) spectra using a Spectrum 400 (PerkinElmer) at room temperature in the wavenumber range of 400- 4000 cm⁻¹. The successful oxidation of SF to SFO was characterized by the change in absorption peaks of the 15x diluted solutions against DI water in UV-Vis spectra recorded by a PerkinElmer Lambda 950 at room temperature. The porous microstructure of the final aerogels were observed by scanning electron microscopy (SEM) on a Zeiss Neon40 CrossBeam machine. The aerogels were cut horizontally and vertically presenting different morphologies, which were examined after being treated with gold sputtering with 10 nm thickness. Energy dispersive X-ray spectroscopy (EDX) is acquired simultaneously during SEM testing as the machine is equipped with Oxford's INCA system for SEM-EDX images.

Preparation of Commercial Aqueous SF and SS Solution: Commercially available SF and SS solutions (Fibrothelium GmbH, Aachen, Germany) were used as a standard for the comparison of the extracted proteins. Specifically, SF and SS aqueous solutions were obtained using PureSilk® technology, enabling medical-grade quality production of silk on an industrial scale for a broad range of concentrations. Briefly, the two proteins were separated by degumming in a hot alkali solution. Fibroin was then dissolved in a proprietary non-toxic solvent system based on Ajisawa's reagent, purified and fully dialyzed against VE water within 8 hours using tailored extraction processing. The obtained fibroin solution was then diluted to 3.5 wt% and stored at 4°C. After the degumming process, sericin was purified, dialyzed against VE water and lyophilized.

	H ₂ N COOH	H ₂ N COOH		H ₂ N COOH	H ₂ N COOH	H ₂ N COOH	
	Ser	Asp	Gly	Glu	Thr	Tyr	Ala
SF	12%	4%	35%	2%	1%	10%	30%
SS	30%	20%	11%	6%	9%	5%	4%

Table S1. Amino acid composition of SF and SS. Calculated according to references.^{1,2}

Sample	SFO (%)	SSDopa (%)	Cu^{2+} (mol/L)	TA (%)
0	2.18	0.00	0.000	0.00
1	2.18	0.33	0.000	0.00
2	2.16	0.32	0.008	0.00
3	2.19	0.33	0.000	0.27
4	2.14	0.32	0.008	0.27
5	2.09	0.31	0.016	0.26
6	2.13	0.32	0.008	0.53
7	2.13	0.32	0.008	0.80
8	1.50	0.64	0.008	0.27
9	2.80	0.00	0.008	0.27

Table S2. Hydrogel adhesives SFO-SSDopa-Cu-TA with different recipes developed in this study.

Some small differences in concentration of the same substance (e.g. SFO, 2.18% and 2.19%) are due to the disparity in the amount of KOH added for pH adjusting, resulting in a difference of some microliters in the volume of solution for the whole system.

Metal Nitrile gloves Glass Plastic									
Composition in the hydrogel system				Adhesive on different objects				mechanical	
SFO (%)	SSDopa (%)	Cu (mol/L)	TA (%)	Metal	Nitrile gloves	Glass	Plastic	propertiy (soft/hard)	
2.14	0.32	0.008	0.27	~ ~	\checkmark	~ ~	~ ~	normal	
2.09	0.31	0.016	0.26	~	×	\checkmark	\checkmark	normal-hard	
2.04	0.31	0.023	0.25	\checkmark	×	\checkmark	~	hard	
1.99	0.30	0.030	0.25	\checkmark	×	×	\checkmark	hard	
1.50	0.64	0.008	0.27	$\checkmark \checkmark$	~ ~	\checkmark \checkmark	~ ~	soft-normal	
2.14	0.32	0.008	0.27	~ ~	\checkmark	\checkmark \checkmark	~ ~	normal	
2.79	0.00	0.008	0.27	\checkmark	×	\checkmark	\checkmark	normal-hard	
2.14	0.32	0.008	0.27	~ ~	\checkmark	~ ~	~ ~	normal	
2.13	0.32	0.008	0.53	~ ~	×	\checkmark	\checkmark	normal	
2.13	0.32	0.008	0.80	\checkmark	×	×	\checkmark	normal-hard	

SFO1-SSDopa0.3-Cu0.008-TA0.27

Figure S1. Subjective evaluation of the adhesion of hydrogel with different components to common materials (metal, nitrile gloves, glass and plastics) and their mechanical properties (hard or soft).

Figure S2. Preparation of samples for hydrogel adhesion tensile testing with 50 g glass fitting the joints.

Figure S3. Indirect assessment of cell viability and proliferation for a) conditional medium after 1, 3, 5, and 7 days of soaking in low concentration (20 mg/ mL) hydrogel, and b) conditional medium after 7 days of soaking in high concentration (100 mg/ mL) hydrogel.

Figure S4. a) Live/Dead fluorescence staining assay for the attachment and proliferation after 2D direct cell culture. b) excitation and emission spectra of Calcein AM and PI. Adapted from *Beyotime*.³ c) 3D culture system of hydrogels and cells.

Figure S5. Schematic diagram of cell migration assay using culture inserts. Adapted from Pijuan.⁴

Figure S6. a) NMR spectra of SF and SFO after 1 day of oxidization and b) IR spectra of solutions SF, SFO and gel SFO-SSDopa.

Figure S7. Effect of different parameters (concentration of Cu^{2+} , volume ratio of SFO and SSDopa, TA%) on the gelation time and the corresponding digital camera images of the obtained products. Higher concentration of Cu^{2+} and TA lead to phase separation due to high local concentration. When the concentration of TA reaches a certain critical value (2.73%), what appears is no longer coagulation, but an instantaneous formation of gum. The volume ratio of SFO and SSDopa changed the texture and color of hydrogels.

Figure S8. a) Sample lifted from a 50 g water bottle, showing a strong adhesive effect. b) Detachment force of hydrogel samples with different formulations compared to the control group (Reference sample with only Gel or Hap&Gel coating on metal slides). * p < 0.05, ** p < 0.01 and *** p < 0.001 indicate the statistical significance between compared groups. n = 3 replicates.

Figure S9. Digital images from a thermal camera showing the surface temperature of the sample under various power densities for assessment of the PTT efficacy of hydrogel samples with different ratios of SFO/SSDopa irradiated by 808 nm laser with 0.45 W•cm⁻² power densities in the dry environment.

Figure S10. PTT effect of hydrogel samples with different ratios of SFO/SSDopa at 0.75 W•cm⁻² power densities in PBS.

Figure S11. Dynamic monitoring images (0, 6, 12 and 24 h) of migration of MC3T3-E1 cell in the fresh medium as control and hydrogel extracts (20 mg/ mL, collected after 5 days soaking) of different components.

Reference:

(1) Zhang, Y.; Sheng, R.; Chen, J.; Wang, H.; Zhu, Y.; Cao, Z.; Zhao, X.; Wang, Z.; Liu, C.; Chen, Z.; Zhang, P.; Kuang, B.; Zheng, H.; Shen, C.; Yao, Q.; Zhang, W. Silk Fibroin and Sericin Differentially Potentiate the Paracrine and Regenerative Functions of Stem Cells Through Multiomics Analysis. *Advanced Materials* **2023**, *35* (20), 2210517. https://doi.org/10.1002/adma.202210517.

(2) Sahoo, J. K.; Hasturk, O.; Falcucci, T.; Kaplan, D. L. Silk Chemistry and Biomedical Material Designs. *Nat Rev Chem* **2023**, *7* (5), 302–318. https://doi.org/10.1038/s41570-023-00486-x.

(3) Beyotime. Calcein/PI Cell Activity and Cytotoxicity Assay Kit.

https://www.beyotime.com/product/C2015L.htm (accessed 2024-04-23).

(4) Pijuan, J.; Barceló, C.; Moreno, D. F.; Maiques, O.; Sisó, P.; Marti, R. M.; Macià, A.; Panosa, A. In Vitro Cell Migration, Invasion, and Adhesion Assays: From Cell Imaging to Data Analysis. *Front. Cell Dev. Biol.* **2019**, *7*. https://doi.org/10.3389/fcell.2019.00107.