## Built-in skeleton Cu/NC-NFs as sulfur carrier for lithium sulfur battery

Die Su<sup>a</sup>, Yuhong Zeng<sup>a</sup>, Meiqi Geng<sup>a</sup>, Tao Wang<sup>a</sup> \* Minhua Shao<sup>b,c</sup>, Cunpu Li<sup>a</sup> \* and Zidong Wei<sup>a</sup>

<sup>a</sup> State Key Laboratory of Advanced Chemical Power Sources, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

<sup>b</sup> Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hongkong, 999077, China.

<sup>c</sup> Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China.

Email: Tao Wang: <u>wangtaotao@cqu.edu.cn</u> Cunpu Li: <u>lcp@cqu.edu.cn</u>

# **Experimental Section**

## Synthesis of composites

Polyacrylonitrile (PAN,  $(C_3H_3N)_n$ , average Mw 150,000, Macklin), Aminated carbon nanotubes (CNT-NH<sub>2</sub>, NFs, AR, XFNANO, China), N, N-Dimethylformamide (DMF,  $C_3H_7NO$ ) are directly used.

The Cu/NC-NFs is synthesized in **Fig. S1**: Firstly, according to the preparation method of Zhang group, the HKUST-1 was synthesized. Secondly, 1 g PAN, 0.12 g CNT-NH<sub>2</sub>, and 0.7 g HKUST-1 are ground evenly and dissolved in 12 mL DMF via magnetic stirring in 40°C for 5 days to obtain the precursor solution. Thirdly, the precursor solution was spun in 15 kV of voltage for 24 h, wherein the flow rate is 0.07 mm min<sup>-1</sup> and the distance from the tip to the collection plate is 16 cm. The precursor nanofiber film was stabilized in N<sub>2</sub> atmosphere at 200°C for 100 mins, then raising the temperature to 700°C for 200 mins, and the heating rate was 10°C min<sup>-1</sup>. Finally, the CNT-NH<sub>2</sub>/HKUST-1 nanofibers (denote as Cu/NC-NFs) were obtained after natural cooling. As a comparison figure, the PAN/CNT-NH<sub>2</sub> nanofibers (denote as NFs) was obtained from the precursor solution without HKUST-1 adding by the above procedure.

The melt-diffusion process is fixed to allow the elemental sulfur to seep into the prepared composites. Typically, Cu/NC-NFs and sublimed sulfur (w/w=7/3) were mixed uniformly and then annealed at 155°C for 720 mins under an N<sub>2</sub> atmosphere. The heating rate was 5°C min<sup>-1</sup>. The black sulfur-containing composite was referred to as Cu/NC-NFs/S. The NFs/S composite was prepared with the same procedure as above.

#### Materials characterization

The morphologies of the samples were characterized by scanning electron microscopy (SEM, *JEOL JSM-7800F*). High-resolution field emission transmission electron microscopy images and elemental mappings were obtained using HRTEM (FE-TEM, *Talos F200s*). Raman spectra were performed on a *HORIBA Jobin Yvon S.A.S inVia* Raman spectrometer system with 325 nm (*LabRAM HR Evolution*). Powder X-ray diffraction (XRD) measurements were conducted by a *SHIMADZU* XRD-6000 diffractometer with Cu K<sub>α</sub> radiation ( $\lambda$ =1.5418 Å) at a range of 5-90°. The chemical compositions of the surface of the samples were analyzed using an *Thermo scientific K-Alpha* X-ray Photoelectron Spectrometer (XPS) with Al K<sub>α</sub> sources (*hv* = 1486.6 eV). Thermogravimetric analysis (TGA) was completed under an N<sub>2</sub> atmosphere using a *Thermo Gravimetric Analyzer* -TGA2.

#### Assembly of cion batteries

Regarding N-Methyl-2-pyrrolidone (NMP) as the solvents, the liquid slurry was elaborately matched by the samples (Cu/NC-NFs/S and NFs/S), Super C, and polyvinylidene fluoride (PVDF) with 8:1:1 by mass. The sulfur load was about 2.55 mg cm<sup>-2</sup>. The high sulfur load was about 5.09 mg cm<sup>-2</sup>. The obtained black slurry was evenly coated on a carbon paper (4X6 cm<sup>2</sup>) collector, dried in vacuum oven in 60°C overnight, and then punched to the discs of 10 mm diameter as the working electrodes. The CR-2032 coin batteries were prepared in the argon-filled glove box in both water and oxygen below 0.1 ppm, with lithium foil as the counter/reference electrode, PP membrane (Celgard 2500) as the separator. 1.0 M lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) dissolved in the mixed solution of 1,3-

dioxane (DOL) and Dimethoxymethane (DME) (v/v=1/1) as electrolyte, and 1 *wt*% LiNO<sub>3</sub> as additive.

#### **Electrochemical measurements**

The GCD tests were carried out on a CT2001A battery system (LAND, Wuhan) in a 1.6-2.8 V voltage window at 30°C. Cyclic voltammetry (CV) curves were obtained on an electrochemical workstation (LAND M340A, China) with a scan rate of 0.1-0.5 mV s<sup>-1</sup> from 1.5 to 3.0 V. Electrochemical impedance spectroscopy (EIS) data were recorded using a Solartron Metrology (Metrohm Autolab, English) impedance analysis with a ±5 mV sine wave in the frequency range of 10<sup>6</sup> to 0.01 Hz.

#### Adsorption tests of lithium polysulfides

2.5 mM Li<sub>2</sub>S<sub>6</sub> solution was synthesized by dissolving sulfur and Li<sub>2</sub>S (molar ratio=1:5) into a mixed solvent of DOL/DME (1:1 volume ratio). For the polysulfide static adsorption experiment, Cu/NC-NFs/S and NFs/S with equal amounts of 10 mg each were added to the 5 mL Li<sub>2</sub>S<sub>6</sub> solution. All the above operations were carried out in a glove box filled with argon.

### Li<sub>2</sub>S nucleation/dissociation tests

0.3 M Li<sub>2</sub>S<sub>8</sub> solution was prepared by dissolving sulfur and Li<sub>2</sub>S with a molar ratio of 1:7 in a DOL/DME solution (1:1 volume ratio). Lithium foil and the prepared Cu/NC-NFs/S and NFs/S were employed as the anode and the cathode, respectively. Then the coin batteries were assembled by dropping the electrolyte containing 25  $\mu$ L Li<sub>2</sub>S<sub>8</sub> to the cathode side and the electrolyte containing 25  $\mu$ L conventional electrolyte to the anode side. For the nucleation test of Li<sub>2</sub>S, all assembled coin batteries were galvanostatically discharged to 2.06 V at 0.112 mA and remained potentiostatically at 2.05 V until the current gradually decreased to 0.01 mA. For the dissociation test of Li<sub>2</sub>S, the coin batteries were firstly galvanostatically discharged at 0.01 mA to 1.80 V to completely convert the S species to solid Li<sub>2</sub>S. Subsequently, these coin batteries were potentiostatically charged at 2.40 V to convert Li<sub>2</sub>S to soluble lithium polysulfides until the charging current was lower than 0.01 mA.

#### Calculation of diffusion coefficient for Li\*

To determine the Li-ion diffusion coefficient, the corresponding peak currents are fitted according to Randles-Sevcik Equation (1):

$$I_p = 269000 n^{1.5} A C D^{0.5} v^{0.5}$$
 (1)

Where the  $I_P$  is CV peak current, n is the electron transfer number in the redox process, A is the area of electrode (cm<sup>2</sup>), C is the Li-ion concentration participating in redox reaction (mol cm<sup>-3</sup>), D is the ion diffusion coefficient (cm<sup>2</sup> s<sup>-1</sup>), v is the scan rate (v s<sup>-1</sup>) set by CV. Here, n, A, and C are constants, linearly plot  $I_p$  versus  $v^{1/2}$ , the slope obtained is the Li-ion diffusion rate.

#### **NTR** equation calculation

The electron transfer per second of peak C1 ( $C_{e1}$ ) and peak C2 ( $C_{e2}$ ) can be obtained by integral area and scan rate:

$$C_e = \frac{A_t}{v} \tag{2}$$

 $C_e$  refers to the electron transfer amount per gram (A s),  $A_t$  denotes the integral area (A V) of peak C1 and peak C2, and v is the scan rate (V s<sup>-1</sup>). And the Nucleation Transformation Ratio (NTR):

$$NTR = \frac{C_{e2}}{C_{e1}} \tag{3}$$

can be calculated to evaluate the kinetic behavior of solid-liquid-solid cascade reaction. Calculated from electronic gains and losses, NTR is theoretically close to 3.

#### The lattice mismatch calculation

The lattice constants for cubic structure of Cu ( $Fm\overline{3}m$ ) are a=b=c=3.58 Å. While for Li<sub>2</sub>S, which also exhibits a cubic structure ( $Fm\overline{3}m$ ), the lattice constants are a=b=c=5.67 Å. The same crystal group allows for a suitable lattice match. The lattice mismatch (f) between Cu and Li<sub>2</sub>S can be calculated using the following equation:

$$f = (\alpha_s - \alpha_g)/\alpha_s \tag{4}$$

Where the  $\alpha$  values represent the lattice constants. For instance, taking the a-axis as an example, the lattice parameter for  $\alpha_s$  (Cu) is 17.90 Å (calculated as 3.58 × 5), and for Li<sub>2</sub>S, it is  $\alpha_g$  is 17.01 Å (calculated as 5.67 × 3). This results in a low *f* of approximately 5%.



Fig. S1 Schematic diagram of preparation the Cu/NC-NFs.



**Fig. S2** SEM images of (a) precursor nanofibers of NFs, and (b) precursor nanofibers of Cu/NC-NFs.



Fig. S3 (a) FE-TEM and (b)~(e) elemental mapping images of C, O, N of NFs.



**Fig. S4** The  $N_2$  adsorption-desorption tests for NFs and Cu/NC-NFs: (a) the BET surface area and (b) the pore size distribution. (c) the TEM images for Cu/NC-NFs.



Fig. S5 XRD patterns of Cu/NC-NFs and NFs.



Fig. S6 XPS survey spectra for Cu/NC-NFs and NFs.



Fig. S7 The high-resolution C 1s of Cu/NC-NFs and NFs.



Fig. S8 The XRD patterns of the Cu/NC-NFs/S electrode and the NFs/S electrode.



Fig. S9 TG curves for Cu/NC-NFs/S and NFs/S.



**Fig. S10** The Cu/NC-NFs/S: (a) TEM image, (b) STEM image, (c-g) the mapping images of C, Cu, N, O, and S. According to the TEM/STEM images for Cu/NC-NFs/S, the results show that the nanofibers are significantly enriched with S due to their suitable pore structure. The mapping results show that the C, Cu, N, O, and S elements are evenly distributed in the fibers.



**Fig. S11** Nyquist plots of NFs/S and Cu/NC-NFs/S electrodes with an inset showing the equivalent circuit diagram.



**Fig. S12** The CV curves of the first three curves of (a) the NFs/S and (b) the Cu/NC-NFs/S electrode at scan rate of 0.1 mV s<sup>-1</sup>. CV curves in 0.1 mV s<sup>-1</sup> at first three loops reveal better overlap for Cu/NC-NFs/S, demonstrating superior cycling stability compared to NFs/S.



Fig. S13  $I_p$  vs. v<sup>1/2</sup> fitting curves of the Cu/NC-NFs/S and the NFs/S electrode of (a) C1, (b) C2, (c) A1, (d) A2.S



**Fig. S14** Digital photos of adsorption experiment for LiPSs for (a) NFs/S and (b) Cu/NC-NFs/S electrodes.



Fig. S15 The SEM images of NFs (left) and Cu/NC-NFs (right) after Li<sub>2</sub>S deposition test.



Fig. S16 Compare the overpotential values of electrodes at first cycle.



**Fig. S17** Cycling performance of Cu/NC-NFs/S and NFs/S electrode corresponding charging/discharging median potential difference diagram.



Fig. S18 Cycling performance of NFs/S and Cu/NC-NFs/S cathode with a sulfur loading of 5.09 mg cm<sup>-2</sup> at 2 C.



Fig. S19 Cycling performance of Cu/NC-NFs/S cathode with a different E/S ratio at 2 C.



**Fig. S20** Cycling performance and corresponding GCD curves of (a) the NFs/S electrode and (b) the Cu/NC-NFs/S electrode at long cycling at 0.5 C.



**Fig. S21** The cycle performance of the Cu/NC-NFs/S electrode and the NFs/S electrode at 1 C.



Fig. S22 (a-d) The elements mapping of C, N, O, and S for NFs/S cathode after 400 cycling.



**Fig. S23** (a-e) The elements mapping of C, N, O, Cu, and S for Cu/NC-NFs/S cathode after 400 cycling.

| Element | Atomic Fraction (%) | Mass Fraction (%) |
|---------|---------------------|-------------------|
| Cu      | 2.83                | 13                |
| С       | 80.58               | 70                |
| Ν       | 9.50                | 9                 |
| 0       | 7.09                | 8                 |

Table S1 The element content of Cu/NC-NFs.

| Samples                   | R <sub>1</sub> (Ω) | R <sub>2</sub> (Ω) |
|---------------------------|--------------------|--------------------|
| the NFs/S electrode       | 2.90               | 178.94             |
| the Cu/NC-NFs/S electrode | 1.88               | 76.93              |

**Table S2** Simulative datum for fresh assembled coins with the Cu/NC-NFs/S electrodeand the NFs/S electrode.

| Sulfur carries | Discharge specific<br>capacity /mAh g <sup>-1</sup> | Rate/C | Cycling performance | Reference       |
|----------------|-----------------------------------------------------|--------|---------------------|-----------------|
| TiO₂@NCNE/S    | 800                                                 | 0.5    | 150                 | Nano Res.       |
|                |                                                     |        |                     | 2024, 17, 1473  |
|                |                                                     | 0.1    |                     | ACS Appl.       |
|                |                                                     |        |                     | Mater.          |
| Ni-NCs/S       | 950                                                 |        | 500                 | Interfaces      |
|                |                                                     |        |                     | 2023, 15, 2,    |
|                |                                                     |        |                     | 3037            |
|                | 878.8                                               | 1      |                     | J. Energy       |
| pCNF/S         |                                                     |        | 1000                | Chem. 2024,     |
|                |                                                     |        |                     | 92, 619         |
|                |                                                     |        |                     | Appl. Catal. B- |
| C/S            | 1208.1                                              | 0.2    | 100                 | Environ. 2024,  |
| 0/5            |                                                     |        |                     | 351, 124012     |
|                |                                                     |        |                     | J. Mater.       |
| NC/S           | 560.1                                               | 2      | 300                 | Chem. A, 2023,  |
| NC/S           |                                                     |        |                     | 11, 5212        |
| Fe-Ni-HPCNF/S  | 1068.8                                              | 0.5    | 200                 | J. Colloid      |
|                |                                                     |        |                     | Interface Sci.  |
|                |                                                     |        |                     | 2023, 640, 908  |
| TiN@CPAN/S     | 896                                                 | 1      | 1000                | ACS Appl.       |
|                |                                                     |        |                     | Mater.          |
|                |                                                     |        |                     | Interfaces      |
|                |                                                     |        |                     | 2023, 15, 44,   |
|                |                                                     |        |                     | 51241           |
|                |                                                     |        |                     | Carbon energy   |
| Cu-CNF/TiN/S   | 913                                                 | 2      | 300                 | 2024, 6, 6,     |
|                |                                                     |        |                     | e450            |

**Table S3** Recently reported electrochemical performance of Li-S battery for carbon nanofibers as sulfur carries.

| CoD            |         |      |     | Appl. Catal. B-  |
|----------------|---------|------|-----|------------------|
|                | 1322.86 | 0.05 | 695 | Environ. 2024,   |
| COP/INPCINES/S |         |      |     | 357, 124289      |
| Fe-SAC/S       |         |      | 500 | Chem. Eng. J.    |
|                | 800     | 1    |     | 2023, 477,       |
|                |         |      |     | 146977           |
| CoFe2O4/ANF/S  |         |      |     | Chem. Eng. J.    |
|                | 940     | 0.2  | 450 | 2024, 481,       |
|                |         |      |     | 148374           |
| NiO            |         |      |     | Small 2023,      |
|                | 1196    | 0.2  | 100 | 47, 19,          |
| 10032@CINFS/3  |         |      |     | 2304131          |
|                |         |      |     | Appl. Surf. Sci. |
|                | 1212.8  | 0.2  | 100 | 2024, 651,       |
| 5              |         |      |     | 159218           |
|                |         |      |     |                  |
| Cu/NC-NFs/S    | 1122.2  | 0.1  | 400 | This work        |
|                |         |      |     |                  |