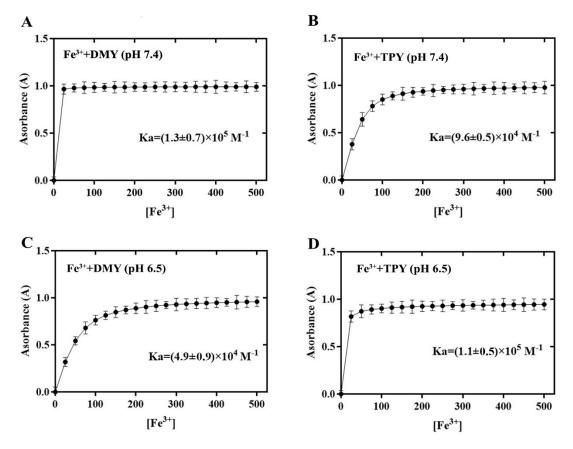
Supplementary Information (SI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2025

Supplementary data

Transformation of Nanoparticles into Hydrogel for Longacting and Sensitized Apoptosis Therapy of Triple Negative Breast Cancer


Linna Yu a,b, Jianping Zhou a,*, Hao Cheng a,*, Yang Ding a,*

^a State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China

E-mail addresses: dydszyzf@163.com (Yang Ding), chenghao@cpu.edu.cn (Hao Cheng), zhoujianping@cpu.edu.cn (Jianping Zhou)

^b People's Hospital of Qianxinan Prefecture, Xingyi 562400, China

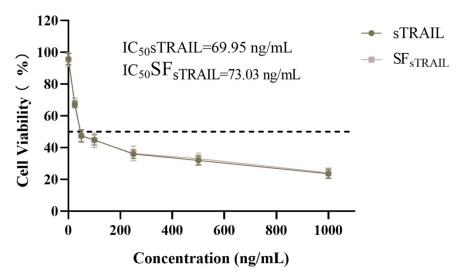
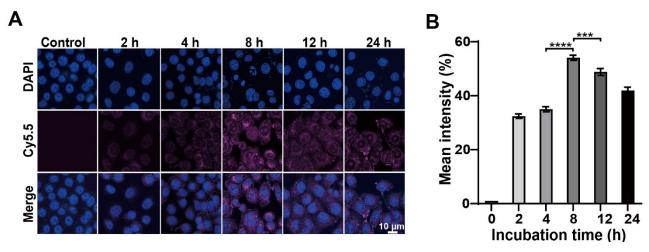
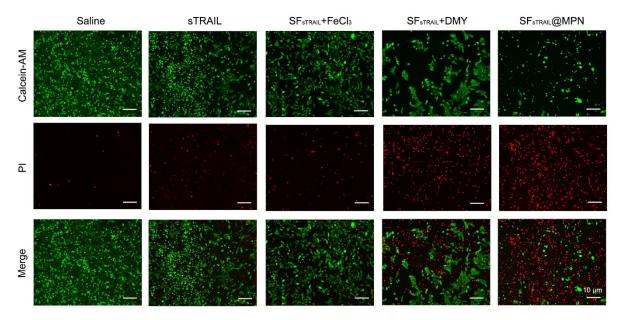

^{*}Corresponding authors.

Figure S1. The affinity curve of Fe³⁺ with DMY at pH 7.4 (A), Fe³⁺ with TPY at pH 7.4 (B), Fe³⁺ with DMY at pH 6.5 (C) and Fe³⁺ with TPY at pH 6.5 (D).

Figure S2. SF_{sTRAIL}@MPN gelation transition from pH 7.4 (L) to pH 6.5 (R).

Figure S3. Cell viability and IC₅₀ of sTRAIL. (n=5).

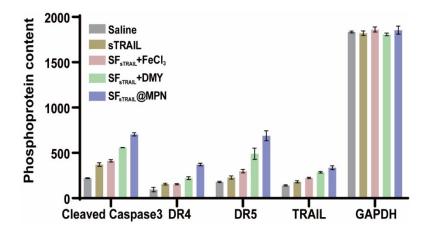

Figure S4. (A) Examination of binding ability of sTRAIL in SF_{sTRAIL} @MPN by 4T1 cells at pH7.4; (B) Fluorescence quantification analysis of binding ability at pH 7.4. Bar = 10 μ m.

Figure S5. Live/dead viability staining of $SF_{sTRAIL}@MPN$. Bar = 10 μm .

Figure S6. Individual tumor growth of Saline, SF_{sTRAIL} , SF_{sTRAIL} + $FeCl_3$, SF_{sTRAIL} + DMY and SF_{sTRAIL} @MPN in 4T1 tumor-bearing mice. (n = 3). **** p < 0.000 1, ** p < 0.01.

Figure S7. (A) Quantitative analysis of expression of Cleaved Caspase-3, TRAIL, DR4 and DR5 in tumor tissues collected from different groups (n = 3).

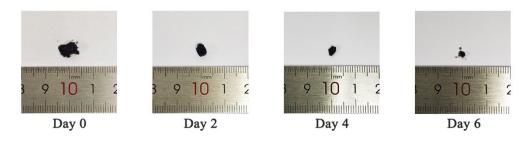


Figure S8. Biodegradation of $SF_{sTRAIL}@MPN$ for 0, 2, 4, 6 days.

Table S1. Interaction sites of Silk Fibroin and TRAIL

Silk fibroin in	terface residue	TRAIL inte	rface residue	Hydrogen Bonds(Å)
ASP	181A	LEU	243D	2.923
GLN	224A	TYR	187D	2.911
GLN	224A	TYR	189D	2.941
GLN	224A	TYR	247D	3.071
TYR	252A	LEU	251D	3.079
GLN	255A	ILE	284D	2.941

Table S2. Interaction sites of Dihydromyricetin with Silk Fibroin and TRAIL

Ligand	Target	Binding Energy (Kcal/mol)	Ki (μM)
Dihydromyricetin	Silk fibroin	-7.5	3.1
Dihydromyricetin	TRAIL	-6.9	8.6

Table S3. Binding constants (Ka) of Fe³⁺ with DMY and TPY at different pH values

Ligands	pH value	Ka (10 ⁴ M ⁻¹)
DMY	7.4	13±7
DMY	6.5	4.93 ± 0.86
TPY	7.4	9.6 ± 0.513
TPY	6.5	11.5 ± 4.6

Table S4. Interaction sites of Dihydromyricetin with Silk Fibroin and TRAIL

Test indicators	рН 6.8	рН 6.0
Viscosity (cP)	2.55	32.85
Torque (%)	1.7	21.9
Shear stress (dyne/cm2)	1.73	22.34

Table S4. qPCR primer design for Cleaved Caspase-3, TRAIL, DR4 and DR5.

Gene	Forward Primer	Reward Primer
Cleaved Caspase-3	CTGGCGTGTGCGAGATGAG	CTTAGCGTTCCAAGCTCCCC
TRAIL	CCTCTCGGAAAGGGCATTCA	CTGCACCAGCTGTTTGGTTC
DR4	TGCTCATCGGCTTGGTGTTG	AGTAGTTGGTGGGTGTCTGC
DR5	GCGAACTCTGTGCATTCGTC	TCGTCAGCTGAGTCGTTTCC