Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2025

Electronic Supplementary Information

Ultrafast, Cytocompatible Mineralization of Calcium Phosphate in Formation of Stratified Nanoshells of Artificial Spores

Duc Tai Nguyen,^a Sang Yeong Han,^a Hyunwoo Choi,^a Nayoung Kim,^a Gulaim A. Seisenbaeva,^b Vadim G. Kessler,^b and Insung S. Choi*^a

Table of Contents

- Experimental.
- **Figure S1.** TEM, DLS, and SAED analyses of *a*-preCaP.
- **Figure S2.** Optical images of the *a*-preCaP solution before and after TA addition and XRD analysis of PS@CaP.
- **Figure S3.** Characterization of BSA immobilization onto *a*-preCaP.
- **Figure S4.** FE-SEM images of TA-Ca²⁺-primed PS and *S. cerevisiae*, and zeta (ζ) -potential analyses of *S. cerevisiae* in the shell formation.
- **Figure S5.**TEM and CLSM images of *S.cerevisiae*@CaP formed by the conventional method.
- **Figure S6.** CLSM images of *S. cerevisiae* @ CaP from 3 independent experiments.
- **Figure S7.** FE-SEM images of *L. acidophilus* and *L.acidophilus*@CaP.
- **Figure S8.** CLSM images of PS@CaP_[DNA].
- Figure S9. CLSM images and line profiles of triple-layered CaP shells on S. cerevisiae.
- **Figure S10.** ABTS assay of GOx/HRP-embedded *S.cerevisiae*@CaP.
- **Figure S11.** Long-term viability and reaction rate of GOx/HRP-embedded *S. cerevisiae* @CaP.

^a Department of Chemistry, KAIST, Daejeon 34141, Korea

^b Department of Molecular Sciences, SLU, Uppsala 75007, Sweden

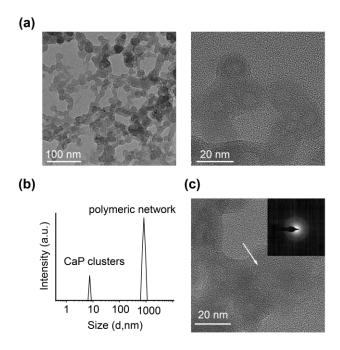
Experimental

Materials. Calcium chloride dihydrate (CaCl₂·2H₂O, 99%, Sigma), potassium phosphate tribasic (K₃PO₄, 98%, Junsei), tannic acid (TA, Sigma-Aldrich), Alexa Fluor 488-conjugated albumin from bovine serum (BSA-Alexa 488, Invitrogen), Alexa Fluor 647-conjugated albumin from bovine serum (BSA-Alexa 647, Invitrogen), deoxyribonucleic acid sodium salts from salmon testes (DNA), Hoechst 33342 (trihydrochloride, trihydrate, 10 mg/mL, solution in water, InvitrogenTM), lysozyme from hen egg white (>23000 U/mg, Roche), lyticase (from Arthrobacter luteus, Sigma-Aldrich), D-(+)-glucose (\geq 99.5%, Sigma-Aldrich), glucose oxidase (GOx, from Aspergillus niger, Sigma-Aldrich), horseradish peroxidase (HRP, from Amoracia rusticana, Sigma-Aldrich), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, \geq 98.0%, Sigma-Aldrich), propidium iodide (PI, Sigma-Aldrich), fluorescein diacetate (FDA, Sigma-Aldrich), calcein (mixture of isomers, TCI), glycerol (99%, Sigma-Aldrich), polystyrene microparticle (PS, diameter: 3.97 µm, Microparticles GmbH), Lactobacillus acidophilus (L. acidophilus ATCC 4356 from the American Type Culture Collection (ATCC)), Lactobacilli MRS broth (BD), Lactobacilli MRS agar (BD), Saccharomyces cerevisiae (S. cerevisiae ATCC 18824 from the Korean Collection for Type Cultures (KCTC)), yeast-extractpeptone-dextrose (YPD) broth (Duchefa Biochemistry), YPD agar (Duchefa Biochemistry), phosphate-buffered saline (PBS, pH 7.4, Welgene), and ethylenediaminetetraacetic acid (EDTA, ≥98%, Sigma-Aldrich) were used as received. Deionized (DI) water (18.3 MΩ·cm) from Milli-Q Direct 8 (Millipore) was used.

Preparation of a-preCaP solutions. To 600 μL of DI water were sequentially added 200 μL of an aqueous CaCl₂ solution (24 mM) and 200 μL of an aqueous K₃PO₄ solution (16 mM). For biomolecule incorporation into CaP shells, the appropriate volume of an aqueous biomolecule stock solution was added to the CaCl₂ solution (800 μL) before the addition of the K₃PO₄ solution, in the preparation of an **a-preCaP** solution. The concentrations and volumes of the biomolecule stock solutions used in the immobilization experiments are provided in the table below:

Biomolecule	Concentration (mg/mL)	Volume (μL)
BSA-Alexa 647	5	1
BSA-Alexa 488	1	0.5
DNA	1	10
GOx	1	5
		2.5 (for the mixture of GOx and HRP)
HRP	1	5
		2.5 (for the mixture of GOx and HRP)

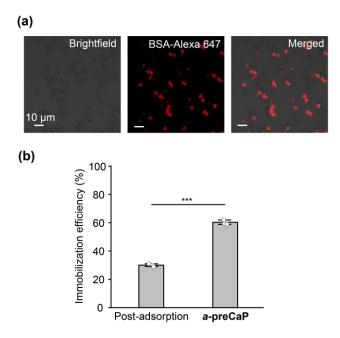
Formation of CaP Shells. (a) TA-Ca²⁺ priming: PS particles were used as received. A single colony of *L. acidophilus*, picked from an MRS agar plate, was cultured in the MRS broth medium at 33 °C for 24 h. A single colony of *S. cerevisiae* was picked from a YPD agar plate and cultured in a YPD broth with shaking at 30 °C for 30 h. To a pellet of PS particles or cells, 1000 μL of a TA stock solution (6 mM) and 500 μL of the CaCl₂ stock solution (24 mM) were

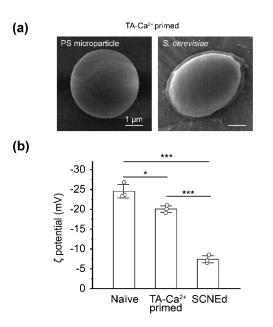

added sequentially. After 60 min of incubation, the TA-Ca²⁺-primed PS particles or cells were purified by centrifugating at 3000 g and washing with DI water once. (b) Formation of CaP nanoshells: The TA-Ca²⁺-primed PS particles or cells were mixed with 1000 μL of the a**preCaP** solution, gently shaken, and immediately purified by centrifugating at 3000 g and washing with DI water twice. The second layer was formed by repeating the processes of TA-Ca²⁺ priming and CaP shell formation, with 30 min of incubation in the TA-Ca²⁺ mixture for the second layer. (c) Formation of S. cerevisiae@CaP by the conventional method: To 600 µL of TA-Ca²⁺-primed S. cerevisiae, 200 µL of the CaCl₂ stock solution (24 mM) was added, followed by the dropwise addition of 200 μL of the K₃PO₄ stock solution (16 mM) at the rate of 20 μL/min with gentle shaking. The resulting cells were collected by centrifugating at 3000 g and washing with DI water. (d) Immobilization efficiency of BSA-Alexa 647: After forming CaP nanoshells in the a-preCaP solution containing 5 μg/mL BSA-Alexa 647 (1001 μL), the PS@CaP or S.cerevisiae@CaP pellet was collected by centrifugating at 3000 g and washing with DI water twice, and resuspended in 1001 µL of an aqueous EDTA solution (100 mM, pH 8) for shell degradation. After 1 min of incubation, the supernatant was collected by centrifugating at 3000 g, and the UV-Vis absorbance was measured at 647 nm. The immobilization efficiency was calculated with the UV-Vis absorbance of the a-preCaP solution that contained EDTA (100 mM, pH 8) and BSA-Alexa 647 (5 μg/mL) as a reference.

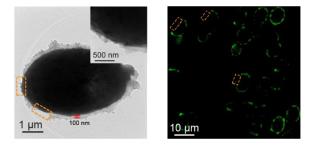
Viability Assay. The 5 μ L of an FDA stock solution (10 mg/mL in acetone) and 2 μ L of a PI stock solution (1 mg/mL in DI water) were mixed with 1 mL of a *S. cerevisiae* or *S.cerevisiae* @CaP suspension in DI water for 15 min at 30 °C, while shaking. The viability was assessed, after washing with DI water, by confocal laser-scanning microscopy (CLSM). For the viability assay of *L. acidophilus* and *L.acidophilus* @CaP, 1 μ L of an SYTO 9 stock solution (3.34 mM in DMSO) and 2 μ L of the PI stock solution (20 mM in DMSO) were used.

Cytoprotection and Enzymatic Reactions. (a) Protection against lysozyme: To 100 µL of L.acidophilus@CaP or naïve L. acidophilus (OD₆₀₀ = 1, in DI water) was added 900 µL of a lysozyme solution (1 mg/mL in PBS buffer, pH 7.4). The mixture was incubated at 37 °C in an incubator, and the OD₆₀₀ values were measured with 100 µL of aliquots taken at the predetermined time points. (b) Protection against lyticase: A lyticase stock solution was prepared by dissolving lyticase (2 mg) in a mixture of 500 µL of glycerol and 500 µL of PBS (50 mM, pH 7.4). To 500 µL of S.cerevisiae@CaP or naïve L. acidophilus (OD₆₀₀ = 1, in DI water) were sequentially added 500 µL of PBS and 20 µL of the lyticase stock solution. The mixture was incubated at 37 °C in an incubator, and the OD₆₀₀ values were measured with 100 µL of aliquots taken at the predetermined time points. (c) Enzymatic reactions: All the samples (S.cerevisiae@CaP[HRP]/[GOx], S.cerevisiae@CaP[GOx]/[HRP], S.cerevisiae@CaP[GOx HRP]/[GOx HRP], and naïve S. cerevisiae) were adjusted to an OD₆₀₀ of 1 in DI water. To 200 µL of each sample were sequentially added 200 µL of DI water, 200 µL of ABTS (4 mM, in DI water), and 200 µL of glucose (100 mM, in DI water). The UV-Vis absorbance of the reaction mixture was measured at 414 nm every 2 min over a 4-hour period, using 100 µL aliquots in a 96-well plate, with a SpectraMax iD5 microplate reader (Molecular Devices) in kinetic mode. The plate was shaken for 5 sec, before each measurement, with double-orbital shaking mode at medium intensity. Five aliquots were used from each sample. The reaction rate was estimated based on the initial slope of the time-lapse absorbance curves.

Characterizations. Field-emission scanning electron microscopy (FE-SEM) imaging was performed with an FEI Inspect F50 microscope (FEI) with an accelerating voltage of 5 kV, after sputter-coating with platinum. Transmission electron microscopy (TEM) imaging, selected area electron diffraction (SAED), and energy-dispersive X-ray (EDX) spectroscopy elemental analysis were conducted with a Talos F200X (FEI) with a carbon-support-film copper mesh. The ζ potential and dynamic light scattering (DLS) size were measured with a Zetasizer Nano ZS (Malvern). X-ray diffraction (XRD) analysis was conducted with a SmartLab (RIGAKU). CLSM imaging was performed with an LSM 700 (Carl Zeiss), and UV-Vis absorbance was measured with a SpectraMax iD5 microplate reader (Molecular Devices) in a 96-well plate.


Statistical Analysis. Multiple independent samples (n = 3) were prepared, with one measurement performed for each sample, except for the ABTS enzymatic reaction experiments, where five measurements were taken per sample, and the average was considered as one data point. Data are presented as mean \pm SD. Statistical significance was determined using an unpaired, two-sided Student's t-test (n = 3). Data analysis and graph generation were performed using IBM SPSS Statistics 26 and Origin 2019.


Figure S1. (a) TEM images of *a*-preCaP. (b) DLS measurement of *a*-preCaP. (c) SAED analysis of *a*-preCaP.


Figure S2. (a) Optical images of the aqueous *a*-preCaP solution before and after addition of TA. (b) XRD pattern of PS@CaP.

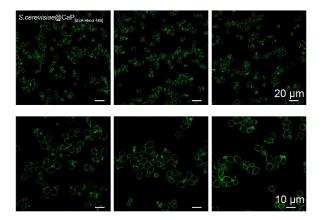

Figure S3. (a) CLSM images of homogenous a-preCaP precipitation with a high concentration of BSA-Alexa 647 (10 μ g/mL). (b) Immobilization efficiency of BSA-Alexa 647 for the a-preCaP and post-adsorption protocols. Data are represented as mean \pm SD (unpaired, two-sided Student's t-test; n = 3; ***p < 0.001).

Figure S4. (a) FE-SEM images of PS microparticle and *S. cerevisiae* after TA-Ca²⁺ priming. (b) Zeta (ζ) potentials of naïve *S. cerevisiae*, TA-Ca²⁺-primed *S. cerevisiae*, and *S. cerevisiae*@CaP. Data are represented as mean \pm SD (unpaired, two-sided Student's *t*-test; n = 3; ***p < 0.001, *p < 0.05).

Figure S5. TEM and CLSM images of *S.cerevisiae*@CaP formed by the conventional titration protocol, showing CaP-defect sites (orange boxes).

Figure S6. CLSM images of *S.cerevisiae* @CaP_[BSA-Alexa 488] from 3 independent experiments.

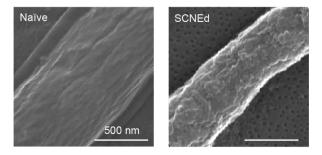
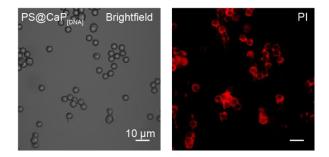
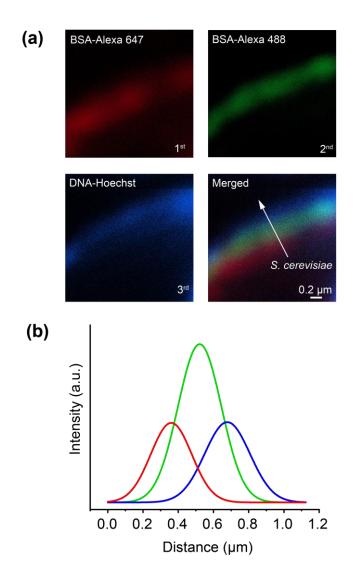
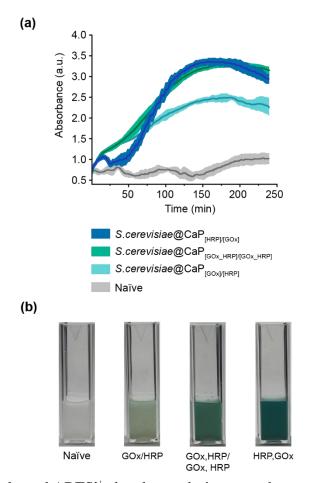


Figure S7. FE-SEM images of naïve and SCNEd L. acidophilus.

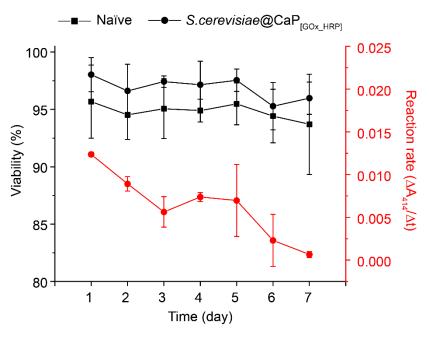

Figure S8. CLSM images of PI-stained PS@CaP_[DNA].

Figure S9. (a) CLSM images and (b) line profiles of *S.cerevisiae*@CaP_{[BSA-Alexa 647]/[BSA-Alexa 488]/[DNA-Hoechst].}

Figure S10. (a) Time-lapsed ABTS⁺⁺ absorbance during cascade reactions of GOx/HRP-embedded *S.cerevisiae* @CaP. (b) Optical images of ABTS assay reaction mixtures after 4 h.

Figure S11. (black) Long-term viability of naïve and $S.cerevisiae@CaP_{[GOx_HRP]}$ cells and (red) reaction rates for $S.cerevisiae@CaP_{[GOx_HRP]}$ during storage at 4 $^{\circ}C$.