Supporting Information

Rhodium-Catalyzed enantioselective transfer hydrogenation of a-

chloro β -ketophosphonates via dynamic kinetic resolution

Jun Wang^{a,b}, Xiaobing Ding*,^a, Sai Ruan^a, Longsheng Zheng^a, Virginie Ratovelomanana-

Vidal*,c, Gen-Qiang Chen*,b and Xumu Zhang*,a

^b Academy for Advanced Interdisciplinary Studies and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China

^c PSL University, Chimie ParisTech, CNRS, Institute1 of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France.

Emails: dingxb@sustech.edu.cn; virginie.vidal@chimieparistech.psl.eu; chengq@sustech.edu.cn; zhangxm@sustech.edu.cn

^{*a*} Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China;

Contents

I. General remark	S3
II. Condition optimization of dynamic kinetic resolution	S4
III. Proposed Catalytic Circle	S7
IV. Preparation of substrates	S8
V. Procedure for dynamic kinetic resolution reaction	S19
VI. NMR Spectra	S30
VII. HPLC Spectra	
VIII. Reference	S112

I. General remark

All reactions and manipulations were performed in an argon-filled glovebox or using standard Schlenk techniques. Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. Column Chromatography was performed with silica gel Merck 60 (200-300 mesh). Anhydrous solvents. Anhydrous solvents were purchased from J&K Chemical and degassed by bubbling argon over a period of 30 min prior to use. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on a Bruker Avance Neo 400 MHz or 600 MHz spectrometer with CDCl₃ as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts are reported in ppm, upfield to TMS (0.00 ppm) and relative to CDCl₃ (7.26 ppm) for ¹H NMR or CDCl₃ (77.0 ppm) for ¹³C NMR. HRMS(ESI) were recorded on Thermo-Fisher Orbitrap Fusion instrument. Optical rotations were determined using a 1 mL cell with a 1 dm path length on a Rudolph Autopol I polarimeter at 589 nm. HPLC analyses were performed using an Agilent 1260 Series instrument.

II. Condition optimization of dynamic kinetic resolution

General procedure:

To a 2.5 mL vial was added the model substrates (0.1 mmol), catalyst (0.001 mmol), Et₃N/HCOOH mixture and solvent (1 mL) under argon atmosphere. The mixture was stirred for 2 hours at room temperature. After the reaction finished, the reaction mixture was passed through a short column of silica gel to remove the metal complex. The product was concentrated *in vacuo* then 0.4 mL pyridine and 0.2 mmol benzoyl chloride was added. The mixture was allowed to stir at room temperature for 4 hours. After the reaction finished, 4 M HCl solution was add, the mixture was quenched with EtOAc and concentrated *in vacuo*.¹ The product was analyzed by ¹H NMR to determine the conversion. The et values were determined by HPLC on a chiral stationary phase.

Optimization of catalysts:

Four catalysts applied on transfer hydrogenation were optimized for the model substrate with general procedure. In all groups substrate had completely converted, while **Cat4** gave the highest dr and ee result. Therefore, **Cat4** will be applied on further optimization. After determined the catalyst with highest activity and enantioselectivity, the effect of solvent on this reaction was tested. The results showed that solvent affect few on this reaction, and DCM gave better performance than other groups. The concentration of reaction and hydrogen donor were further studied. The results show that the concentration and the ratio of hydrogen donor also had no effect on both reactivity and selectivity. **Cat4** were synthesized according to the literature.²

0 0 	DEt) ₂ (<i>R,R</i>)- Cat4 (1 mol%), HCO ₂ H/Et ₃ N(5:2), 25	DCM °C, 2 h	(OEt) ₂ MeO	Rh Cl TsN N-H Ph (<i>R</i> , <i>R</i>)-Cat4
entry ^a	concentration (mol/L)	conv. (%) ^{<i>b</i>}	dr ^c	ee^d
1	0.1	>99	>99:1	98%
2	0.16	>99	>99:1	98%
3	0.25	>99	>99:1	98%
4	0.5	>99	>99:1	98%

.

Table S1. Optimization of reaction concentration:

^{*a*}Reaction conditions: **1a** (0.1 mmol), HCOOH/Et₃N (5:2) (0.05 mL), catalyst. (1 mol%), DCM (0.2-1 mL), 25 °C, 2 h. ^{*b*}NMR yield. ^{*b*}The reaction mixture was analyzed by ¹H. ^{*c*}Determined by NMR ^{*d*}Determined by chiral HPLC analysis.

Table S2. Optimization of hydrogen donor:

O Cl 1a	(OEt) ₂ (<i>R</i> , <i>R</i>)- Cat4 (1 mol%) HCO ₂ H/Et ₃ N(5:2), 2	6), DCM 25 °C, 2 h 22 °C, 2 h 22 °C, 2 h	O [⊔] ∠P(OEt)₂ M	eO TsN N-H Ph (<i>R</i> , <i>R</i>)-cat4
entry ^a	hydrogen donor	conv. $(\%)^b$	dr ^c	ee ^d
1	HCOOH/Et ₃ N (5:2)	>99	>99:1	98%
2	HCOOH/Et ₃ N (1:1)	>99	>99:1	98%
3	HCOOH/Et ₃ N (2:1)	>99	>99:1	98%
4	HCOOH/DBU (2:1)	>99	>99:1	95%

^{*a*}Reaction conditions: **1a** (0.1 mmol), hydrogen donor (0.05 mL), catalyst. (1 mol%), DCM (0.2 mL), 25 °C, 2 h. ^{*b*}NMR yield. ^{*b*}The reaction mixture was analyzed by ¹H. ^{*c*}Determined by NMR ^{*d*}Determined by chiral HPLC analysis.

O CI 1a	0 P(OEt) ₂	(<i>R</i> , <i>R</i>)- Cat4 , DCM HCO ₂ H/Et ₃ N(5:2), 25 °C		O P(OEt) ₂ MeO Cl	Rh Cl TsN ^{VV} N-H Ph (<i>R</i> , <i>R</i>)-cat4
entry ^a	S/C	time (h)	conv. (%) ^{<i>b</i>}	$\mathrm{d}\mathbf{r}^{c}$	ee $(cis)^d$
1	200	2	>99	>99:1	>99%
2	500	5	>99	>99:1	>99%
3	1000	12	>99	>99:1	>99%
4	2000	36	>99	>99:1	>99%

Table S3. TON Study of DKR-ATH of 1h:

The reactions were carried out with different catalyst/substrate (0.2 mmol) ratio in 0.2 mL of solvent, HCO_2H/Et_3N azeotropic mixture (100 µL) at 25 °C.

Gram-Scale DKR-ATH Procedure:

In a nitrogen filled glovebox, to a 50 mL Schleck tube charged with a magnetic stirring bar were added successively substrate **1a** (5 mmol, 1.15 g), formic acid/trimethylamine azeotropic mixture (5:2, 0.4 mL), the catalyst (**cat4**, 7.6 mg, 0.01 mmol) and the solvent (10 mL). The mixture was then stirred at room temperature for 14 h. After the reaction finished, the reaction solution was concentrated and the residue was passed through a short column of silica gel (eluent: EA:PE = 3:1) to remove the metal complex. Compounds **2a** was obtained as a colorless oil (1.04 g, 91% yield, 97% ee, >99:1 dr).

III. Proposed Catalytic Circle

Based on our previous investigations, a plausible catalytic circle was proposed. Firstly, **Cat4** was transformed to the reactive species **Cat4a** in the presence of HCO_2H and NEt₃. The two enantiomers of **1a**, (*S*)-**1a** and (*R*)-**1a**, are in equilibrium with each other. (*S*)-**1a** matches with the catalyst **Cat4a** better and it coordinate with **Cat4a** to form **Int1**. Intramolecular hydrogen transfer of **Int1** generated **Int2** via **TS1**. The desired product (*S*,*R*)-**2a** was formed by reaction of **Int2** with HCO_2H , and the reactive catalyst **Cat4a** was also regenerated in this process.

IV. Preparation of substrates

Procedure A: Preparation of substrate 1a, 1b.

Scheme 1. Synthetic route of compound 1a, 1b

To a solution of phosphonate **S1** (3 mmol) in anhydrous CH_2Cl_2 (5 mL) under Ar atmosphere at 0 °C was added SOCl₂ (3 mmol) dropwise. After stirring for 1 hour, water was added to quench the reaction. The resulting mixture was extracted with CH_2Cl_2 and concentrated *in vacuo*. The residue was purified by flash chromatography (PE:EA 3:1) to afford product. Compound **1a**, **1b** was obtained with medium to high yield (80%).

Procedure B: Preparation of substrate 1c, 1d.

Scheme 2. Synthetic route of compound 1c, 1d

To a solution of phosphonate S2 (2 mmol) and K_2CO_3 (3 mmol) in acetone (8 mL) was added methyl iodide/ethyl iodide (3 mmol) dropwise, and the resulting mixture was stirred at room temperature for 24 hours. The reaction was quenched with saturated NH₄Cl and extracted with EtOAc. The combined organic phases were dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by chromatography to afford product. Compound was obtained with medium yield (50-60%).

Procedure C: Preparation of substrate 1f-1u.

Scheme 3. Synthetic route of compound 1f-1u

To a solution of ester **S3** (2.2 mmol) and phosphonate **S4** (2 mmol) in anhydrous THF (2.5 mL) under Ar atmosphere at 0 °C was added LDA (4.4 mmol) dropwise. After stirring for 0.5-hour, 4 M HCl solution was added to quench the reaction. The resulting mixture was extracted with EtOAc and concentrated *in vacuo*. The residue was purified by flash chromatography (PE:EA from 10:1 to 3:1) to afford product. Compound **1f-1u** was obtained in 60-85% yield.

Procedure D: Preparation of substrate 1e.

Scheme 4. Synthetic route of compound 1e

The substrate **S3** (5.0 mmol, 1.0 eq) was added to a round-bottom flask under an argon atmosphere, followed by the addition of 10 mL of THF as the solvent. The mixture was cooled to 0°C using an ice-water bath and NaH (6.0 mmol, 1.2 eq, 60% dispersion in mineral oil) was added portion-wise. The reaction mixture was stirred at 0°C for 30 minutes until gas evolution ceased. Next, benzyl bromide (6.0 mmol, 1.2 eq) was added dropwise. The mixture was stirred at 0°C for 30 minutes until gas evolution ceased. Next, benzyl bromide (6.0 mmol, 1.2 eq) was added dropwise. The mixture was stirred at 0°C for 30 minutes before allowing it to warm gradually to room temperature. Stirring was continued overnight. The reaction was quenched with a saturated NH₄Cl solution, extracted with EA and washed with water and brine. The organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography

to afford product (65% yield).

Characterization Data of 1

Diethyl (1-chloro-2-methyl-2-oxoethyl)phosphonate (1a):³ colorless liquid, 552 mg, 80% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.48 (dd, J = 17.5, 1.0 Hz, 1H), 4.30 – 4.16 (m, 4H), 2.45 (d, J = 1.6 Hz, 3H), 1.36 (tdd, J = 7.2, 3.5, 1.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.67, 64.61 (dd, J = 14.4, 6.9 Hz), 57.46 (d, J = 138.7Hz), 27.77, 16.31 (d, J = 5.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.47. HRMS Calcd. For C7H14ClNaO4P+ [M+Na+]: 251.0210. Found: 251.0213.

Dimethyl (1-chloro-2-methyl-2-oxoethyl)phosphonate (1b):³ colorless liquid, 485 mg, 80% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.54 (d, *J* = 17.6 Hz, 1H), 3.90 (ddd, *J* = 11.1, 2.6, 1.1 Hz, 6H), 2.47 (d, *J* = 2.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.54, 55.83 (d, *J* = 139.9 Hz), 53.88 (dd, *J* = 22.1, 6.9 Hz), 26.81. ³¹P NMR (162 MHz, Chloroform-*d*) δ 14.93. HRMS Calcd. For C5H10ClNaO4P+ [M+Na+]: 222.9897. Found: 222.9897.

Diethyl (1-methyl-2-methyl-2-oxoethyl)phosphonate (1c):³ colorless liquid, 311 mg, 57% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.28 – 4.02 (m, 4H), 3.21 (dq, *J* = 25.6, 7.1 Hz, 1H), 2.34 (s, 3H), 1.43 – 1.28 (m, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.91 (d, *J* = 3.9 Hz), 62.61 (dd, *J* = 10.5, 6.9 Hz), 47.50 (d, *J* = 126.7 Hz), 30.40,

16.36 (d, *J* = 4.3 Hz), 10.89 (d, *J* = 6.4 Hz).³¹**P NMR** (162 MHz, Chloroform-*d*) δ23.42. HRMS Calcd. For C8H17NaO4P+ [M+Na+]: 231.0757. Found: 231.0754.

Diethyl (1-ethyl-2-methyl-2-oxoethyl)phosphonate (1d): colorless liquid, 1.22 g, 55% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 4.23 – 3.98 (m, 4H), 3.05 (ddt, *J* = 24.3, 10.6, 2.7 Hz, 1H), 2.31 (t, *J* = 1.7 Hz, 3H), 2.02 (ddtd, *J* = 16.6, 13.5, 7.4, 3.2 Hz, 1H), 1.86 (dtt, *J* = 14.5, 7.5, 3.6 Hz, 1H), 1.32 (td, *J* = 7.1, 1.8 Hz, 6H), 1.05 – 0.83 (m, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 203.93 (d, *J* = 4.1 Hz), 62.54 (dd, *J* = 16.7, 6.8 Hz), 55.44 (d, *J* = 124.9 Hz), 31.19, 20.02 (d, *J* = 5.1 Hz), 16.36 (dd, *J* = 6.0, 2.6 Hz), 13.12 (d, *J* = 15.8 Hz). ³¹P NMR (243 MHz, Chloroform-*d*) δ 22.32. HRMS Calcd. For C9H19NaO4P+ [M+Na+]: 245.0913. Found: 245.0911.

Diethyl (1-benzyl-2-methyl-2-oxoethyl)phosphonate (1e): colorless liquid, 1.64 g, 58% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.29 – 7.24 (m, 3H), 7.22 – 7.17 (m, 1H), 7.15 (d, *J* = 7.5 Hz, 2H), 4.16 (dddd, *J* = 13.9, 11.0, 6.8, 4.3 Hz, 4H), 3.53 (ddd, *J* = 24.2, 11.2, 3.4 Hz, 1H), 3.31 (ddd, *J* = 14.3, 11.2, 7.7 Hz, 1H), 3.10 (ddd, *J* = 14.2, 10.7, 3.3 Hz, 1H), 2.17 (d, *J* = 1.2 Hz, 3H), 1.35 (td, *J* = 7.1, 3.2 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 203.09 (d, *J* = 4.5 Hz), 138.99 (d, *J* = 15.9 Hz), 128.63, 128.54, 126.65, 62.90 (d, *J* = 6.8 Hz), 62.67 (d, *J* = 6.9 Hz), 55.14 (d, *J* = 123.5 Hz), 32.03, 16.40 (d, *J* = 6.0 Hz). ³¹P NMR (243 MHz, Chloroform-*d*) δ 21.34. HRMS Calcd. For C14H21NaO4P+ [M+Na+]: 307.1070. Found: 307.1071.

Diethyl (1-chloro-2-ethyl-2-oxoethyl)phosphonate (1f): colorless liquid, 786 mg, 65% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.49 (d, J = 17.4 Hz, 1H), 4.22 – 4.10 (m, 4H), 2.96 – 2.52 (m, 2H), 1.29 (tt, J = 6.8, 3.3 Hz, 6H), 1.03 (td, J = 7.1, 3.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 200.44, 64.55 (d, J = 6.9 Hz), 64.40 (d, J = 6.9 Hz), 57.37, 55.99, 33.73, 16.21 (d, J = 6.0 Hz), 7.61. ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.68. HRMS Calcd. For C8H16CINaO4P+ [M+Na+]: 265.0367. Found: 265.0364.

Diethyl (1-chloro-2-(*i***-propyl)-2-oxoethyl)phosphonate (1g)**: colorless liquid, 780 mg, 61% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.62 (dt, J = 17.5, 2.6 Hz, 1H), 4.16 (dddd, J = 14.5, 12.4, 8.2, 6.0 Hz, 4H), 3.14 (dqt, J = 13.5, 6.7, 3.2 Hz, 1H), 1.27 (qt, J = 6.5, 3.0 Hz, 6H), 1.07 (dt, J = 6.5, 3.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.59, 64.46 (t, J = 7.1 Hz), 56.01, 54.63, 38.89, 18.95, 18.25, 16.22 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.63. HRMS Calcd. For C9H18CINaO4P+ [M+Na+]: 279.0523. Found: 279.0523.

Diethyl (1-chloro-2-phenyl-2-oxoethyl)phosphonate (1h):³ yellow solid, 657 mg, 75% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 (dt, *J* = 7.9, 3.4 Hz, 2H), 7.59 (dt, *J* = 8.1, 4.0 Hz, 1H), 7.47 (tt, *J* = 7.7, 3.3 Hz, 2H), 5.46 (dd, *J* = 16.4, 2.8 Hz, 1H), 4.21 (ddtt, *J* = 25.1, 10.7, 7.0, 3.4 Hz, 4H), 1.26 (ddq, *J* = 28.7, 7.1, 3.5 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.61, 134.85, 134.15, 129.35, 128.69, 64.62 (d, *J* = 7.1 Hz), 64.52 (d, *J* = 6.9 Hz), 53.41, 51.98, 16.23 (dd, *J* = 9.7, 6.0 Hz). ³¹P NMR (162

MHz, Chloroform-*d*) δ 12.60. HRMS Calcd. For C12H16ClNaO4P+ [M+Na+]: 313.0367. Found: 313.0370.

Diethyl (1-chloro-2-(4-methoxyphenyl)-2-oxoethyl)phosphonate (1i):³ yellow solid, 753 mg, 78% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 – 7.82 (m, 2H), 6.88 (dd, *J* = 8.6, 6.4 Hz, 2H), 5.39 (d, *J* = 16.0 Hz, 1H), 4.15 (dtd, *J* = 14.3, 7.2, 3.7 Hz, 4H), 3.80 (q, *J* = 5.6, 4.9 Hz, 3H), 1.22 (dq, *J* = 20.8, 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.73, 164.37, 131.88 (d, *J* = 2.0 Hz), 127.56, 113.87, 66.20 – 62.62 (m), 55.55, 53.16, 51.73, 16.23 (t, *J* = 5.2 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 13.00. HRMS Calcd. For C13H18CINaO5P+ [M+Na+]: 343.0473. Found: 343.0474.

Diethyl (1-chloro-2-(4-methylphenyl)-2-oxoethyl)phosphonate (1j):³ yellow solid, 762 mg, 83% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.04 – 7.78 (m, 2H), 7.29 (d, J = 8.1 Hz, 2H), 5.44 (d, J = 16.1 Hz, 1H), 4.24 (ddtd, J = 26.0, 11.8, 7.2, 3.2 Hz, 4H), 2.43 (s, 3H), 1.30 (dt, J = 26.6, 7.1 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 189.09, 145.35, 132.29, 129.47 (d, J = 19.7 Hz), 64.54 (dd, J = 10.9, 6.9 Hz), 52.54 (d, J = 143.9 Hz), 21.78, 16.27 (dd, J = 11.9, 6.1 Hz).³¹P NMR (162 MHz, Chloroform-*d*) δ 12.85. HRMS Calcd. For C13H18CINaO4P+ [M+Na+]: 327.0523. Found: 327.0522.

Diethyl (1-chloro-2-(4-florophenyl)-2-oxoethyl)phosphonate (1k):³ yellow solid, 716 mg, 76.8% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (ddt, J = 9.8, 4.9, 2.6 Hz, 2H), 7.16 (ddp, J = 7.9, 5.2, 2.8 Hz, 2H), 5.44 – 5.34 (m, 1H), 4.23 (dtdd, J = 13.3, 10.6, 5.4, 2.7 Hz, 4H), 1.30 (ddddt, J = 21.6, 9.3, 7.4, 4.5, 2.6 Hz, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 188.10, 132.37, 132.28, 116.03, 115.81, 64.72, 64.65, 53.59, 52.16, 16.24 (d, J = 6.1 Hz). ³¹**P NMR** (162 MHz, Chloroform-*d*) δ 12.44. Calcd. For C12H15ClFNaO4P+ [M+Na+]: 331.0273. Found: 331.0278.

Diethyl (1-chloro-2-(4-chlorophenyl)-2-oxoethyl)phosphonate (11):³ yellow solid, 834 mg, 85.2% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 (ddd, J = 9.3, 4.7, 2.4 Hz, 2H), 7.46 (ddd, J = 8.0, 5.0, 2.7 Hz, 2H), 5.40 (dd, J = 16.6, 1.7 Hz, 1H), 4.24 (dd, J = 14.8, 12.6, 10.3, 7.5, 4.9, 2.7 Hz, 4H), 1.35 – 1.24 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.53, 140.78, 133.02, 130.86, 129.01, 64.69 (d, J = 6.9 Hz), 53.65, 52.22, 16.26. ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.30. HRMS Calcd. For C12H15Cl2NaO4P+ [M+Na+]: 346.9977. Found: 346.9981.

Diethyl (1-chloro-2-(4-bromophenyl)-2-oxoethyl)phosphonate (1m):³ yellow solid, 688 mg, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.87 (dd, J = 8.7, 2.6 Hz, 2H), 7.60 (dd, J = 8.6, 3.2 Hz, 2H), 5.38 (d, J = 16.6 Hz, 1H), 4.21 (dtq, J = 25.7, 11.1, 4.2, 3.6 Hz, 4H), 1.27 (dtd, J = 32.3, 7.1, 3.0 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 188.76 (d, J = 2.0 Hz), 133.45 (d, J = 2.0 Hz), 132.00, 130.90, 129.59, 64.69 (d, J = 6.8 Hz), 53.41, 52.46, 16.25 (dd, J = 7.7, 6.0 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.27. HRMS Calcd. For C12H15BrClNaO4P+ [M+Na+]: 390.9472. Found: 390.9471.

Diethyl (1-chloro-2-(3-florophenyl)-2-oxoethyl)phosphonate (1n):³ yellow liquid, 725 mg, 78% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 (dd, J = 8.3, 4.5 Hz, 1H), 7.74 – 7.66 (m, 1H), 7.55 – 7.40 (m, 1H), 7.31 (tt, J = 8.1, 3.7 Hz, 1H), 5.45 – 5.34 (m, 1H), 4.29 – 4.17 (m, 4H), 1.34 – 1.21 (m, 6H). ¹³C NMR (101 MHz, Chloroform*d*) δ 188.60, 130.37 (d, J = 7.6 Hz), 125.23 (d, J = 3.1 Hz), 121.22 (d, J = 21.6 Hz), 116.32, 64.73, 53.60, 52.18, 16.24. ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.16 (d, J =2.8 Hz). HRMS Calcd. For C12H15ClFNaO4P+ [M+Na+]: 331.0273. Found: 331.0275.

Diethyl (1-chloro-2-(3-chlorophenyl)-2-oxoethyl)phosphonate (10):³ yellow liquid, 706 mg, 72% yield. ¹H NMR (400 MHz, Chloroform-d) δ 7.99 (t, J = 1.9 Hz, 1H), 7.96 – 7.87 (m, 1H), 7.63 – 7.57 (m, 1H), 7.44 (t, J = 7.9 Hz, 1H), 5.38 (d, J = 16.6 Hz, 1H), 4.50 – 4.01 (m, 4H), 1.48 – 1.07 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 188.59, 136.32, 135.06, 134.03, 129.97, 129.37, 127.54, 64.75 (dd, J = 10.1, 6.9 Hz), 53.68, 52.26, 16.21 (d, J = 6.3 Hz). ³¹P NMR (162 MHz, Chloroform-d) δ 12.08. HRMS Calcd. For C12H15Cl2NaO4P+ [M+Na+]: 346.9977. Found: 346.9976.

Diethyl (1-chloro-2-(3-bromophenyl)-2-oxoethyl)phosphonate (1p):³ colorless liquid, 779 mg, 70% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 (q, J = 2.1 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.74 (dd, J = 7.9, 2.4 Hz, 1H), 7.38 (td, J = 8.0, 2.2 Hz, 1H), 5.38 (dt, J = 16.6, 1.7 Hz, 1H), 4.24 (tdd, J = 14.5, 7.2, 2.4 Hz, 4H), 1.30 (dtd, J =25.7, 7.2, 2.2 Hz, 7H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 188.47 (d, J = 2.0 Hz), 137.79 – 135.44 (m), 132.27, 130.21, 127.98, 122.94, 64.75 (dd, J = 12.3, 6.9 Hz), 52.97 (d, J = 143.5 Hz), 16.26 (dd, J = 8.1, 6.1 Hz). ³¹**P** NMR (162 MHz, Chloroformd) δ 12.07. HRMS Calcd. For C12H15BrClNaO4P+ [M+Na+]: 390.9472. Found: 390.9471.

Diethyl (1-chloro-2-(2-florophenyl)-2-oxoethyl)phosphonate (1q):³ yellow liquid, 762 mg, 82.1% yield ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (tt, J = 7.5, 2.1 Hz, 1H), 7.57 (dddt, J = 8.5, 6.9, 3.2, 1.6 Hz, 1H), 7.31 – 7.22 (m, 1H), 7.21 – 7.11 (m, 1H), 5.67 – 5.57 (m, 1H), 4.30 – 4.08 (m, 4H), 1.24 (dtd, J = 33.3, 7.1, 2.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.48, 162.61, 160.08, 135.62 (d, J = 9.3 Hz), 131.40 (d, J = 2.0 Hz), 124.82 (d, J = 3.3 Hz), 116.69, 116.45, 64.61 (d, J = 6.8 Hz), 64.37 (d, J = 6.8 Hz), 57.57 (d, J = 10.3 Hz), 56.16 (d, J = 10.1 Hz), 16.15 (dd, J = 14.3, 6.1 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.13. HRMS Calcd. For C12H15ClFNaO4P+ [M+Na+]: 331.0273. Found: 331.0271.

Diethyl (1-chloro-2-benzyl-2-oxoethyl)phosphonate (1r):³ colorless liquid, 597 mg, 65% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.14 (m, 7H), 4.64 (d, *J* = 17.4 Hz, 1H), 4.35 – 4.20 (m, 4H), 4.20 – 4.03 (m, 2H), 1.37 (td, *J* = 7.1, 1.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 197.26, 132.97, 129.69, 128.76, 64.70 (dd, *J* = 16.0, 6.9 Hz), 56.42 (d, *J* = 138.4 Hz), 47.03, 16.34 (d, *J* = 5.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.27. HRMS Calcd. For C13H18ClNaO4P+ [M+Na+]: 327.0523. Found: 327.0524.

Dimethyl (1-chloro-2-(furan-2-yl)-2-oxoethyl)phosphonate (1s):³ yellow solid, 744 mg, 88% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, J = 1.7 Hz, 1H), 7.43 (d, J = 3.6 Hz, 1H), 6.62 (dd, J = 3.6, 1.7 Hz, 1H), 5.34 (dd, J = 16.4, 1.5 Hz, 1H), 4.35 – 4.11 (m, 4H), 1.31 (dt, J = 26.7, 7.1 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 177.78 (d, J = 2.4 Hz), 150.60 (d, J = 2.1 Hz), 147.67, 120.28, 113.16, 64.64 (dd, J = 29.2, 6.9 Hz), 52.71, 51.77, 16.28 (dd, J = 11.6, 6.1 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.20. HRMS Calcd. For C10H14ClNaO5P+ [M+Na+]: 305.0316. Found: 303.0160.

Dimethyl (1-chloro-2-oxo-2-(thiophen-2-yl)ethyl)phosphonate (1t):³ yellow solid , 760 mg, 85% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (dd, J = 4.0, 1.1 Hz, 1H), 7.76 (dd, J = 4.9, 1.1 Hz, 1H), 7.17 (dd, J = 5.0, 3.9 Hz, 1H), 5.22 (d, J = 16.1 Hz, 1H), 4.41 – 4.09 (m, 4H), 1.32 (dtd, J = 19.1, 7.0, 0.8 Hz, 7H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 182.01, 141.28 (d, J = 2.3 Hz), 136.04, 134.88, 128.48, 64.72 (t, J =6.6 Hz), 53.95, 53.00, 17.10 – 15.34 (m). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.22. HRMS Calcd. For C10H14ClNaO4PS+ [M+Na+]: 318.9931. Found: 318.9936.

Diethyl (1-chloro-2-naphthyl-2-oxoethyl)phosphonate (1u):³ white solid, 851 mg, 83% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 (dd, J = 8.7, 1.9 Hz, 1H), 7.99 (dd, J = 8.3, 1.3 Hz, 1H), 7.95 – 7.85 (m, 2H), 7.64 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 7.57 (ddd, J = 8.1, 6.9, 1.3 Hz, 1H), 5.62 (d, J = 16.2 Hz, 1H), 4.38 – 4.11 (m, 4H), 1.29 (dtd,

J = 36.7, 7.0, 0.8 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 189.49, 135.97, 132.25, 132.10, 131.72, 129.90, 129.24, 128.66, 127.82, 127.10, 124.43, 64.72 (d, J = 7.0 Hz), 64.56 (d, J = 6.9 Hz), 53.46, 52.03, 16.29 (dd, J = 9.7, 6.0 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 12.80. HRMS Calcd. For C16H18CINaO4P+ [M+Na+]: 363.0523. Found: 363.0525.

V. Procedure for dynamic kinetic resolution reaction

To a 2.5 mL vial was added the substrates (0.1 mmol), catalyst (0.001 mmol), Et₃N/HCOOH (5:2) mixture (0.05 mL) and anhydrous DCM (0.2 mL) under argon atmosphere. The mixture was stirred for 2 hours at room temperature. After the reaction finished, the reaction mixture was passed through a short column of silica gel to remove the metal complex. The product was analyzed by ¹H NMR to determine the conversion. The ee values and diastereo-isomer ratio were determined by HPLC on a chiral stationary phase. For hydrogenation product **2a-2f**, derivatization was conducted before determination. 0.4 mL pyridine and 0.2 mmol benzoyl chloride was added. The mixture was allowed to stir at room temperature for 4 hours. After the reaction finished, 4 M HCl solution was add, the mixture was quenched with EtOAc and concentrated *in vacuo*.¹ The product was analyzed by ¹H NMR to determine the conversion. The ee values and diastereo-isomer ratio were determined by HPLC or UPLC on a chiral stationary phase. The configuration was determined by HPLC or UPLC on a chiral stationary phase. The configuration was determined by HPLC or UPLC on a chiral stationary phase. The configuration was determined by HPLC or UPLC on a chiral stationary phase. The configuration was determined by HPLC or UPLC on a chiral stationary phase.

Cis-(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(methyl)ethyl)phosphonate (2a)⁴ 93% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 4.35 (tt, *J* = 8.7, 6.3 Hz, 1H), 4.31 – 4.15 (m, 4H), 3.85 (dd, *J* = 12.5, 2.4 Hz, 1H), 1.42 – 1.32 (m, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 66.19 (d, *J* = 1.9 Hz), 63.93 (dd, *J* = 205.9, 7.0 Hz), 57.17 (d, *J* = 155.6 Hz), 20.12 (d, *J* = 11.0 Hz), 16.41 (dd, *J* = 9.3, 5.9 Hz). ³¹P NMR (243 MHz, Chloroform-*d*) δ 19.15. [α]²⁰_D = +52.2 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by **HPLC** on Chiral OD-H column, 230 nm, 25 °C, *n*Hexane: *i*PrOH = 90:10; flow 1.0 mL/min; t₁ (minor) = 5.56 min, t₂ (minor) = 5.85 min, t₃ (minor) = 7.99 min, t₄ (major) = 10.53 min. HRMS Calcd. For C7H16ClNaO4P+ [M+Na+]: 253.0367 Found: 253.0366.

Cis -(1*S*, 2*R*)-dimethyl (1-chloro-2-hydroxy-2-(methyl)ethyl)phosphonate (2b)⁴ 91% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.45 – 4.26 (m, 1H), 3.92 (d, *J* = 10.7 Hz, 3H), 3.90 (dd, *J* = 12.5, 2.5 Hz, 1H), 3.84 (d, *J* = 10.8 Hz, 3H), 3.04 (d, *J* = 5.1 Hz, 1H), 1.35 (dd, *J* = 6.3, 1.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 65.90 (d, *J* = 4.7 Hz), 64.29 – 57.28 (m), 37.42 (d, *J* = 137.0 Hz), 20.23 (d, *J* = 13.8 Hz), 17.85 – 13.74 (m), 7.15 (d, *J* = 3.9 Hz).³¹P NMR (162 MHz, Chloroform-*d*) δ 33.52. [α]²⁰_D = +48.4 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by HPLC on Chiral OD-H column, 220 nm, 25 °C, "Hexane: ^{*i*}PrOH = 90:10; flow 1.0 mL/min; t₁ (minor) = 7.75 min, t₂ (major) = 8.82 min, t₃ (minor) = 11.82 min, t₄ (minor) = 16.93 min. HRMS Calcd. For C5H12ClNaO4P+ [M+Na+]: 225.0054. Found: 225.0052.

cis-(1*S*,2*R*)-Diethyl (1-methyl-2-hydroxy-2-(methyl)ethyl)phosphonate (2c)⁵ 93% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.22 – 4.10 (m, 4H), 3.21 (d, *J* = 4.0 Hz, 1H), 2.08 – 1.88 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 6H), 1.27 – 1.16 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 65.90 (d, *J* = 4.7 Hz), 61.97 (d, *J* = 5.3 Hz), 37.42 (d, *J* = 137.1 Hz), 20.22 (d, *J* = 13.8 Hz), 16.44, 7.15 (d, *J* = 3.9 Hz).³¹P NMR (243 MHz, Chloroform-*d*) δ 33.52. [α]²⁰_D = +33.6 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by HPLC on Chiral OD-3 column, 230 nm, 25 °C, "Hexane: [†]PrOH = 95:5; flow 1.0 mL/min; t₁ (minor) = 10.74 min, t₂ (major) = 11.87 min, t₃ (minor) = 12.79 min, t₄ (minor) = 13.98 min. HRMS Calcd. For C8H19NaO4P+ [M+Na+]: 233.0913. Found: 233.0917

Cis-(1S, 2R)-diethyl (1-ethyl-2-hydroxy-2-(methyl)ethyl)phosphonate (2d).

90% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 4.15 – 4.07 (m, 4H), 3.63 (d, *J* = 7.4 Hz, 1H), 1.88 (dtd, *J* = 19.7, 6.6, 3.2 Hz, 1H), 1.69 (tt, *J* = 14.8, 7.4 Hz, 1H), 1.61 – 1.47 (m, 1H), 1.32 (td, *J* = 7.1, 1.9 Hz, 7H), 1.27 (d, *J* = 6.5 Hz, 3H), 1.03 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 66.54 (d, *J* = 4.5 Hz), 61.85 (d, *J* = 6.5 Hz), 61.54 (d, *J* = 7.1 Hz), 45.72, 44.84, 20.07, 18.39 (d, *J* = 3.9 Hz), 16.45, 13.48 (d, *J* = 7.7 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 32.95. [α]²⁰_D = +40.1 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by UPLC on Chiral IC-U column, 230 nm, 25 °C, "Hexane: ⁱPrOH = 95:5 in 0-30 min, then "Hexane: ⁱPrOH = 50:50 in 30-60 min; flow 0.5 mL/min; t₁ (minor) = 16.40 min, t₂ (minor) = 19.52 min, t₃ (minor) = 20.94 min, t₄ (major) = 34.94 min. HRMS Calcd. For C9H21NaO4P+ [M+Na+]: 247.1070. Found: 247.1072.

Cis-(1*S*, 2*R*)-diethyl (1-benzyl-2-hydroxy-2-(methyl)ethyl)phosphonate (2e). 95% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.28 (t, *J* = 7.6 Hz, 2H), 7.24 – 7.18 (m, 3H), 4.21 – 3.92 (m, 4H), 3.62 (d, *J* = 7.9 Hz, 1H), 3.01 (td, *J* = 13.8, 6.2 Hz, 1H), 2.79 (td, *J* = 15.5, 8.0 Hz, 1H), 2.48 – 2.28 (m, 1H), 1.34 – 1.30 (m, 6H), 1.26 (t, *J* = 5.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 128.76, 128.49, 126.43, 66.25 (d, *J* = 4.7 Hz), 62.02 (d, *J* = 6.6 Hz), 61.71 (d, *J* = 7.2 Hz), 45.69, 44.80, 31.18 (d, *J* = 3.3 Hz), 20.10 (d, *J* = 9.1 Hz), 16.38 (dd, *J* = 8.7, 6.0 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.67. [α]²⁰_D = +48.5 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by UPLC on Chiral IC-U column, 230 nm, 25 °C, "Hexane: ^{*i*}PrOH = 95:5 in 0-30 min, then "Hexane: ^{*i*}PrOH = 50:50 in 30-60 min; flow 0.5 mL/min; t₁ (minor) = 18.87 min, t₂ (minor) = 20.33 min, t₃ (minor) = 23.44 min, t₄ (major) = 35.66 min. HRMS Calcd. For C14H23NaO4P+ [M+Na+]: 309.1226. Found: 309.1226.

Cis-(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(ethyl)ethyl)phosphonate (2f) 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.36 – 4.14 (m, 4H), 4.05 (dq, *J* = 12.6, 6.8, 5.8 Hz, 1H), 3.94 (dd, *J* = 13.1, 2.0 Hz, 1H), 3.11 (d, *J* = 4.6 Hz, 1H), 1.83 – 1.69 (m, 2H), 1.69 – 1.55 (m, 1H), 1.37 (t, *J* = 7.1 Hz, 7H), 0.96 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 71.24 (d, *J* = 2.5 Hz), 64.64 (d, *J* = 6.9 Hz), 63.26 (d, *J* = 7.1 Hz), 56.16, 54.60, 26.92 (d, *J* = 11.3 Hz), 16.42 (t, *J* = 6.0 Hz), 9.97. ³¹P NMR (162 MHz, Chloroform-*d*) δ 19.66. [α]²⁰_D = +26.2 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by HPLC on Chiral IC column, 220 nm, 25 °C, "Hexane: 'PrOH = 95:5; flow 1.0 mL/min; t₁ (major) = 41.03 min, t₂ (minor) = 45.49 min, t₃ (minor) = 47.72 min, t₄ (minor) = 85.46 min. HRMS Calcd. For C8H18CINaO4P+ [M+Na+]: 267.0523. Found: 267.0520.

Cis -(1S, 2R)-diethyl (1-chloro-2-hydroxy-2-(phenyl)ethyl)phosphonate (2h)³

95% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.42 (d, J = 7.2 Hz, 2H), 7.37 (dd, J = 8.4, 6.8 Hz, 2H), 7.33 – 7.29 (m, 1H), 5.37 (dd, J = 5.4, 2.6 Hz, 1H), 4.41 – 4.16 (m, 4H), 4.10 (dd, J = 12.6, 2.6 Hz, 1H), 3.69 (s, 1H), 1.35 (td, J = 7.1, 3.1 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 139.31 (d, J = 12.4 Hz), 128.27, 128.16, 126.36, 71.55, 64.12 (dd, J = 233.5, 6.9 Hz), 57.65 (d, J = 153.4 Hz), 16.39 (dd, J = 8.4, 5.8 Hz). ³¹P NMR (243 MHz, Chloroform-*d*) δ 18.85. [α]²⁰_D = +62.6 (c 0.5, CHCl₃). The

enantiomeric excess and diastereo-isomer ratio were determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, "Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t_1 (minor) = 10.96 min, t_2 (major) = 14.14 min, t_3 (minor) = 17.75 min, t_4 (minor) = 66.95 min. C12H18ClNaO4P+ [M+Na+]: 315.0523. Found: 315.0523.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(4-methoxyphenyl)ethyl)phosphonate (2i).³ 92% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (dd, *J* = 8.6, 2.1 Hz, 2H), 6.89 (dd, *J* = 8.6, 2.0 Hz, 2H), 5.31 (dq, *J* = 7.5, 4.9, 3.6 Hz, 1H), 4.37 – 4.10 (m, 4H), 4.05 (dt, *J* = 12.3, 2.3 Hz, 1H), 3.84 – 3.76 (m, 3H), 3.65 (s, 1H), 1.34 (td, *J* = 7.0, 1.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.47, 131.44 (d, *J* = 11.9 Hz), 127.62, 113.64, 71.29, 64.83 (d, *J* = 7.0 Hz), 63.30 (d, *J* = 7.1 Hz), 58.63, 57.11, 55.29, 16.39 (t, *J* = 6.2 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.88. [α]²⁰_D = +35.5 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by HPLC on Chiral IC column, 210 nm, 25 °C, "Hexane: ¹PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 18.12 min, t₂ (minor) = 28.67 min, t₃ (major) = 31.10 min, t₄ (minor) = 98.48 min. HRMS Calcd. For C13H20ClNaO5P+ [M+Na+]: 345.0629. Found: 345.0632.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(4-methylphenyl)ethyl)phosphonate (2j).³ 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 7.7 Hz, 2H), 7.17 (d, *J* = 7.5 Hz, 2H), 5.34 (dd, *J* = 5.3, 2.6 Hz, 1H), 4.38 – 4.13 (m, 4H), 4.08 (dd, *J* = 12.6, 2.6 Hz, 1H), 2.34 (d, *J* = 4.4 Hz, 3H), 1.35 (t, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 137.87, 136.40 (d, *J* = 12.1 Hz), 128.95, 126.23, 71.38, 64.86 (d, *J* = 6.9 Hz), 63.37 (d, *J* = 7.1 Hz), 58.57, 57.05, 21.17, 16.39 (t, *J* = 6.2 Hz). ³¹P **NMR** (162 MHz, Chloroform-*d*) δ 18.94. $[\alpha]^{20}{}_{D} = +23.3$ (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, *n*Hexane: *i*PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 14.52 min, t₂ (minor) = 21.55 min, t₃ (major) = 24.80 min, t₄ (minor) = 68.94 min. HRMS Calcd. For C13H20ClNaO4P+ [M+Na+]: 329.0680. Found: 329.0680.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(4-florophenyl)ethyl)phosphonate (2k).³ 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.34 (m, 2H), 7.05 (t, *J* = 8.7 Hz, 2H), 5.37 – 5.29 (m, 1H), 4.36 – 4.12 (m, 4H), 4.03 (dd, *J* = 12.7, 2.6 Hz, 1H), 3.86 (s, 1H), 1.35 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 128.16 (d, *J* = 8.2 Hz), 115.13 (d, *J* = 21.4 Hz), 71.06, 65.01 (d, *J* = 7.4 Hz), 58.34, 56.82, 16.38. ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.68. [α]²⁰_D = +34.9 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by HPLC on Chiral IC column, 210 nm, 25 °C, *n*Hexane: *i*PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 7.69 min, t₂ (major) = 9.28 min, t₃ (minor) = 11.58 min, t₄ (minor) = 53.34 min. HRMS Calcd. For C12H17CIFNaO4P+ [M+Na+]: 333.0429. Found: 333.0429.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(4-chlorophenyl)ethyl)phosphonate (2l).³ 93% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.39 – 7.31 (m, 4H), 5.33 (dt, *J* = 5.2, 2.5 Hz, 1H), 4.38 – 4.15 (m, 4H), 4.03 (dd, *J* = 12.8, 2.5 Hz, 1H), 3.88 (d, *J* = 3.2 Hz, 1H), 1.35 (td, *J* = 7.1, 4.7 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 137.85 (d, *J* = 12.5 Hz), 133.93, 128.42, 127.81, 71.01, 64.25 (dd, *J* = 251.7, 7.1 Hz), 57.35 (d, *J* = 153.7 Hz), 16.39 (dd, *J* = 8.7, 5.9 Hz). ³¹P NMR (243 MHz) δ 18.09. [α]²⁰_D = +53.3 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio were determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, "Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 7.35 min, t₂ (major) = 8.50 min, t₃ (minor) = 11.80 min, t₄ (minor) = 41.70 min. HRMS Calcd. For C12H17Cl2NaO4P+ [M+Na+]: 349.0134. Found: 349.0130.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(4-bromophenyl)ethyl)phosphonate (2m).³ 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, *J* = 8.1 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 5.38 – 5.23 (m, 1H), 4.47 – 4.11 (m, 4H), 4.03 (dt, *J* = 12.8, 1.8 Hz, 1H), 3.90 (d, *J* = 3.3 Hz, 1H), 1.47 – 1.20 (m, 6H). ¹³C NMR (101 MHz, Chloroformd) δ 138.34, 131.37, 128.15, 122.08, 71.06, 65.10 (d, *J* = 7.0 Hz), 63.43 (d, *J* = 7.0 Hz), 58.03, 56.51, 29.70, 16.39. ³¹P NMR (162 MHz, Chloroform-d) δ 18.61. [α]²⁰_D = +43.7 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio was determined by HPLC on Chiral IC column, 210 nm, 25 °C, "Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 7.72 min, t₂ (major) = 8.94 min, t₃ (minor) = 11.40 min, t₄ (minor) = 41.70 min. HRMS Calcd. For C12H17BrClNaO4P+ [M+Na+]: 392.9629. Found: 392.9627.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(3-florophenyl)ethyl)phosphonate (2n).³ 97% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.33 (td, *J* = 8.0, 5.8 Hz, 1H), 7.17 (td, *J* = 8.9, 8.0, 1.7 Hz, 2H), 7.03 – 6.98 (m, 1H), 5.36 (dt, *J* = 5.5, 2.8 Hz, 1H), 4.39 – 4.18 (m, 4H), 4.07 (dd, *J* = 12.9, 2.4 Hz, 1H), 3.84 (d, *J* = 3.3 Hz, 1H), 1.41 – 1.32 (m, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.80 (d, *J* = 246.0 Hz), 141.98 (dd, *J* = 12.6, 7.1 Hz), 129.76 (d, *J* = 8.2 Hz), 121.80 (d, *J* = 3.1 Hz), 115.00 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 249.7, 7.1 Hz), 57.23 (d, *J* = 21.2 Hz), 113.70 (d, *J* = 22.6 Hz), 70.93, 64.27 (dd, *J* = 24.5 Hz), 70.93 (d, *J* = 24.5 Hz), 70.93 (d,

154.1 Hz), 16.40 (t, J = 6.4 Hz). ³¹**P** NMR (162 MHz, Chloroform-*d*) δ 12.16 (d, J = 2.8 Hz). [α]²⁰_D = +44.6 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio was determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, ^{*n*}Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 6.81 min, t₂ (major) = 7.77 min, t₃ (minor) = 9.89 min, t₄ (minor) = 36.84 min. HRMS Calcd. For C12H17ClFNaO4P+ [M+Na+]: 333.0429. Found: 333.0433.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(3-chlorophenyl)ethyl)phosphonate (20).³ 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (d, *J* = 1.4 Hz, 1H), 7.36 – 7.28 (m, 3H), 5.35 (dd, *J* = 5.4, 2.4 Hz, 1H), 4.43 – 4.18 (m, 4H), 4.08 (dd, *J* = 12.9, 2.4 Hz, 1H), 3.97 (s, 1H), 1.47 – 1.34 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.47 (d, *J* = 12.5 Hz), 134.27, 129.52, 128.26, 126.68, 124.53, 70.98, 65.09 (d, *J* = 7.2 Hz), 63.44 (d, *J* = 7.2 Hz), 57.99, 56.46, 19.81 – 10.58 (m). ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.38. ³¹P NMR (243 MHz, Chloroform-*d*) δ 18.66. [α]²⁰_D = +24.3 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio was determined by HPLC on Chiral IC column, 210 nm, 25 °C, "Hexane: ¹PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 7.79 min, t₂ (major) = 8.24 min, t₃ (minor) = 11.43 min, t₄ (minor) = 49.27 min. HRMS Calcd. For C12H17Cl2NaO4P+ [M+Na+]: 349.0134. Found: 349.0136.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(3-bromophenyl)ethyl)phosphonate (2p).³ 97% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 2.0 Hz, 1H), 7.52 – 7.42 (m, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.30 – 7.21 (m, 1H), 5.40 – 5.31 (m, 1H), 4.38 – 4.17 (m, 4H), 4.07 (dd, *J* = 12.9, 2.4 Hz, 1H), 3.96 (d, *J* = 3.2 Hz, 1H), 1.38 (td, *J* = 7.1, 4.3 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 141.70 (d, *J* = 12.6 Hz), 131.19, 129.68 (d, *J* = 25.7 Hz), 128.26, 126.37, 125.04, 122.41, 70.93, 64.26 (dd, *J* = 166.4, 7.0 Hz), 57.22 (d, J = 153.9 Hz), 16.40. ³¹**P** NMR (162 MHz, Chloroform-*d*) δ 18.58. $[\alpha]^{20}{}_{D} = +62.3$ (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio was determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, ^{*n*}Hexane: ^{*i*}PrOH = 90:10; flow 1.0 mL/min; t₁ (minor) = 15.54 min, t₂ (major) = 16.60 min, t₃ (minor) = 25.17 min, t₄ (minor) = 119.94 min. HRMS Calcd. For C12H17BrClNaO4P+ [M+Na+]: 392.9629. Found: 392.9629.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(2-florophenyl)ethyl)phosphonate (2q).³ 93% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 (td, *J* = 7.6, 1.9 Hz, 1H), 7.58 (td, *J* = 7.5, 1.8 Hz, 4H), 7.40 – 7.27 (m, 6H), 7.21 (ddd, *J* = 8.9, 6.1, 1.2 Hz, 5H), 7.05 (dtd, *J* = 10.8, 7.9, 1.2 Hz, 5H), 5.69 (s, 1H), 5.36 (ddd, *J* = 17.1, 7.5, 5.1 Hz, 4H), 4.63 (d, *J* = 5.2 Hz, 4H), 4.44 – 4.19 (m, 17H), 4.19 – 3.90 (m, 9H), 1.41 (tt, *J* = 7.2, 4.6 Hz, 17H), 1.22 (t, *J* = 7.1 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 129.99, 128.37, 124.30 (d, *J* = 3.4 Hz), 115.24 (d, *J* = 21.9 Hz), 69.31, 64.15 (dd, *J* = 153.1, 7.0 Hz), 52.38, 16.26 (dd, *J* = 35.4, 5.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.97, 18.91. [*a*]²⁰_D = +27.6 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio was determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, *n*Hexane: *i*PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 8.03 min, t₂ (minor) = 9.76 min, t₃ (minor) = 11.34 min, t₄ (major) = 18.83 min. HRMS Calcd. For C12H17ClFNaO4P+ [M+Na+]: 333.0429. Found: 333.0430.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-benzylethyl)phosphonate (2r). 91% yield.³¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.12 (m, 5H), 4.41 (dtt, *J* = 9.7, 5.8, 1.7 Hz, 1H), 4.34 – 4.08 (m, 4H), 3.83 (dd, *J* = 13.1, 1.6 Hz, 1H), 3.38 (d, *J* = 3.9 Hz,

1H), 3.07 (ddd, J = 13.5, 6.4, 2.7 Hz, 1H), 2.95 (dd, J = 13.5, 7.9 Hz, 1H), 1.35 (dt, J = 9.6, 7.1 Hz, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 136.82, 129.32, 128.77, 126.92, 71.05 (d, J = 2.2 Hz), 64.02 (dd, J = 139.0, 7.0 Hz), 54.39 (d, J = 157.3 Hz), 39.90 (d, J = 12.0 Hz), 16.37 (dd, J = 8.5, 5.8 Hz). ³¹**P NMR** (162 MHz, Chloroform-*d*) δ 19.64. [α]²⁰_D = +57.1 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, "Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 12.23 min, t₂ (minor) = 15.58 min, t₃ (major) = 16.9 min, t₄ (minor) = 39.37 min. HRMS Calcd. For C13H20ClNaO4P+ [M+Na+]: 329.0680. Found: 329.0678.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(furan-2-yl)ethyl)phosphonate (2s). 94% yield.³ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (d, *J* = 1.8 Hz, 1H), 6.44 (d, *J* = 3.3 Hz, 1H), 6.36 (dd, *J* = 3.4, 1.8 Hz, 1H), 5.35 (dd, *J* = 6.1, 2.8 Hz, 1H), 4.32 (dd, *J* = 12.5, 2.8 Hz, 1H), 4.30 – 4.13 (m, 4H), 1.35 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.90 (d, *J* = 13.1 Hz), 142.14, 110.53, 108.09, 67.28, 64.75 (d, *J* = 6.7 Hz), 63.48 (d, *J* = 7.2 Hz), 55.67, 54.13, 16.38 (t, *J* = 5.8 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.09. [α]²⁰_D = +53.8 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio was determined by HPLC on Chiral IC column, 210 nm, 25 °C, ^{*n*}Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t₁ (major) = 16.75 min, t₂ (minor) = 19.85 min, t₃ (minor) = 25.08 min, t₄ (minor) = 77.52 min. HRMS Calcd. For C10H16CINaO5P+ [M+Na+]: 305.0316. Found: 305.0319.

Cis -(1S, 2R)-diethyl (1-chloro-2-hydroxy-2-(thiophen-2-yl)ethyl)phosphonate

(2t).³ 92% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (d, J = 5.0 Hz, 1H), 7.07 (d, J = 3.6 Hz, 1H), 7.02 – 6.96 (m, 1H), 5.60 (dd, J = 6.6, 2.5 Hz, 1H), 4.35 – 4.18 (m, 4H), 4.18 – 4.13 (m, 2H), 3.91 (s, 1H), 1.35 (td, J = 7.1, 4.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.00 (d, J = 14.2 Hz), 126.58, 125.39, 124.75, 68.88, 64.88 (d, J = 6.9 Hz), 63.46 (d, J = 7.1 Hz), 58.10, 56.58, 16.38 (t, J = 5.7 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.14. [α]²⁰_D = +59.3 (c 0.5, CHCl₃). The enantiomeric excess and diastereo-isomer ratio were determined by HPLC on Chiral IC column, 210 nm, 25 °C, *n*Hexane: *i*PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 13.85 min, t₂ (major) = 16.57 min, t₃ (minor) = 26.35 min, t₄ (minor) = 90.66 min. HRMS Calcd. For C10H16CINaO4PS+ [M+Na+]: 321.0088. Found: 321.0090.

Cis -(1*S*, 2*R*)-diethyl (1-chloro-2-hydroxy-2-(naphthalen-2-yl)ethyl)phosphonate (2u).³ 95% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.95 (m, 1H), 7.92 – 7.81 (m, 3H), 7.57 – 7.44 (m, 3H), 5.57 (dt, *J* = 5.2, 2.5 Hz, 1H), 4.38 – 4.18 (m, 4H), 3.97 (d, *J* = 3.4 Hz, 1H), 1.43 – 1.32 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 136.75 (d, J = 12.3 Hz), 133.13 (d, J = 7.5 Hz), 128.18, 128.02, 127.68, 126.26, 126.16, 125.71, 123.91, 71.64, 64.96 (d, J = 6.7 Hz), 63.38 (d, J = 7.1 Hz), 58.35, 56.82, 17.68 – 14.08 (m). ³¹P NMR (162 MHz, Chloroform-*d*) δ 18.14. [α]²⁰_D = +38.9 (c 0.5, CHCl₃) The enantiomeric excess and diastereo-isomer ratio were determined by **HPLC** on Chiral IC column, 210 nm, 25 °C, "Hexane: ^{*i*}PrOH = 80:20; flow 1.0 mL/min; t₁ (minor) = 12.57 min, t₂ (major) = 15.44 min, t₃ (minor) = 24.92 min, t₄ (minor) = 67.12 min. HRMS Calcd. For C16H20ClNaO4P+ [M+Na+]: 365.0680. Found: 365.0679.

VI. NMR Spectra

¹H NMR of **1a** (400 MHz, Chloroform-*d*)

¹³C NMR of **1a** (101 MHz, Chloroform-*d*)

³¹P NMR of **1a**, (162 MHz, Chloroform-*d*)

¹H NMR of **1b**, (400 MHz, Chloroform-*d*)

¹³C NMR of **1b**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1b**, (162 MHz, Chloroform-*d*)

¹H NMR of 1**c**, (400 MHz, Chloroform-*d*)

¹³C NMR of 1**c**, (101 MHz, Chloroform-*d*)

³¹P NMR of 1c, (162 MHz, Chloroform-*d*)

¹H NMR of **1d**, (400 MHz, Chloroform-*d*)

³¹P NMR of **1d**, (162 MHz, Chloroform-*d*)

¹H NMR of **1e**, (400 MHz, Chloroform-*d*)

¹H NMR of **1f**, (400 MHz, Chloroform-*d*)

³¹P NMR of **1f**, (162 MHz, Chloroform-*d*)

¹³C NMR of **1g**

31 P NMR of **1g**

¹H NMR of **1h**, (400 MHz, Chloroform-*d*)

¹³C NMR of **1h**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1h**, (162 MHz, Chloroform-*d*)

¹H NMR of **1i**, (400 MHz, Chloroform-*d*)

¹³C NMR of **1i**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1i**, (162 MHz, Chloroform-*d*)

¹H NMR of **1**j, (400 MHz, Chloroform-*d*)

S43

¹³C NMR of **1**j, (101 MHz, Chloroform-*d*)

³¹P NMR of **1**j, (162 MHz, Chloroform-*d*)

¹H NMR of **1**k, (400 MHz, Chloroform-*d*)

¹³C NMR of 1k, (101 MHz, Chloroform-*d*)

³¹P NMR of **1k**, (162 MHz, Chloroform-*d*)

¹H NMR of **1**l, (400 MHz, Chloroform-*d*)

¹³C NMR of **11**, (101 MHz, Chloroform-*d*)

³¹P NMR of **11**, (162 MHz, Chloroform-*d*)

¹³C NMR of **1m**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1m**, (162 MHz, Chloroform-*d*)

¹H NMR of **1n**, (400 MHz, Chloroform-*d*)

¹³C NMR of **1n**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1n**, (162 MHz, Chloroform-*d*)

¹H NMR of **10**, (400 MHz, Chloroform-*d*)

¹³C NMR of **10**, (101 MHz, Chloroform-*d*)

¹H NMR of **1p**, (400 MHz, Chloroform-*d*)

¹³C NMR of **1p**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1p**, (162 MHz, Chloroform-*d*)

¹H NMR of **1q**, (400 MHz, Chloroform-*d*)

¹³C NMR of **1q**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1q**, (162 MHz, Chloroform-*d*)

¹H NMR of **1r**, (400 MHz, Chloroform-*d*)

³¹P NMR of **1r**, (162 MHz, Chloroform-*d*)

¹H NMR of 1s, (400 MHz, Chloroform-d)

¹³C NMR of **1s**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1s**, (162 MHz, Chloroform-*d*)

¹³C NMR of **1t**, (101 MHz, Chloroform-*d*)

³¹P NMR of **1t**, (162 MHz, Chloroform-*d*)

¹H NMR of **1u**, (400 MHz, Chloroform-*d*)

³¹P NMR of **1u**, (162 MHz, Chloroform-*d*)

¹H NMR of **2a**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2a**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2a**, (162 MHz, Chloroform-*d*)

¹H NMR of **2b**, (400 MHz, Chloroform-*d*)

³¹P NMR of **2b**, (162 MHz, Chloroform-*d*)

¹H NMR of **2c**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2c**, (101 MHz, Chloroform-*d*)

³¹P NMR of 2c, (162 MHz, Chloroform-d)

¹H NMR of 2**d**, (400 MHz, Chloroform-*d*)

³¹P NMR of 2d, (162 MHz, Chloroform-*d*)

¹³C NMR of **2e**, (101 MHz, Chloroform-*d*)

¹H NMR of **2f**, (400 MHz, Chloroform-*d*).

³¹P NMR of **2f**, (162 MHz, Chloroform-*d*).

¹H NMR of **2h**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2h**, (101 MHz, Chloroform-*d*)

¹H NMR of **2i**, (400 MHz, Chloroform-*d*)

³¹P NMR of **2i**, (162 MHz, Chloroform-*d*)

¹³C NMR of **2**j, (101 MHz, Chloroform-*d*)

¹H NMR of **2k**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2k**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2k**, (162 MHz, Chloroform-*d*)

¹³C NMR of **2I**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2I**, (162 MHz, Chloroform-*d*)

¹H NMR of **2m**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2m**, (101 MHz, Chloroform-*d*) \[\begin{aligned} 138.34 \\ -131.37 \\ -128.15 \\ 122.08 \end{aligned} \] 77.36 71.06 65.13 65.06 63.46 63.39 58.03 58.03 29.70 -16.39- 14000 . 10000 . 9000 Br at h **ha**t na . 0 a di pin prova in da fra pin a la pani a l'atrià del pina a de la c -1000 100 90 f1 (ppm) $\frac{1}{70}$

³¹P NMR of **2m**, (162 MHz, Chloroform-*d*)

¹³C NMR of **2n**, (101 MHz, Chloroform-*d*)

¹H NMR of **20**, (400 MHz, Chloroform-*d*)

³¹P NMR of **20**, (162 MHz, Chloroform-*d*)

¹³C NMR of **2p**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2p**, (162 MHz, Chloroform-*d*)

¹H NMR of **2q**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2q**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2q**, (162 MHz, Chloroform-*d*)

¹H NMR of **2r**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2r**, (101 MHz, Chloroform-*d*)

¹H NMR of **2s**, (400 MHz, Chloroform-*d*)

S87

¹³C NMR of **2s**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2s**, (162 MHz, Chloroform-*d*)

³¹P NMR of **2t**, (162 MHz, Chloroform-*d*)

¹H NMR of **2u**, (400 MHz, Chloroform-*d*)

¹³C NMR of **2u**, (101 MHz, Chloroform-*d*)

³¹P NMR of **2u**, (162 MHz, Chloroform-*d*)

VII. HPLC Spectra

HPLC of 2a

Signal 1: DAD1 D, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	5.497	BV F	0.1672	60.20416	5.52373	0.3596
2	5.803	VB E	0.1379	9.47204	1.02458	0.0566
3	7.929	BB	0.2280	200.28401	13.58170	1.1963
4	10.299	BB	0.3113	1.64727e4	816.61066	98.3876
Total	s :			1.67426e4	836.74067	

HPLC of 2b

S93

0.5090 5839.78955 177.87279 98.6078

2 16.936 BB

HPLC of 2c

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.742	BB	0.2974	466.22635	22.90911	37.5036
2	11.867	BB	0.2606	475.59625	28.22087	38.2573
3	12.788	BB	0.2764	149.49303	8.05979	12.0253
4	13.977	BB	0.2733	151.83609	8.62937	12.2138
Tota]	s :			1243.15172	67.81914	

Totals :

HPLC of 2d

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16,405	I I BB	0.3905	7337, 29395	288,68762	18,5721
2	19.526	BV	0.5028	1.27798e4	381,49533	32,3481
3	20.943	VB	0.4940	7400, 14014	227,21651	18,7311
4	34,945	BB	0.1508	1.19899e4	1239,63660	30.3487
Total	s :			3.95072e4	2137.03606	2019407

1 34.807 BV R 0.2775 4.42692e4 2587.62524 100.0000

Totals : 4.42692e4 2587.62524

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.875	MF	0.5142	8670.82422	281.01865	41.1592
2	20.336	FM	0.6274	1833.60278	48.71229	8.7039
3	23.439	VB	0.5976	1567.27771	39.27284	7.4397
4	35.666	BB	0.1687	8994.82227	815.23395	42.6972
Total	s :			2.10665e4	1184.23772	

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|-----|
 1
 35.709 VB R
 0.1646
 4159.94141
 384.13950
 100.0000

 Totals :
 4159.94141
 384.13950
 384.13950

Signal 1: DAD1 C, Sig=220,4 Ref=off

HPLC of **2h**

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.958	BB	0.2574	6121.45166	369.25934	29.0086
2	14.135	BB	0.3460	4410.79492	197.90979	20.9020
3	17.750	MM	0.4738	4451.07471	156.55952	21.0929
4	66.948	BB	1.3709	6118.89844	52.76560	28,9965

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.104	BB	0.2887	66.29499	3.32437	0.2460
2	14.250	BB	0.3601	2.68376e4	1167.83130	99.5706
3	18.514	MM	0.2953	10.81824	6.10533e-1	0.0401
4	67.783	BB	0.2873	38.63264	1.75203	0.1433

HPLC of 2i

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.119	BB	0.4684	2228.76855	74.19719	29.5762
2	28.672	BB	0.7403	1476.28491	29.98834	19.5906
3	31.104	BB	0.7139	1498.30139	28.47536	19.8828
4	98.484	MM	3.0335	2332.31616	12.81435	30.9503
Total	ls:			7535.67102	145.47524	

Peak RetT # [mi	ime Type n]	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1 31.	170 BB	0.8247	2.05980e4	384.66620	100.0000
Totals :			2.05980e4	384.66620	

HPLC of 2j

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	24.671	 BB	0.6605	1.19441e4	282.91748	100.0000
Total	ls :			1.19441e4	282.91748	

HPLC of 2k

Signal 1: DAD1 A, Sig=210,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.732	BB	0.2003	109.80225	8.19396	0.4569
2	9.304	VB R	0.2300	2.38639e4	1610.16992	99.2986
3	11.724	BB	0.2681	58.76505	3.20292	0.2445

HPLC of 2l

S102

HPLC of 2m

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.717	MM	0.1903	5122.07324	448.50299	27.5443
2	8.943	MM	0.2273	4238.48145	310.82501	22.7927
3	11.403	MM	0.2961	4171.78857	234.84311	22.4341
4	41.695	MM	1.2378	5063.40625	68.17602	27.2288

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.779	MM	0.2023	228.80267	18.84673	0.4938
2	8.988	MM	0.2722	4.59753e4	2814.85693	99.2218
3	11.503	BV	0.2994	131.78651	6.88247	0.2844

HPLC of 2n

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.881	MM	0.1649	215.62331	21.79308	27.4120
2	7.767	MM	0.1935	178.08177	15.33899	22.6394
3	9.894	BB	0.2346	178.32146	11.64602	22.6699
4	36.843	MM	1.1061	214.57513	3.23332	27.2788

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
			0 1626	7.00000	7 249960 1	0 2822
2	7.084	BB	0.1626	1831,11011	153,97067	99,2371
3	10.366	MM	0.2698	7.00682	4.32886e-1	0.3797

HPLC of 20

0.3757 123.61536

0.2481 26.38588 1.61923 0.0777

4.53943 0.3642

3 11.432 BB

4 49.286 BB

HPLC of **2**p

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.538	BV	0.3895	4015.62866	159.60670	27.0092
2	16.602	VB	0.4224	3431.22070	126.52686	23.0785
3	25.166	BB	0.6411	3415.42090	82.47607	22.9722
4	119.941	MM	3.5577	4005.36670	18.76361	26.9402
Tota	ls :			1.48676e4	387.37325	

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.658	BB	0.2834	60.63509	2.62562	0.2803
2	16.661	BB	0.3217	51.13678	1.93903	0.2364
3	25.156	BB	0.6557	2.15192e4	514.74353	99.4833
Tota]	s :			2.16309e4	519.30818	

HPLC of 2q

DAD1 E, Sig=208,4 Ref=off (D:\CHEMSTA...14 B 2025-01-14 23-21-38\007-P2-B6-wj-OSP-224 o-F rac 20251401.D)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.034	MM	0.1974	7271.27881	613.95081	23.6870
2	9.762	MM	0.2461	7836.42676	530.76697	25.5280
3	11.343	MM	0.2950	7583.01611	428.47891	24.7025
4	18.834	MM	0.5228	8006.65283	255.24570	26.0825
Tota]	ls :			3.06974e4	1828.44238	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.015	BB	0.1832	658.49762	56.00063	1.9968
2	9.728	BB	0.2251	1702.91553	117.46472	5.1638
3	11.290	BV R	0.2704	6214.66309	358.24005	18.8450
4	18.720	BB	0.4921	2.44018e4	777.71918	73.9944
Total	s :			3.29779e4	1309.42458	

HPLC of 2r

ว่า

Δ'n

Signal 1: DAD1 E, Sig=208,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	40.000					
1	12.293	MM	0.2942	615.26904	34.85194	1.9905
2	16.836	MM	0.4759	2.92883e4	1025.72217	94.7524
3	39.407	MM	1.2564	1006.77142	13.35491	3.2571
Tota]	ls :			3.09103e4	1073.92903	
HPLC of 2s

#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.849	BB	0.3358	2279.43701	104.79841	15.8562
2	16.571	BB	0.4146	4947.95801	185.85635	34.4188
3	26.347	BB	0.6795	4981.89502	114.07495	34.6549
4	90.655	MM	2.5920	2166.43701	13.93054	15.0701
Total	s :			1.43757e4	418.66025	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.093	BB	0.4588	4.74440e4	1605.50659	99.8558
2	20.721	MM	0.3145	24.12230	1.27823	0.0508
3	25.201	MM	0.4545	44.37188	1.62699	0.0934

HPLC of **2t**

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.849	BB	0.3358	2279.43701	104.79841	15.8562
2	16.571	BB	0.4146	4947.95801	185.85635	34.4188
3	26.347	BB	0.6795	4981.89502	114.07495	34.6549
4	90.655	MM	2.5920	2166.43701	13.93054	15.0701
Tota]	ls :			1.43757e4	418.66025	

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	16.196	BB	0.4872	7.49999e4	2344.67505	100.0000	

HPLC of 2u

Signal 1: DAD1 C, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.277	MM	0.3331	634.89819	31.76896	0.5117
2	14.911	MM	0.7064	1.23109e5	2904.47266	99.2293
3	24.611	MM	0.6583	321.33051	8.13513	0.2590

VIII. Reference

(1) Prévost, S.; Gauthier, S.; de Andrade, M. C. C.; Mordant, C.; Touati, A. R.; Lesot, P.; Savignac, P.; Ayad, T.; Phansavath, P.; Ratovelomanana-Vidal, V.; et al. Dynamic kinetic resolution of α -chloro β -keto esters and phosphonates: hemisynthesis of Taxotere® through Ru-DIFLUORPHOS asymmetric hydrogenation. *Tetrahedron: Asymmetry* **2010**, *21*, 1436-1446.

(2) Echeverria, P.-G.; Férard, C.; Phansavath, P.; Ratovelomanana-Vidal, V. Synthesis, characterization and use of a new tethered Rh(III) complex in asymmetric transfer hydrogenation of ketones. *Catalysis Communications* **2015**, *62*, 95-99.

(3) Wang, Z.; Zeng, Y.; Wu, X.; Li, Z.; Tao, Y.; Yu, X.; Huang, Z.; Chen, F. Access to chiral alpha-substituted-beta-hydroxy arylphosphonates enabled by biocatalytic dynamic reductive kinetic resolution. *Org. Biomol. Chem.* **2020**, *18*, 2672-2677.

(4) Marocco, C. P.; Davis, E. V.; Finnell, J. E.; Nguyen, P.-H.; Mateer, S. C.;

Ghiviriga, I.; Padgett, C. W.; Feske, B. D. Asymmetric synthesis of (–)-fosfomycin and its trans-(1*S*,2*S*)-diastereomer using a biocatalytic reduction as the key step. *Tetrahedron: Asymmetry* **2011**, *22*, 1784-1789.

(5) Tao, X.; Li, W.; Ma, X.; Li, X.; Fan, W.; Zhu, L.; Xie, X.; Zhang, Z. Enantioselective Hydrogenation of β -Ketophosphonates with Chiral Ru(II) Catalysts.

J. Org. Chem. 2012, 77, 8401-8409.