Supplemental Information

Low Coordination Water in COF and Acid-free Proton

Conduction

1. Materials

All chemicals and solvents used in the syntheses are reagent grade and used without further purification. 1,3,5-triformylbenzene and 2,5diethoxyterephthalohydrazide were purchased from EXTENSION and TENSUS BIOTECH, respectively.

2. Synthesis

Self-standing and flexible COF membrane was prepared via interfacial polymerization reaction. 2,5-diethoxyterephthalohydrazide (42.2 mg, 0.15 mmol) was dissolved in 25 mL 6M acetic acid aqueous solution, and 1,3,5-triformylbenzene (16.2 mg, 0.1 mmol) were dissolved in 25 mL dichloromethane (DCM). Water phase was slowly dropped to the top of the organic phase. After that, the membrane-forming reaction takes place very quickly. The entire interface aggregation lasted for 3 days.

3.proton conductivity

The proton conduction measurements use one temperature and humidity control box and one Bio-Logic electrochemical workstation. The temperature and humidity control box can maintain humidity levels. The activation energy of proton conductivity (σ) is fitted by Arrhenius equation:

$$\sigma T = A \exp(-\frac{E_a}{k_p T}) \tag{1}$$

where *Ea* is the transport activation energy, k_B is the Boltzmann constant, *T* is temperature, and *A* is a pre-exponential factor.

4. Computational details

The guest molecules of water in framework is simulated by Monte Carlo method with Dreiding forcefield. The cell size used for simulation is 1×1×1. Water molecules are saturatedly placed into the framework. The model of bulk water is established with a density of 1 g/cm³. Molecular dynamics simulation utilizes the Dynamics module in the Forcite Calculation panel, with the ensemble set to NPT.

.

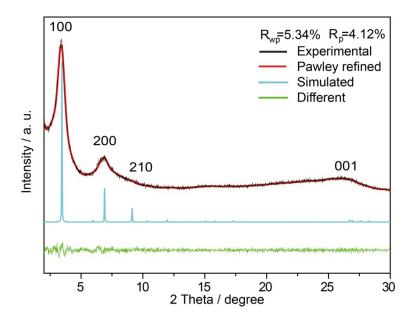
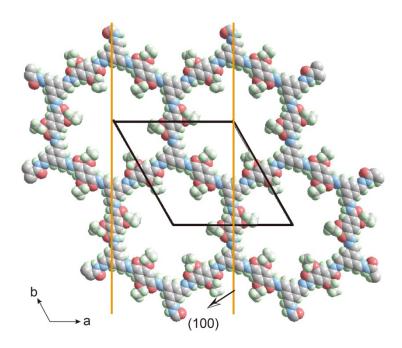
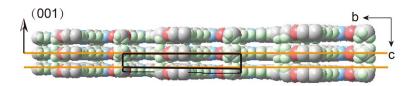




Figure S1. PXRD simulation of COF-42 membrane.

Figure S2. Structural model of COF-42 along c-axis with unit cell (black box), orientation displaying lattice plane (100) (orange).

Figure S3. Structural model of COF-42 along a-axis with unit cell (black box), orientation displaying lattice plane (001) (orange).

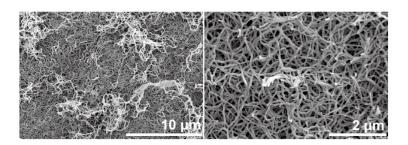
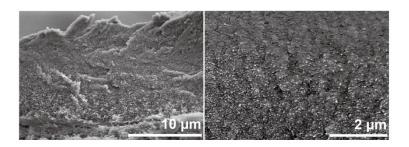


Figure S4. SEM photograph of COF-42-M with different rulers from front side.



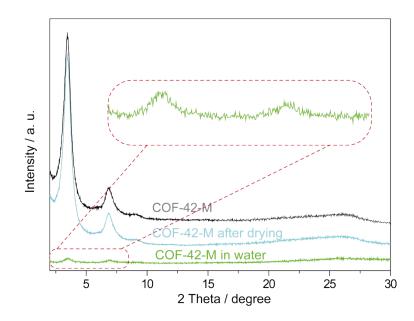


Figure S5. SEM photograph of COF-42-M(dry) with different rulers from section side.

Figure S6. (a) TEM image of COF-42 membrane. (b) HR-TEM image of COF-42 membrane crystallite displaying the (001) plane, fringes represent π - π stacking (0.33 nm).

Figure S7. PXRD of COF-42-M in different conditions, with an inset showing the enlarged image.

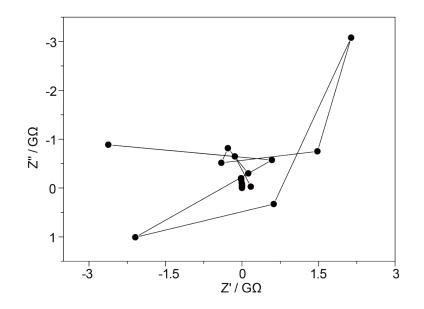


Figure S8. Nyquist plot of COF-42-M under 30 °C and nitrogen atmosphere.

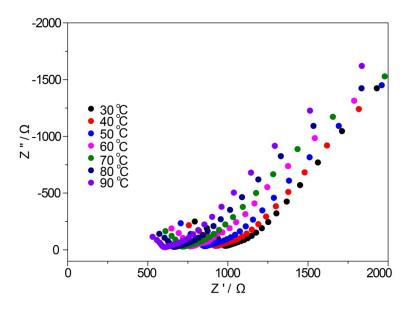


Figure S9. Nyquist plots of COF-42-M in water versus different temperatures.

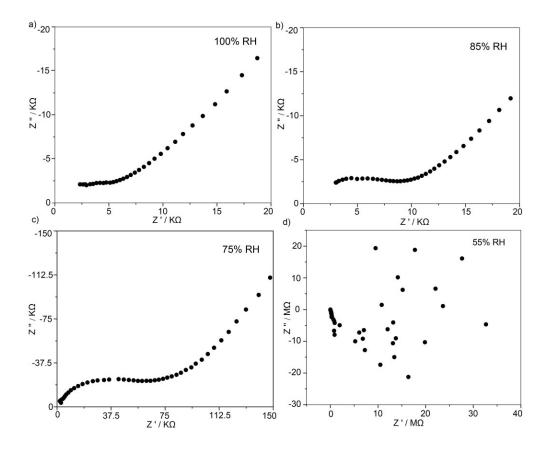


Figure S10. Nyquist plots of COF-42-M at different humidity.

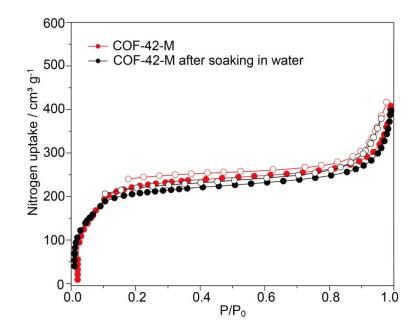
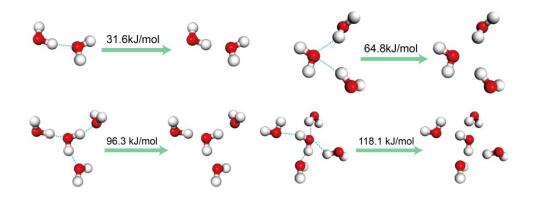



Figure S11. Nitrogen adsorption of COF-42-M before and after water immersion.

Figure S12. The H-bond breaking energy for water with different coordination numbers.

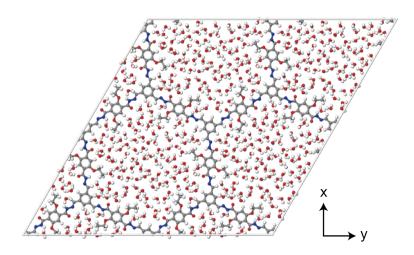


Figure S13. Model schematic diagram of COF-42-M with water.

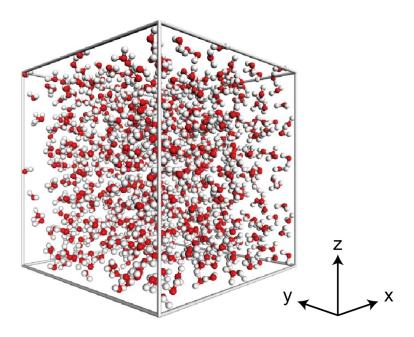


Figure S14. Model schematic diagram of bulk water.

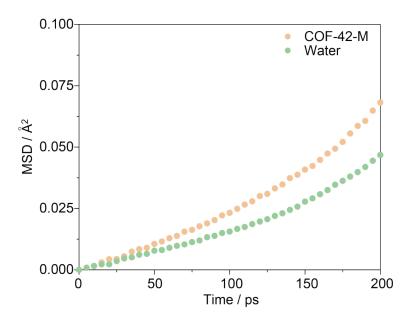


Figure S15. The results of MSD of COF-42-M and water.

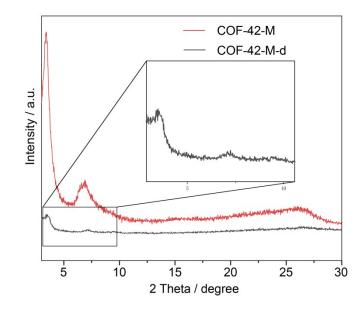


Figure S16. PXRD of COF-42-M and COF-42-M-d.

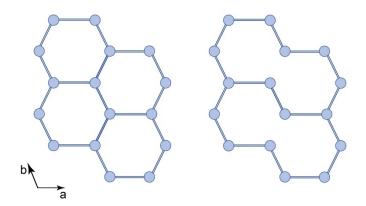


Figure S17. Structure diagram of COF-42-M and COF-42-M-d.

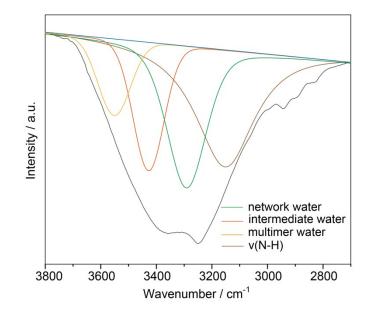


Figure S18. IR plot of COF-42-M-d with water.

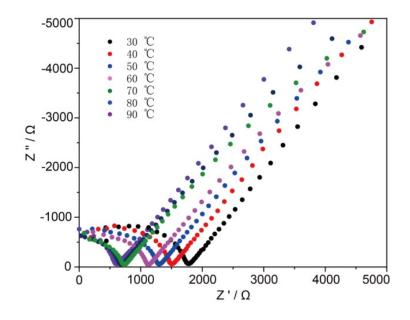


Figure S19. Nyquist plots of COF-42-M-d in water versus different temperatures.

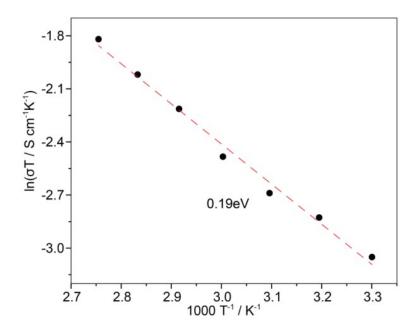


Figure S20. Arrhenius plot of COF-42-M-d.

Materials	σ (S cm ⁻¹)	Ea (eV)	Condition	Ref.	
COF-42-M	7.56 × 10 ⁻⁴	0.11	90 °C, in water	This work	
(NH ₄) ₃ Zr(H _{2/3} PO ₄) ₃	1.21 × 10 ⁻²	0.26	90 °C, 95% RH	J. Am. Chem. Soc. 2018 , 140 6146-6155.	
Im–Fe–MOF	1.21 × 10 ⁻²	0.436	60 °C, 98% RH	J. Am. Chem. Soc. 2017 , 139 6183-9.	
(Me ₂ NH ₂)[Eu(L)]	3.76 × 10 ⁻³	0.72	100 °C, 98% RH	J. Am. Chem. Soc. 2017 , 139 3505-3512.	
Z-TpPa	1.80×10^{-1}	0.20	98%	Small. 2024 , <i>20</i> , 2308499.	
MOF-74(Mg)–Urea	2.64 × 10 ⁻²	0.10	25 °C, 95% RH	J. Am. Chem. Soc. 2020 , 142 6861-6865	
BUT-8(Cr)A	1.27 × 10 ⁻¹	0.11	80 °C, 100% RH	Nature. Energy. 2017 , 2, 87 883.	
SCOF	5.40 × 10 ⁻¹	0.19	Pure water	Angew. Chem. Int. Ed. Engl. 2021 , 60, 14875-14880.	
H₃PO₄@PyTFB-1-SO₃H	1.15 × 10 ⁻¹	0.17	98%	Nano. Lett. 2024 , 24, 5075– 5084.	
HPW@TAPT-DHTA	5.30 × 10 ⁻¹	0.15	80 °C, 100% RH	Angew. Chem. Int. Ed. Engl. 2021 , 60, 18051-18058.	
SCOF membrane	5.40 × 10 ⁻¹	0.19	80°C, in water	Angew. Chem. Int. Ed. Engl. 2021 , 60, 14875-14880.	
H ₃ PO ₄ @GS-COF-2-COOH	4.35 × 10 ⁻²	0.21	80 °C, 90% RH	J. Am. Chem. Soc. 2020 , 142 13316-13321.	
Aza-COF-2 _H	4.80 × 10 ⁻³	0.45	50 °C, 97% RH	Chem. Mater. 2018 , <i>31</i> , 819 825.	
BIP	3.20 × 10 ⁻²	0.31	95 °C, 95% RH	J. Am. Chem. Soc. 2019 , 141 14950-14954.	
KAUST-7'	2.00 × 10 ⁻²	0.19	90 °C, 95% RH	J. Am. Chem. Soc. 2018 , 140 13156-13160.	
Fe ^{III} ₄ [Fe ^{II} (CN) ₆] ₃ ·15H ₂ O	1.31 × 10 ⁻¹	0.26	25 °C, 95% RH	Angew. Chem. Int. Ed. Engl. 2017 ,5531-5535.	
MIP-202(Zr)	1.10×10^{-2}	0.22	90 °C, 95% RH	Nat. Commun. 2018 , <i>9,</i> 493	
$[Pt(dach)(bpy)Br]_4(SO_4)_4 \cdot 32H_2O$	1.72 × 10 ⁻²	0.22	55 °C, 95% RH	Nat. Commun. 2020 , 11, 84	

 Table S1.
 Summary of MOFs/COFs based proton conduction.

Sample	С	Н	0	N	C/N
COF-M-42 before water immersion	55.34%	5.64%	24.59%	14.35%	3.86
COF-M-42 after water immersion	51.82%	5.95%	28.12%	13.22%	3.92
COF-42-M-d	45.07%	6.01%	33.05%	15.77%	2.86

 Table S2.
 Elemental analysis of different samples.