

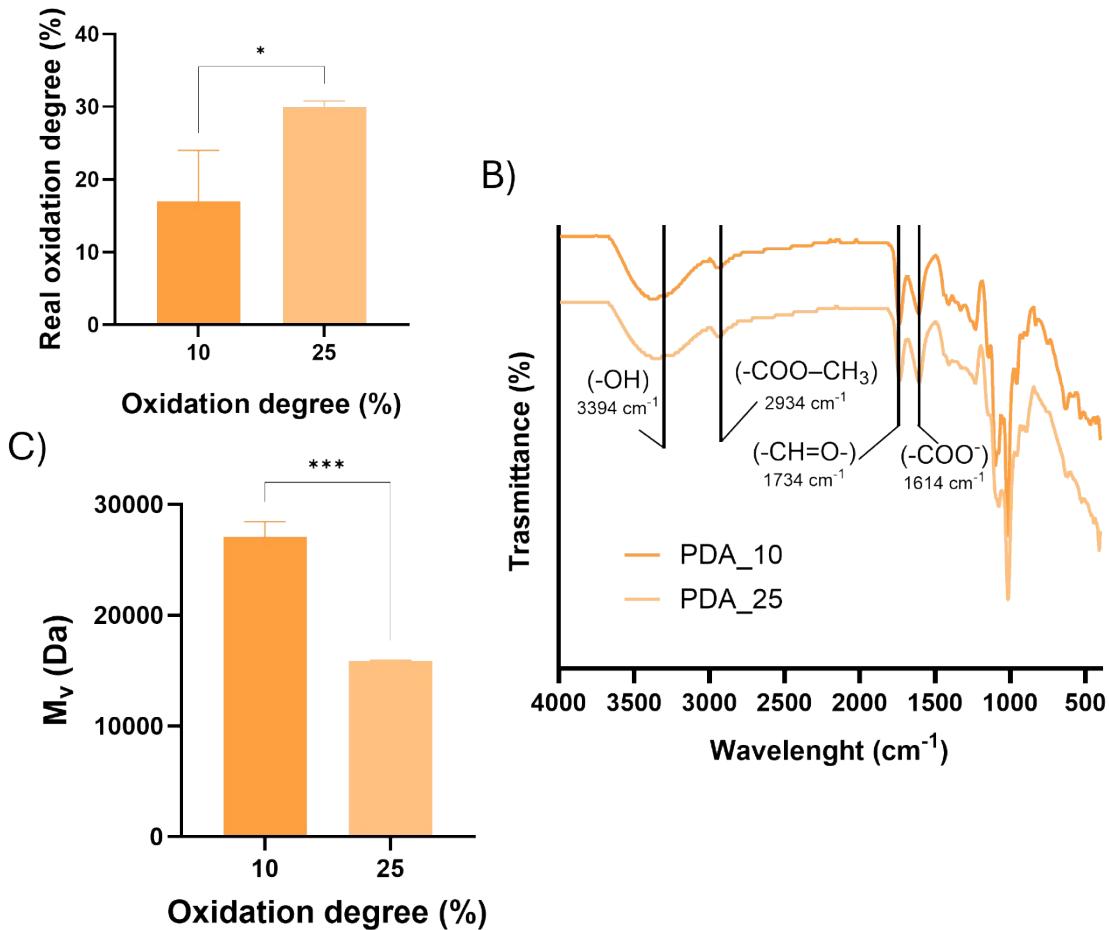
## **Injectable self-healing oxidized pectin and carbohydrazide-modified gelatin hydrogels for curcumin-loaded zein nanoparticle delivery in antioxidant therapy**

Francesca Tivano,<sup>a,b,c</sup> Elena Marcello,<sup>a,b,c</sup> Camilla Paoletti,<sup>a,b,c</sup> Clara Mattu,<sup>a,b,c</sup> Irene Carmagnola<sup>a,b,c</sup> and Valeria Chiono<sup>†\*</sup><sup>a,b,c</sup>

<sup>1</sup> Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

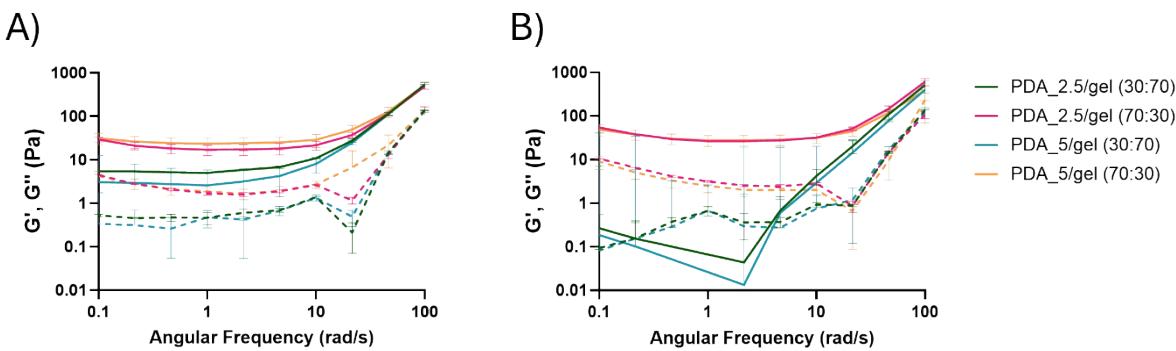
<sup>2</sup> POLITO BioMedLab, Politecnico di Torino, Torino, Italy

<sup>3</sup> Interuniversity Center for the promotion of the 3Rs principles in teaching and research, Italy


\*Correspondence to: Prof. Valeria CHIONO, DIMEAS, Politecnico di Torino, Turin, Italy, C.so Duca degli Abruzzi, 24, 10129, Italy; Email: valeria.chiono@polito.it

### **PDA\_10 and PDA\_25 synthesis and characterizations**

Pectin was oxidized to theoretical degrees of 10 and 25% by adding 128.4 mg and 321 mg of NaIO<sub>4</sub> per gram of pectin, with reaction times of 3 and 6 h, respectively. PDA yields of production for PDA oxidized at 10 and 25% theoretical oxidation degrees were measured as 67 ± 10% and 70 ± 9% for PDA\_10 and PDA\_25, respectively. PDA real degree of oxidation was determined through TNBS assay, by the direct reaction of PDA aldehyde groups with tert-Butyl carbazate (t-BC). Real oxidation degree values were estimated to be 17 ± 0.7 for PDA\_10 and 30 ± 0.8 for PDA\_25 (**Figure S1A**).

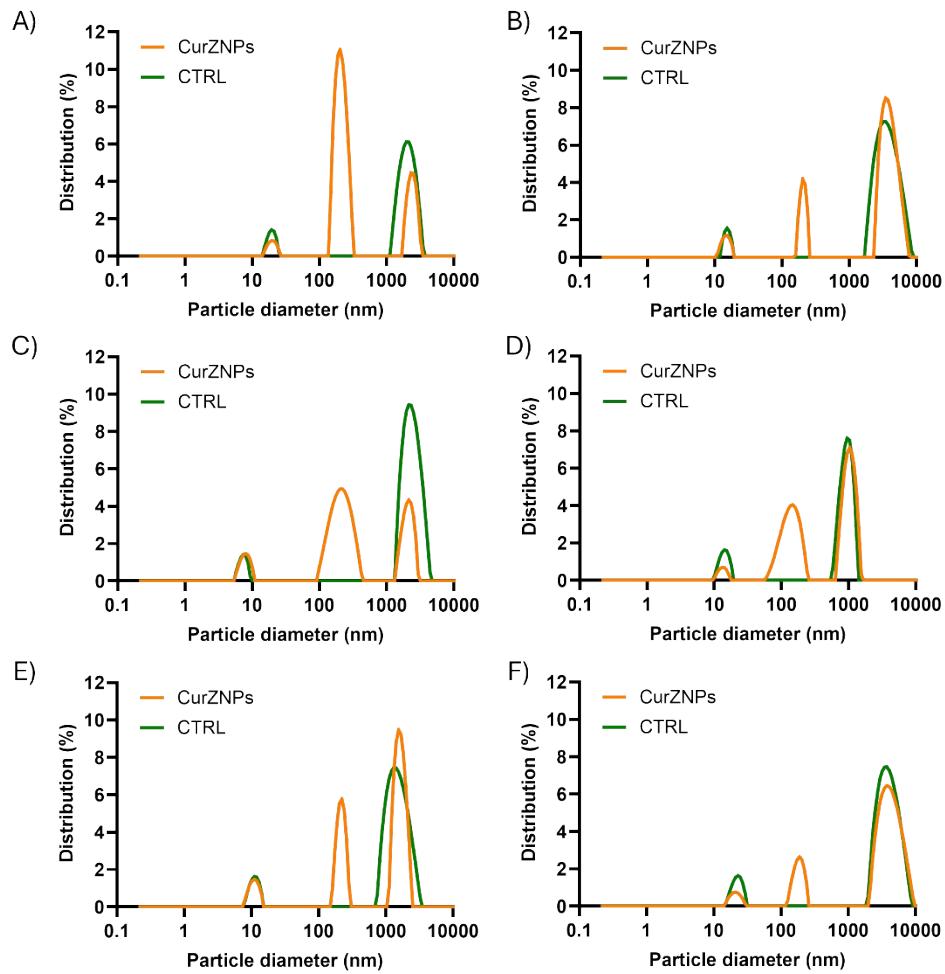

A preliminary characterization of PDA\_10 and PDA\_25 was performed through ATR-FTIR analysis (**Figure S1B**). Then, the viscosimetric molecular weight ( $M_v$ ) was analyzed at concentrations of 0.2-0.3-0.4-0.5 % w/v for PDA\_10 and 0.4-0.6-0.8-1 % w/v for PDA\_25.  $M_v$  of PDAs was measured as 27 ± 1.4 kDa for PDA\_10 and 16 ± 3 kDa for PDA\_25 (**Figure S1C**).

Finally, since oxidation reduces the ability of PDA to crosslink with calcium ions, PDAs hydrogels (4 % w/v concentration) were crosslinked with CaCl<sub>2</sub> 100 mM for 10 minutes. However, PDA\_10 and PDA\_25 hydrogels were not able to crosslink with Ca<sup>2+</sup> ions and therefore not subjected to further characterization.



**Figure S1.** A) Aldehydic content of PDAs (%mol of aldehyde/mol of galacturonic acid), B) FTIR spectra of PDA\_10 and PDA\_25, C) Viscosimetric molecular weight of PDA\_10 and PDA\_25, as a function of theoretical oxidation degree.

## PDA/gelatin hydrogel evaluations




**Figure S2.** Storage modulus ( $G'$ , continuous line) and loss modulus ( $G''$ , dotted line) as a function of angular frequency (1 and 100 rad/s) of PDA (pre-crosslinked with 30 mM  $\text{CaCO}_3$ )/gelatin hydrogels at different PDA:gelatin ratios 30:70 and 70:30% w/w at A) 25°C and B) 37°C.

## DLS analyses of CurZNPs release from PDA/G-CDH hydrogels

**Table S1.** Size measurements by DLS analysis of CurZNPs released from PDA\_2.5/G-CDH (70:30) and PDA\_5/G-CDH (50:50) hydrogels at the selected time points.

| Time points (days) | Size (nm)             |              |
|--------------------|-----------------------|--------------|
|                    | PDA_2.5/G-CDH (70:30) | PDA_5/G-CDH  |
| 1                  | 212 $\pm$ 11          | 230 $\pm$ 7  |
| 2                  | 212 $\pm$ 20          | 215 $\pm$ 3  |
| 3                  | 205 $\pm$ 29          | 216 $\pm$ 10 |
| 7                  | 232 $\pm$ 26          | 208 $\pm$ 33 |
| 10                 | 209 $\pm$ 26          | 216 $\pm$ 16 |
| 14                 | 218 $\pm$ 35          | 204 $\pm$ 27 |
| 21                 | 203 $\pm$ 16          | 210 $\pm$ 35 |
| 28                 | 255 $\pm$ 30          | 268 $\pm$ 23 |



**Figure S3.** DLS analysis to detect CurZNPs release from A-C-E) PDA\_2.5/G-CDH (70:30) where CurZNPs (orange) and CTRL (green) and from B-D-F) PDA\_5/G-CDH (50:50) where CurZNPs (orange) and CTRL (green). Reported DLS images are illustrative of single measurements at specific time points of release: A-B) 1, C-D) 3 and E-F) 7 days. It is possible to see that CTRL hydrogels showed two peaks at low and high nm, probably due to hydrogels degradation, while CurZNPs loaded PDA/G-CDH hydrogels exhibit an additional peak at around 200 nm, suggesting that CurZNPs are released.