Diastereoselective C(sp³)–H Acetoxylation of Phosphoramidites

Anirban Mondal,^[+] Vanda Dašková,^[+] Xiaobing Chen, Niklas O. Thiel, Georgios Alachouzos, Ben L. Feringa*

Supporting Information

General information and instrumentation

Unless otherwise specified, all reagents were obtained from commercial sources and used without further purification. Dry solvents were obtained using a MBraun SPS 800 system and stored under N_2 . For the C–H functionalisation reactions, dry DCE, AcOH, AC₂O, trifluoroacetic acid (TFA), trifluoroacetic anhydride (TFAA) and propionic acid were degassed through the freeze-pump-thaw method (4-6 cycles) and stored in a glovebox.

All reactions were carried out under N₂ atmosphere in oven-dried or heat gun-dried glassware with magnetic stirring. When specified, reactions were monitored by analytical thin layer chromatography on silica-coated aluminum plates (silica gel 60 F254 Merck) and components were visualized by UV light and KMnO₄ staining (1.5 g KMnO₄, 10 g K₂CO₃, 1.25 mL 10% NaOH, 200 mL H₂O). Flash column chromatography was performed on silica gel 60 (Merck, 230-400 mesh). Celite[®] 521 was used as filtering agent.

¹H-NMR, ¹³C-NMR and ³¹P{¹H}-NMR experiments were carried out using Varian AMX400, Varian Oxford AS 500 MHz and Bruker Innova 600 MHz spectrometers. Chemical shift values are reported in ppm with the residual solvent resonances as the internal standards. Coupling constants (*J*) are given in Hertz (Hz). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, hep = heptet or as a combination of them.

High Resolution Mass spectrometry (HRMS) analysis was carried out using a LTQ Orbitrap XL (ESI+, ESI-).

X-ray diffraction analysis was performed Bruker APEX-II CCD diffractometer. The crystal was kept at 100.0 K during data collection. See below for further details.

Purchased chemicals

The following chemicals were purchased at the corresponding supplier and used without further treatment:

(R)-BINOL N, N-diisopropylamine (Fluorochem), N-isopropylpentan-3-amine N-(Fluorochem), (Fluorochem), (Fluorochem), N-isopropylcycloheptanamine Nisopropylcyclohexylamine hydrochloride (Fluorochem), isopropylmethylamine (Sigma Aldrich), N-tert-butylisopropylamine (Sigma Aldrich), N-isopropylaniline (Alfa Aesar by Thermo Fisher Scientific), N-isopropyl-2-methyl-1-propanamine hydrochloride (Sigma Aldrich), palladium acetate (Sigma Aldrich), silver acetate (Sigma Aldrich), phenyl iododiacetate (Sigma Aldrich).

Compounds prepared following literature procedures

Amine **S1**¹, **S2**¹, **S3**¹ and **S4**^{1,2} were prepared following previously described procedures.

S2: ¹H NMR (400 MHz, CDCl₃) δ 2.90 (hep, *J* = 6.2 Hz, 1H), 2.78 (s, 1H), 1.92 – 1.65 (m, 12H), 1.61 – 1.46 (m, 3H), 1.04 (d, *J* = 6.3 Hz, 6H).

S3: ¹H NMR (600 MHz, CDCl₃) δ 7.49 – 7.17 (m, 10H), 5.01 (s, 1H), 2.80 (hep, *J* = 6.3 Hz, 1H), 1.91 (s, 1H), 1.13 (d, *J* = 6.3 Hz, 6H).

S4: ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 4H), 7.24 – 7.14 (m, 6H), 3.11 (p, *J* = 6.6 Hz, 1H), 2.81 (h, *J* = 6.3 Hz, 1H), 2.68 (d, *J* = 6.6 Hz, 4H), 0.90 (d, *J* = 6.2 Hz, 6H).

Optimisation

General procedure

¹ a) N. Mistry, S. P. Fletcher, *Adv. Synth. Catal.* **2016**, *358*, 2489-2496; b) R. Ardkhean, P. M. C. Roth, R. M. Maksymowicz, A. Curran Q. Peng, R. S. Paton, S. P. Fletcher, *ACS Catal.* **2017**, *7*, 6729-6737.

² Y.-X. Wang, F.-P. Zhang, H. Chen, Y. Li, J.-F. Li, M. Ye, Angew. Chem. Int. Ed. **2022**, 61, e202209625.

In an oven-dried reaction tube, the phosphoramidite (*R*)-**1a** (0.1 mmol, 1.0 equiv.), appropriate amounts of specified catalyst, oxidant and additives were added and taken into the glove box. Deoxygenated solvent or solvent mixtures were added via a syringe. The reaction vessel was taken out of the glovebox and the mixture stirred at specified temperature for 24 h, cooled to room temperature and concentrated in vacuum. The internal standard, 1,3,5-trimethoxybenzene was added to the crude reaction material, which was subsequently dissolved in CDCl₃ (0.6 mL) and submitted for analysis.

Conversion was determined by GC-MS analysis. NMR yield was determined by introducing an internal standard (1,3,5-trimethoxybenzene). d.r. was determined by ³¹P-NMR of the crude reaction mixture.

NOTE: Deoxygenated solvents and co-solvents were used to prevent pre-oxidation of the starting material, as the phosphoramidites were observed to undergo gradual oxidation when exposed to air in these solvents.

^a General procedure for optimization used: the indicated catalyst (10 mol% unless stated otherwise). ^b Determined by GC-MS analysis. ^c *d.r.* was determined by ³¹P-NMR analysis of the crude reaction mixture. ^d No AgOAc was added.

Table S2. Ag-additive screening^a

^a General procedure for optimization stated in section 6.8. ^b Determined by GC-MS analysis. ^c d.r. was determined by ³¹P-NMR analysis of the crude reaction mixture.

Table S3. Solvent screening^a Pd(OAc)₂ (15 mol%) AgOAc (2.0 equiv.) PhI(OAc)₂ (5.0 equiv.) solvent 100 °C, 24 h (R,R)-**2a** (R)-**1-0** (R)-**1** Entry Solvent Conversion to (R,R)-2a (%)b d.r.c MeCN <10 1 -2 DCE <10 -3 dioxane N.R _ 4 Ac₂O <10 5 toluene <10 6 HFIP <10 7 PhMe <10 8 AcOH/Ac2O (1:1) 89:11 38 DCE/AcOH/Ac₂O (4:1:1) 9 44 92:8

^a General procedure for optimization used. ^b Determined by GC-MS analysis. ^c *d.r.* was determined by ³¹P-NMR analysis of the crude reaction mixture. ^d

Table S4. Effect of co-solvents^a

		Pd(OAc) ₂ (15 mol%) AgOAc (2.0 equiv.) PhI(OAc) ₂ (4.0 equiv.) DCE, Ac ₂ O/AcOH 100 °C, 24 h		
(R)- 1		(R,R)- 2a	(<i>R</i>)-1-0
Entry	Ac ₂ O (equiv.) AcOH (equiv.)	Yield of (<i>R,R</i>)- 2a (%) ^b	d.r. ^c
1 ^d	55	55	43	91:9
2	55	-	-	-
3	-	55	27	89:11
4	0.25	0.5	22	90:10
5	0.5	0.5	22	91:9
6	1	1	25	90:10
7	10	10	42	91:9
8	10	10	41	93:7

^a General procedure for optimization stated in section 6.8. ^b Yield determined by ¹H-NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^c *d.r.* was determined by ³¹P-NMR analysis of the crude reaction mixture. ^d Using 55 equiv. as an access of co-solvents comparable to the DCE/Ac₂O/AcOH-mixture (4:1:1).

Table S5. Screening of reaction temperature^a

^a General procedure for optimization used. ^b Yield determined by ¹H-NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^c d.r. was determined by ³¹P-NMR analysis of the crude reaction mixture.

^a Optimised reaction conditions used with specified deviations. ^b Yield determined by ¹H-NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. ^c Determined by ³¹P-NMR analysis.

Table S7. Effect of AgOAc o	n early oxidatio	n of (<i>R</i>)-1a to (<i>R</i>)-1a-O		
	AgOAc (2.0 PhI(OAc) ₂ (DCE/Ac ₂ O/ 60 °C, time	Acoh (4:1:1)		
(<i>R</i>)-1			(<i>R</i>)- 1-O	
Entry	PhI(OAc) ₂	AgOAc	Time	Conversion to (R)-1a-O [%] ^b
1	4.0 equiv.	2.0 equiv.	2 h	7
2	4.0 equiv.	-	2 h	100
3	-	2.0 equiv.	2 h	-
4	4.0 equiv.	2.0 equiv.	1 d	74
5	-	2.0 equiv.	1 d	31

^a Optimised reaction conditions used with specified deviations. ^b Conversion determined by ³¹P-NMR analysis.

Preparation of phosphoramidites

Scheme S1 Preparation of phosphoramidites

General procedure A (GP A)

All phosphoramidites were synthesized using known literature procedures.¹ For our previous reported procedures see also ref 3³. Anhydrous Et_3N (5.0 eq.) was added dropwise to a stirred ice-cooled solution of PCl_3 (1.0 eq.) in CH_2Cl_2 (7 mL / mmol amine). The ice bath was removed and the solution left to warm to room temperature before the desired amine (1.0 eq.) was added to the stirring solution. After 5 additional hours of stirring, BINOL (1.0 eq.) was added to the suspension and the subsequent mixture was left to stir overnight. The solution was then filtered on a small pad of silica and celite and rinsed with CH_2Cl_2 (20 mL). The resulting solution was concentrated under reduced pressure to afford a yellow residue. After flash column chromatography with Pentane/DCM (80:20, with 2% Et_3N) as eluent, the phosphoramidites were obtained as crystalline solids.

(R)-N,N-diisopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((R)-1a)

Prepared following **GP A** using (*R*)-BINOL (10.0 g, 34.9 mmol, 1.0 equiv.) and *N*,*N*-diisopropylamine (4.9 mL, 34.9 mmol, 1.0 equiv.). White solid, 71% yield (10.1 g, 24.3 mmol). ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.85 (m, 4H), 7.50 (dd, *J*=8.7, 1.0, 1H), 7.46 – 7.35 (m, 4H), 7.35 – 7.18 (m, 3H), 3.38 (m, 2H), 1.20 (dd, *J*=13.0, 6.8, 12H). ³¹P NMR (121 MHz, CDCl₃) δ 151.68. All the spectroscopic data are in

accordance with the literature.1

(*R*)-*N*-isopropyl-*N*-(pentan-3-yl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((*R*)-1b) Prepared following **GP A** using (*R*)-BINOL (1.1 g, 3.9 mmol, 1.0 equiv.) and *N*-isopropylpentan-3amine (0.63 mL, 3.9 mmol, 1.0 equiv.). White solid, 60% yield (1.1 g, 2.4 mmol). ¹**H NMR (600 MHz, CDCl**₃) δ 7.98 (d, *J*=8.7, 1H), 7.94 – 7.91 (m, 3H), 7.52 (dd, *J*=8.7, 0.9, 1H), 7.48 (d, *J*=8.8, 1H), 7.44 – 7.40 (m, 3H), 7.33 (dd, *J*=8.6, 1.2, 1H), 7.30 – 7.22 (m, 2H), 3.50 – 3.37 (m, 1H), 2.84 – 2.80 (m, 1H),

1.89 – 1.80 (m, 1H), 1.78 – 1.71 (m, 3H), 1.09 (d, *J*=6.7, 3H), 1.01-0.97 (m, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 150.69, 150.65, 150.3, 133.0, 132.9, 131.5, 130.6, 130.3, 129.5, 128.4, 128.3, 127.3, 127.28, 126.1, 125.9, 124.8, 124.4, 124.2 (d, *J* = 5.4 Hz), 122.6, 122.0 (d, *J* = 2.5 Hz), 56.8 (d, *J* = 19.5 Hz), 45.3 (d, *J* = 2.0 Hz), 30.8 (d, *J* = 10.1 Hz), 28.5, 23.6, 23.3, 11.9, 11.8. ³¹P NMR (162 MHz, CDCl₃) δ 151.04. HRMS (ESI+, m/z) calculated for $C_{28}H_{31}NO_2P$ [M+H]⁺: 444.2096, found 444.2094.

(*R*)-*N*-isopropyl-*N*-(pentan-3-yl)dinaphtho[2,1-d:1',2'-f][1,3,2]dioxapho-sphepin-4-amine ((*R*)-1c) Prepared following GP A using (*R*)-BINOL (1.9 g, 6.6 mmol, 1.0 equiv.) and *N*-isopropyl-2-methyl-1propanamine hydrochloride (1.0 g, 6.6 mmol, 1.0 equiv.). White solid, 73% yield (2.1 g, 4.8 mmol). ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J*=8.8, 1H), 7.92 (dd, *J*=8.9, 7.3, 3H), 7.52 (d, *J*=8.8, 1H), 7.43 (td, *J*=7.7, 6.8, 5.2, 4H), 7.35 (d, *J*=8.5, 1H), 7.31 – 7.23 (m, 2H), 3.46 – 3.35 (m, 1H), 2.83 – 2.68 (m,

2H), 1.83 (dq, J=8.3, 6.6, 1H), 1.12 (d, J = 6.3 Hz, 1H), 1.11 (d, J = 6.2 Hz, 1H), 0.93 (d, J=6.6, 3H), 0.85 (d, J=6.6, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6 (d, J = 5.9 Hz), 150.0, 133.0, 132.8, 131.5, 130.7, 130.3, 129.7, 128.42, 128.35, 127.23, 127.18, 126.1, 126.0, 124.8, 124.5, 124.2 (d, J = 5.1 Hz), 122.4 (d, J = 2.0 Hz), 122.30, 122.26 (d, J = 2.1 Hz), 51.2 (d, J = 25.5 Hz), 47.1 (d, J = 8.2 Hz), 29.3 (d, J = 4.4 Hz), 23.1, 23.03, 23.00, 20.4 (d, J = 3.4 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 148.12. HRMS (ESI+, m/z) calculated for C₂₇H₂₉NO₂P [M+H]⁺: 430.1930, found 430.1935.

(*R*)-*N*-cyclopentyl-*N*-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((*R*)-1d) Prepared following **GP A** using (*R*)-BINOL (859 mg, 3.0 mmol, 1.0 equiv.) and *N*-isopropylcyclopentylamine (570 mg, 4.5 mmol, 1.5 equiv.). White solid, 55% yield (723 mg, 1.6 mmol) ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.8 Hz, 1H), 7.91 (dt, *J* = 8.8, 1.8 Hz, 3H), 7.52 (dd, *J* = 8.8, 1.0 Hz, 1H), 7.46 – 7.37 (m, 4H), 7.32 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.29 – 7.20 (m, 2H), 3.53 – 3.40

(m, 1H), 3.36 (m, 1H), 1.90 – 1.60 (m, 6H), 1.37 (m, 2H), 1.18 (d, J = 6.8 Hz, 3H), 1.13 (d, J = 6.7 Hz, 3H). ¹³C NMR (151 MHz,

³ A. Duursma, J.-G. Boiteau, L. Lefort, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, A. J. Minnaard, B. L. Feringa, *J. Org. Chem.* 2004, *69*, 8045-8052; b) X.-B. Chen, D. Padín, C. N. Stindt, B. L. Feringa, *Angew. Chem. Int. Ed.* 2023, *62*, e2023074.

CDCl₃) δ 150.3, 150.24, 150.16, 132.8, 132.7, 131.3, 130.5, 130.1, 129.3, 128.24, 128.17, 127.1, 125.9, 125.8, 124.6, 124.2, 124.0 (d, *J* = 5.4 Hz), 122.5, 122.4 (d, *J* = 2.1 Hz), 121.9 (d, *J* = 2.2 Hz), 55.0 (d, *J* = 15.6 Hz), 45.3 (d, *J* = 8.5 Hz), 33.8 (g, *J* = 7.9 Hz), 24.1 (d, *J* = 7.0 Hz), 23.9, 23.8. ³¹P NMR (121 MHz, CDCl₃) δ 151.48. HRMS (ESI+, m/z) calculated for C₂₈H₂₉NO₂P [M+H]⁺: 442.1930, found 442.1927.

(*R*)-*N*-cyclohexyl-*N*-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphos- phepin-4-amine ((*R*)-1e) Prepared following **GP A** using (*R*)-BINOL (1.5 g, 5.2 mmol, 1.0 equiv.) and *N*isopropylcyclohexylamine (2.6 mL, 5.2 mmol, 1.0 equiv.). White solid, 62% yield (4.5 g, 9.8 mmol) ¹**H NMR (600 MHz, CDCl₃)** δ 7.99 (d, *J*=8.8, 1H), 7.93 (t, *J*=7.8, 3H), 7.54 (dd, *J*=9.4, 3.9, 1H), 7.44 (td, *J*=15.7, 12.9, 6.8, 4H), 7.35 (d, *J*=8.5, 1H), 7.32 – 7.22 (m, 2H), 3.43 (dt, *J*=13.4, 6.8, 1H), 2.92 – 2.75

(m, 1H), 2.07 - 1.48 (m, 7H), 1.12 (td, J=25.8, 24.0, 8.5, 9H). ¹³**C NMR (151 MHz, CDCI₃)** δ 150.44, 150.39, 150.19, 132.8, 132.7, 131.3, 130.5, 130.1, 129.3, 128.2, 128.13, 127.07, 125.9, 125.8, 124.6, 124.2, 124.0 (d, J = 5.0 Hz), 122.39, 122.35, 121.8 (d, J = 2.2 Hz), 53.3 (d, J = 15.2 Hz), 45.3 (d, J = 6.8 Hz), 36.2, 35.6, 26.6 (d, J = 8.7 Hz), 25.4, 24.0, 23.7. ³¹P NMR (162 MHz, CDCI₃) δ 151.76. HRMS (ESI+, m/z) calculated for C₂₉H₃₁NO₂P [M+H]⁺: 456.2096, found 456.2094.

(*R*)-*N*-cycloheptyl-*N*-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((*R*)-1f) Prepared following **GP A** using (*R*)-BINOL (1.5 g, 5.2 mmol, 1.0 equiv.) and *N*isopropylcycloheptanamine hydrochloride (1 g, 5.2 mmol, 1.0 equiv.). White solid, 75% yield (1.8 g, 3.8 mmol). ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J*=8.8, 1H), 7.94 – 7.92 (m, 3H), 7.54 (d, *J*=8.7, 1H), 7.49 – 7.39 (m, 4H), 7.35 (d, *J*=8.6, 1H), 7.31 – 7.24 (m, 2H), 3.45 – 3.42 (m, 1H), 3.07 – 3.04 (m,

1H), 2.07 (m, 1H), 2.00 – 1.85 (m, 3H), 1.74 – 1.61 (m, 2H), 1.48 (hept, J=8.7, 6.9, 4H), 1.29 – 1.08 (m, 8H). ¹³C NMR (151 MHz, CDCl₃) δ 150.42, 150.38, 150.2, 132.9, 132.7, 131.3, 130.5, 130.1, 129.4, 128.3, 128.2, 127.1, 125.9, 125.8, 124.6, 124.3, 124.0 (d, J = 5.3 Hz), 122.42 (d, J = 1.8 Hz), 122.39, 121.9 (d, J = 2.3 Hz), 55.6 (d, J = 14.7 Hz), 45.6 (d, J = 7.0 Hz), 38.2, 27.3, 27.2, 25.2 (d, J = 6.6 Hz), 24.0, 23.7. ³¹P NMR (162 MHz, CDCl₃) δ 151.76. HRMS (ESI+, m/z) calculated for C₃₀H₃₃NO₂P [M+H]⁺: 470.2243, found 470.2240.

(*R*)-*N*-adamantan-2-yl-*N*-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((*R*)-1g)

Prepared following **GP A** using (*R*)-BINOL (666 mg, 2.3 mmol, 1.0 equiv.) and *N*-isopropylcyclohexylamine (450 mg, 2.3 mmol, 1.0 equiv.). White solid, 45% yield (527 mg, 1.0 mmol).

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.7 Hz, 1H), 7.93 – 7.86 (m, 3H), 7.53 (dd, J = 8.7, 1.0 Hz, 1H), 7.45 – 7.35 (m, 4H), 7.31 (dd, J = 8.6, 1.1 Hz, 1H), 7.29 – 7.18 (m, 2H), 3.60 (m, 1H), 3.38 (d, J = 20.3 Hz, 1H), 2.63 (t, J = 13.8 Hz, 2H), 2.16 (s, 1H), 2.04 (s, 1H), 2.00 – 1.80 (m, 6H), 1.76 (d, J = 2.9 Hz, 2H), 1.65 (t, J = 14.3 Hz, 2H), 0.98 (d, J = 6.7 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.9, 150.8, 150.1, 132.9, 132.8, 131.3, 130.3, 130.2, 129.3, 128.2, 128.1, 127.1 (d, J = 4.8 Hz), 125.9, 125.7, 124.6, 124.2 (d, J = 5.7 Hz), 124.1, 122.6 (d, J = 2.2 Hz), 122.5, 121.4 (d, J = 2.2 Hz), 59.5 (d, J = 16.9 Hz), 46.2 (d, J = 3.9 Hz), 39.5 (d, J = 16.8 Hz), 38.5 (d, J = 4.3 Hz), 35.5 (d, J = 3.3 Hz), 34.9 (d, J = 7.5 Hz), 31.9, 31.8, 31.6 (d, J = 17.0 Hz), 27.8, 27.6, 23.0, 21.7. ³¹P NMR (162 MHz, CDCl₃) δ 146.24. HRMS (ESI+, m/z) calculated for C₃₃H₃₅NO₂P [M+H]⁺: 508.2399, found 508.2395. Data in accordance with the literature.^{1b}

(R)-N-isopropyl-N-methyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphos-phepin-4-amine ((R)-1h)

Prepared following **GP A** using (*R*)-BINOL (7.4 g, 25.7 mmol, 1.0 equiv.) and *N*-isopropylmethylamine (2.7 mL, 25.7 mmol, 1.0 equiv.). White solid, 69% yield (6.8 g, 17.7 mmol). ¹**H NMR (400 MHz, CDCl₃)** δ 7.96 (d, *J* = 8.8 Hz, 1H), 7.94 – 7.87 (m, 3H), 7.51 (dd, *J* = 8.8, 0.9 Hz, 1H), 7.46 – 7.37 (m, 4H), 7.34 (dd, *J* = 8.6, 1.1 Hz, 1H), 7.31 – 7.21 (m, 2H), 3.91 – 3.69 (m, 1H), 2.22 (d, *J* = 5.6 Hz, 3H), 1.27 (d, *J* = 4.04 Mz, 4.04 M

6.6 Hz, 3H), 1.17 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4 (d, J = 5.0 Hz), 149.8, 132.9 (d, J = 1.7 Hz), 132.7, 131.4, 130.7, 130.3, 130.0, 128.4, 128.3, 127.1, 127.0, 126.1, 124.8, 124.6, 124.1 (d, J = 4.9 Hz), 122.7 (d, J = 2.3 Hz), 122.2 (d, J = 1.9 Hz), 122.1, 48.1 (d, J = 40.9 Hz), 25.7 (d, J = 3.9 Hz), 21.6 (d, J = 4.1 Hz), 21.3 (d, J = 7.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 148.90. HRMS (ESI⁺, m/z) calculated for C₂₄H₂₃NO₂P [M+H]⁺: 388.1461, found 388.1459.

(R)-N-(tert-butyl)-N-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((R)-1i)

Prepared following **GP A** using (*R*)-BINOL (1.4 g, 5.0 mmol, 1.0 equiv.) and *N*-tertbutylisopropylamine (0.8 mL, 5.0 mmol, 1.0 equiv.). White solid, 69% yield (1.5 g, 3.5 mmol). ¹**H NMR** (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.7 Hz, 1H), 7.93 – 7.86 (m, 3H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.43 – 7.34 (m, 4H), 7.30 (d, J = 8.6 Hz, 1H), 7.26 – 7.18 (m, 2H), 3.50 (h, J = 7.0 Hz, 1H), 1.46 (s, 9H), 1.28 (d, J = 6.9 Hz, 3H), 0.85 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.3, 151.2, 150.3, 133.08, 133.07, 131.5, 130.4, 129.4, 128.4, 128.2, 127.4, 127.2, 126.1, 125.9, 124.8, 124.6 (d, J = 6.0 Hz), 124.2, 123.1, 122.5 (d, J = 2.2 Hz), 121.8 (d, J = 2.2 Hz), 57.4 (d, J = 19.9 Hz), 48.0, 32.1, 25.7, 24.8. ³¹P NMR (162 MHz, CDCl₃) δ 158.92. HRMS (ESI⁺, m/z) calculated for C₂₇H₂₉NO₂P [M+H]⁺: 430.1930, found 430.1928.

(*R*)-*N*-isopropyl-*N*-phenyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((*R*)-1j) Prepared following **GP A** using (*R*)-BINOL (890 mg, 3.1 mmol, 1.0 equiv.) and *N*-isopropylaniline, (420 mg, 3.1 mmol, 1.0 equiv.). White solid, 70% yield (975 mg, 2.2 mmol). ¹**H NMR (400 MHz, CDCl**₃) δ 8.04 (d, *J* = 8.8 Hz, 1H), 8.00 – 7.89 (m, 3H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.56 (d, *J* = 8.7 Hz, 1H), 7.53 – 7.40 (m, 4H), 7.40 – 7.26 (m, 7H), 3.92 – 3.63 (m, 1H), 1.13 (d, *J* = 6.6 Hz, 3H), 0.98 (d, *J* = 6.7

Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.1, 150.0, 149.6, 139.4 (d, *J* = 21.8 Hz), 133.0, 132.8, 132.2, 132.1, 131.5, 130.7, 130.4, 129.5, 128.7, 128.4, 128.3, 127.2, 127.2, 126.9 (d, *J* = 2.1 Hz), 126.1, 126.0, 124.9, 124.2 (d, *J* = 5.1 Hz), 122.34 (d, *J* = 1.9 Hz), 122.29, 122.2 (d, *J* = 2.3 Hz), 48.1 (d, *J* = 4.4 Hz), 23.8 (d, *J* = 1.7 Hz), 22.5. ³¹P NMR (162 MHz, CDCl₃) δ 141.76. HRMS (ESI⁺, m/z) calculated for C₂₉H₂₅NO₂P [M+H]⁺: 450.1617, found 450.1610.

(R)-N-benzhydryl-N-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphos- phepin-4-amine ((R)-1k)

Prepared following **GP A** using (*R*)-BINOL (890 mg, 3.1 mmol, 1.0 equiv.) and *N*-benzhydrylpropan-2-amine **S3** (700 mg, 3.1 mmol, 1.0 equiv.). White solid, 50% yield (800 mg, 1.5 mmol). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J*=8.8, 1H), 7.90 (d, *J*=8.2, 2H), 7.81 (d, *J*=8.8, 1H), 7.51 (d, *J*=7.7, 2H), 7.46 – 7.41 (m, 5H), 7.41 – 7.33 (m, 6H), 7.32 – 7.26 (m, 4H), 7.23 (dd,

J=8.4, 6.9, 1H), 5.74 (d, J=17.1, 1H), 3.61 (pd, J=6.6, 4.4, 1H), 1.12 (d, J=6.8, 3H), 1.00 (d, J=6.5, 3H). ¹³**C** NMR (151 MHz, CDCl₃) δ 150.39, 150.35, 149.8, 143.5 (d, J = 5.5 Hz), 143.4 (d, J = 3.8 Hz), 132.8, 132.74, 132.65, 131.3, 130.5, 130.1, 129.3, 129.0 (d, J = 3.9 Hz), 128.8 (d, J = 3.5 Hz), 128.3, 128.22, 128.17, 128.1, 127.1, 127.03, 127.00, 126.97, 125.9, 125.8, 124.6, 124.3, 124.0 (d, J = 5.4 Hz), 122.4 (d, J = 2.1 Hz), 122.2, 121.7 (d, J = 2.2 Hz), 60.7 (d, J = 24.1 Hz), 46.8, 23.2, 23.0 (d, J = 3.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 149.25. HRMS (ESI⁺, m/z) calculated for C₃₆H₃₁NO₂P [M+H]⁺: 569.2433, found 569.2423. Data in accordance with the literature.⁴

(*R*)-*N*-(1,3-diphenylpropan-2-yl)-*N*-isopropyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine ((*R*)-1l)

Prepared following **GP A** using (*R*)-BINOL (452 mg, 1.6 mmol, 1.0 equiv.) and amine **S4** (400 mg, 1.6 mmol, 1.0 equiv.). White solid, 66% yield (600 mg, 1.1 mmol). ¹**H NMR (400 MHz, CDCl₃)** δ 8.03 (d, *J* = 8.7 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.85 (d, *J* = 8.8 Hz, 1H), 7.58

(d, J = 8.7 Hz, 1H), 7.45 (dd, J = 8.4, 6.1 Hz, 3H), 7.42 – 7.19 (m, 14H), 3.62 – 3.44 (m, 1H), 3.37 – 3.18 (m, 3H), 3.13 – 2.96 (m, 2H), 0.67 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 150.6, 150.5, 150.2, 140.0, 139.9, 133.0, 132.8, 131.5, 130.6, 130.4, 130.0, 129.7, 129.6, 128.5, 128.4, 128.3, 127.3, 127.2, 126.5, 126.4, 126.1, 126.0, 125.9, 124.8, 124.5, 124.1 (d, J = 5.0 Hz), 122.40, 122.39, 122.3, 121.90, 121.89, 58.1 (d, J = 24.4 Hz), 45.7 (d, J = 2.0 Hz), 44.1, 22.5, 19.9. ³¹P NMR (162 MHz, CDCl₃) δ 150.88. HRMS (ESI⁺, m/z) calculated for C₃₈H₃₅NO₂P [M+H]⁺: 568.2400, found 568.2399.

Preparation of acetoxylated phosphoramidates

Scheme S2 Preparation of acetoxylated phosphoramidates

General procedure for Pd-catalysed enantioselective C(sp³)-H acetoxylation (GP B)

In an oven-dried reaction tube, the corresponding phosphoramidite (*R*)-**1a-g** (0.3 mmol, 1.0 equiv.), $PhI(OAc)_2$ (386 mg, 1.2 mmol, 4.0 equiv.), AgOAc (100 mg, 0.6 mmol, 2.0 equiv.) and $Pd(OAc)_2$ (10.1 mg, 0.045 mmol, 15 mol%) were added and taken into the glove box. The deoxygenated DCE/AcOH/Ac₂O mixture (4:1:1, 3.75 mL) were added via a syringe. The reaction vessel was taken out of the glovebox and the mixture stirred at 60°C for 24 h, cooled to room temperature and concentrated

⁴ M. Sidera, P. M. C. Roth, R. M. Maksymowicz, S. P. Fletcher, Angew. Chem. Int. Ed. 2013, 52, 7995-7999.

in vacuum. The residue was purified by silica gel column flash chromatography (eluent: pentane/EtOAc) to give compound (R,R)-**2a-g**.

NOTE: NMR-spectra of the major diastereomer are reported.

NOTE: To confirm that C–H activation occurred at the β -position of the amine, ¹H–¹H Total Correlation Spectroscopy (TOCSY) of (R,R)-2a was performed (Figure S 1). The TOCSY spectrum reveals a total correlation among the protons b, b', c, and e within the same spin system to confirm our assignment.

Figure S1 TOCSY NMR (600 MHz, CDCl₃) spectra of (R,R)-2a

(2*R*)-2-(isopropyl((*R*)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)amino)propyl acetate ((*R*,*R*)-2a)

Prepared following **GP B**. Purification by column chromatography with pentane/ethyl acetate (80:20) afforded (*R*,*R*)-**2a** (97:3 *d.r.;* crude 92:8 *d.r.*; 82 mg, 0.168 mmol, 56%) as a light yellow oil. ¹H **NMR (600 MHz, CDCl₃)** δ 8.04 (d, *J* = 8.9 Hz, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.99 – 7.93 (m, 2H), 7.63 (dd, *J* = 8.8, 1.1 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.49 – 7.45 (m, 1H), 7.44 (d, *J* = 8.6 Hz, 1H), 7.36

-7.31 (m, 1H), 7.28 -7.25 (m, 2H), 4.38 (dd, J = 11.0, 7.1 Hz, 1H), 4.26 (dd, J = 11.0, 7.0 Hz, 1H), 3.49 -3.36 (m, 1H), 3.31 -3.18 (m, 1H), 2.08 (s, 3H), 1.44 (d, J = 6.9 Hz, 3H), 1.20 (d, J = 6.7 Hz, 3H), 1.15 (d, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 148.6 (d, J = 11.4 Hz), 146.8 (d, J = 8.8 Hz), 132.6, 132.4 (d, J = 1.1 Hz), 131.8 (d, J = 1.1 Hz), 131.2, 130.5, 128.5, 128.4, 127.5, 127.0, 126.7, 126.5, 125.56, 125.55, 121.6 (d, J = 2.7 Hz), 121.4 (d, J = 2.3 Hz), 120.9 (d, J = 1.6 Hz), 120.7, 120.6, 66.8, 48.9 (d, J = 5.3 Hz), 48.4 (d, J = 3.7 Hz), 21.9 (d, J = 22.6 Hz), 21.0, 18.6, 18.5. ³¹P NMR (162 MHz, CDCl₃) δ 11.16. HRMS (ESI+, m/z) calculated for C₂₈H₂₉NO₅P [M+H]⁺: 490.1783, found 490.1764.

(2*R*)-2-(((*R*)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)(pentan-3-yl)amino)propyl acetate ((*R*,*R*)-2b)

Prepared following **GP B**. Purification by MPLC with pentane/ ethyl acetate (70:30) afforded (*R*,*R*)-**2b** (93.5:6.5 *d.r.*, 44 mg, 0.085 mmol, 28%) as a light yellow oil. ¹H NMR (400 MHz, **CDCl**₃) δ 8.00 (t, *J* = 9.5 Hz, 2H), 7.94 (t, *J* = 7.7 Hz, 2H), 7.59 (dd, *J* = 8.8, 1.1 Hz, 1H), 7.55 – 7.37 (m, 4H), 7.33-7.29 (m, 1H), 7.24 – 7.19 (m, 2H), 4.30 (m, 1H), 4.23 (dd, *J* = 11.1, 7.1 Hz, 1H), 3.38-3.27 (m, 1H),

2.76 - 2.49 (m, 1H), 2.02 (s, 3H), 1.77 - 1.61 (m, 2H), 1.58 - 1.53 (m, 2H), 1.43 (d, J = 6.9 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H), 0.67 - 0.61 (m, 3H). 13 C NMR (151 MHz, CDCl₃) δ 170.8, 148.5 (d, J = 11.1 Hz), 146.6 (d, J = 8.5 Hz), 132.6, 132.4, 131.8, 131.2, 131.1, 130.4, 128.5, 128.3, 127.4, 127.0, 126.6, 126.5, 125.6, 125.5, 121.5 (d, J = 2.7 Hz), 121.4 (d, J = 2.7 Hz), 120.9, 120.7 (d, J = 3.8 Hz), 67.0, 61.4, 49.7 (d, J = 4.6 Hz), 27.7, 25.7, 21.0, 18.5, 11.8, 11.7. 31 P NMR (243 MHz, CDCl₃) δ 11.42. HRMS (ESI+, m/z) calculated for C₃₀H₃₃NO₅P [M+H]⁺: 518.2090, found 518.2090.

O Ac

(2*R*)-2-(cyclopentyl((*R*)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)amino)propyl acetate ((*R*,*R*)-2d)

Prepared following **GP B**. Purification by MPLC with pentane/ ethyl acetate (70:30) afforded (*R*,*R*)-**2d** (95:5 d.r., 43 mg, 0.083 mmol, 28%) as a light yellow oil. ¹H NMR (**400 MHz**, **CDCl**₃) δ 8.00 (t, *J* = 9.2 Hz, 2H), 7.94 (t, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 8.9 Hz, 1H), 7.53 – 7.38 (m, 4H), 7.36 – 7.28 (m, 1H), 7.28 – 7.20 (m, 2H), 4.29 (dd, *J* = 11.0, 7.1 Hz, 1H), 4.18 (dd, *J* = 11.0, 7.1 Hz, 1H), 3.49 – 3.17 (m, 2H), 2.05 (s, 3H), 1.82 – 1.68 (m, 4H), 1.36 (d, *J* = 6.9 Hz, 3H), 1.32 – 1.16 (m, 4H). ¹³C NMR (**151 MHz**, **CDCl**₃) 170.7, 148.4, 148.4, 146.6, 146.6, 132.5, 132.3, 131.8, 131.2, 131.2, 130.4, 128.4, 128.3, 127.4, 127.0, 126.6, 126.5, 125.5, 121.5, 121.5, 121.4, 121.4, 121.0, 120.7, 120.7, 66.6, 58.1, 50.0, 50.0, 30.6, 23.7, 23.4, 20.9, 18.2. ³¹P NMR (**243 MHz**, **CDCl**₃) δ 11.42. HRMS (ESI+, m/z) calculated for C₃₀H₃₁NO₅P [M+H]⁺: 516.1934, found 516.1930.

(2*R*)-2-(cyclohexyl((*R*)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)amino)propyl acetate ((*R*,*R*)-2e)

Prepared following **GP B**. Purification by MPLC with pentane/ ethyl acetate (80:20) afforded (*R*,*R*)-**2e** (91:9 *d.r.*, 84 mg, 0.153 mmol, 51%) as a light yellow oil. ¹H NMR (500 MHz, CDCl₃) δ : 8.01 (d, *J* = 8.9 Hz, 1H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.96 – 7.90 (m, 2H), 7.59 (dd, *J* = 8.9, 1.1 Hz, 1H), 7.53 –

7.42 (m, 3H), 7.41 (d, J = 8.5 Hz, 1H), 7.35 – 7.28 (m, 1H), 7.25 – 7.21 (m, 2H), 4.29-4.26 (m, 1H), 4.21-4.17 (m, 1H), 3.45 – 3.26 (m, 1H), 2.83 (dd, J = 10.6, 4.9 Hz, 1H), 2.04 (s, 3H), 1.97 – 1.76 (m, 4H), 1.72 – 1.48 (m, 2H), 1.44 – 1.33 (m, 3H), 1.34 – 1.20 (m, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 148.5 (d, J = 11.0 Hz), 146.7 (d, J = 8.8 Hz), 132.5, 132.3, 131.7, 131.1, 130.4, 128.4, 128.2, 127.3, 126.9, 126.6, 126.4, 125.5, 125.4, 121.5 (d, J = 2.7 Hz), 121.3 (d, J = 2.3 Hz), 120.8, 120.58, 120.55, 66.8, 59.2, 50.2 (d, J = 3.1 Hz), 35.0, 34.4, 26.8, 26.6, 24.9, 24.6, 20.9. ³¹P NMR (243 MHz, CDCl₃) δ 11.22. HRMS (ESI+, m/z) calculated for C₃₁H₃₃NO₅P [M+H]⁺: 530.2096, found 530.2080.

(2*R*)-2-(cycloheptyl((*R*)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)amino)propyl acetate ((*R*,*R*)-2f)

Prepared following **GP B**. Purification by MPLC with pentane/ ethyl acetate (70:30) afforded (*R*,*R*)-**2f** (90:10 *d.r.*, 55 mg, 0.101 mmol, 34%) as a light yellow oil. ¹**H NMR (400 MHz, CDCl₃)** δ 8.05 – 7.99 (m, 2H), 7.98 – 7.91 (m, 2H), 7.63 – 7.56 (m, 1H), 7.53 – 7.38 (m, 4H), 7.31 (ddd, *J* = 8.5, 6.7, 1.4 Hz, 1H), 7.25 – 7.21 (m, 2H), 4.28 (m, 1H), 4.19 (m, 1H), 3.36 (dq, *J* = 24.7, 6.9 Hz, 1H), 2.94 –

2.72 (m, 1H), 2.04 (s, 3H), 1.97 - 1.73 (m, 4H), 1.64 - 1.45 (m, 2H), 1.37 (d, J = 6.8 Hz, 3H), 1.36 - 1.13 (m, 4H), 1.09 - 0.82 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 170.8, 148.6 (d, J = 11.1 Hz), 146.8 (d, J = 9.0 Hz), 132.6, 132.4, 131.8, 131.2, 130.5, 128.5, 128.3, 127.4, 127.0, 126.7, 126.5, 125.6, 125.51, 121.55 (d, J = 2.7 Hz), 121.38 (d, J = 2.5 Hz), 120.89, 120.67, 120.65, 66.89, 59.24, 50.28 (d, J = 4.1 Hz), 35.1, 34.4, 26.9, 26.7, 25.0, 24.7, 21.0, 18.4. ³¹P NMR (243 MHz, CDCl₃) δ 11.17. HRMS (ESI+, m/z) calculated for C₃₂H₃₅NO₅P [M+H]⁺: 544.2253, found 544.2238.

(2*R*)-2-((adamantan-2-yl)((*R*)-4-oxidodinaphtho[2,1-d:1',2'-f][1,3,2] dioxaphosphepin-4yl)amino)propyl acetate ((*R*,*S*)-2g)

Prepared following **GP B**. Purification by MPLC with pentane/ ethyl acetate (70:30) afforded (*R*,*R*)-**2g** (98:2 *d.r.*, 38 mg, 0.066 mmol, 22%) as a light yellow solid. ¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (d, *J* = 8.9 Hz, 1H), 7.98 (d, *J* = 8.8 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 2H), 7.59 (dd, *J* = 8.9, 1.1 Hz, 1H), 7.52 – 7.42 (m, 3H), 7.38 (d, *J* = 8.5 Hz, 1H), 7.33 – 7.27 (m, 1H), 7.25 – 7.17 (m, 2H), 4.52 (s, 1H), 4.35 (t, *J* = 9.2 Hz, 1H), 4.28 – 4.06 (m, 1H), 3.14 (d, *J* = 9.1 Hz, 1H), 2.23 – 2.10 (m, 2H), 2.04

(s, 5H), 1.90 (s, 1H), 1.72 – 1.42 (m, 10H), 1.10 – 0.82 (m, 2H). 13 C NMR (151 MHz, CDCl₃) δ 170.6, 148.9, 148.9, 146.8, 146.8, 132.5, 132.4, 131.8, 131.2, 131.1, 130.6, 128.5, 128.2, 127.3, 127.0, 126.7, 126.5, 125.5, 125.5, 121.7, 121.7, 121.5, 121.4, 120.7, 120.5, 120.5, 67.3, 61.1, 50.6, 40.1, 40.0, 38.3, 34.4, 34.3, 33.5, 32.7, 31.1, 27.4, 26.8, 21.0, 19.3. 31 P NMR (243 MHz, CDCl₃) δ 13.14. HRMS (ESI+, m/z) calculated for C₃₅H₃₇NO₅P [M+H]⁺: 582.2403, found 582.2401.

Limitations

General procedure

In an oven dried reaction tube, the corresponding phosphoramidite (R)-1 (0.1 mmol, 1.0 equiv.), PhI(OAc)₂ (4.0 equiv.), AgOAc (2.0 equiv.) and Pd(OAc)₂ (15 mol%) were added and taken in to the glove box. The deoxygenated solvent or solvent mixtures were added via a syringe. The reaction vessel was taken out of the glovebox and the mixture stirred at specified temperature for 24 h, cooled to room temperature and concentrated in vacuum. The internal standard, 1,3,5-trimethoxybenzene was added to the crude reaction material, which was subsequently dissolved in CDCl₃ (0.6 mL) and submitted for analysis.

NMR yield was determined by introducing an internal standard (1,3,5-trimethoxybenzene). *d.r.* was determined by ³¹P-NMR of the crude reaction mixture.

Table S 8 Attempted C(sp³)-H functionalizations of (R)-1a in the presence of various hypervalent iodine reagents PhI(X)₂^a

^a Optimized reaction conditions used with specified deviations. ^b Isolated yield reported, *d.r.* determined by ³¹P NMR analysis.

trimethoxybenzene as an internal standard, *d.r.* determined by ³¹P NMR of crude reaction mixture. ^c Conducted at 60 ^oC and at 100 ^oC. TFAA = trifluoroacetic anhydride, TFA = trifluoroacetic acid.

X-ray crystal structure of (R,S)-2g

Single crystals of $C_{35}H_{36}NO_5P \cdot CH_2Cl_2$ of (*R*,*S*)-**2g** were grown from a saturated solution in CH_2Cl_2 at 7 °C. A suitable crystal was selected and mounted on a cryoloop and placed in the nitrogen stream (100 K) of a Bruker-AXS D8 Venture diffractometer. Data collection and processing was carried out using the Bruker APEX3 software suite. A multi-scan absorption correction was applied, based on the intensities of symmetry-related reflections measured at different angular settings (SADABS).⁵ The

structure was solved using SHELXT⁶ and refinement was performed using SHELXL⁷ in the OLEX2 software package.⁸ The hydrogen atoms were generated by geometrical considerations, constrained by idealized geometries and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms. No A- or B-level alerts were raised by CheckCIF.

Figure S 2 : ORTEP representation of the single crystal structure of (*R*,*S*)-2a **Crystal data and structure refinement for** (*R*,*S*)-2a (CCDC 2291901).

Empirical formula $C_{36}H_{38}Cl_2NO_5P$ Formula weight 666.54 Temperature/K 100.00 Crystal system monoclinic Space group P2 ₁ a/Å 12.6352(9) b/Å 6.4448(4) c/Å 20.9210(16) a/° 90 $\beta/°$ 106.627(3) $\gamma/°$ 90 Volume/Å ³ 1632.4(2) Z 2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292 F(000) 700.0 Crystal size/mm ³ 0.203 × 0.037 × 0.026 Radiation MoK α ($\lambda = 0.71073$) 20 range for data collection/° 5.972 to 58.496 1 Index ranges -17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28 Reflections collected 107515 Independent reflections 8388 [R _{int} = 0.1007, R _{sigma} = 0.0442] Data/restraints/parameters 8383/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [all data] R ₁ = 0.0456, wR ₂ = 0.1008 Final R indexes	Identification code	(<i>R,S</i>)-2a
Formula weight666.54Temperature/K100.00Crystal systemmonoclinicSpace group $P2_1$ a/Å12.6352(9)b/Å6.4448(4)c/Å20.9210(16) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 106.627(3) $\gamma/^{\circ}$ 90Volume/Å^31632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm³0.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)20 range for data collection/°5.972 to 58.496Index ranges $-17 \le h \le 17$, $-8 \le k \le 8$, $-28 \le l \le 28$ Reflections collected107515Independent reflections8838 (R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F21.028Final R indexes [I>=2 σ (I)] $R_1 = 0.0456$, wR2 = 0.1008Final R indexes [all data] $R_1 = 0.0601$, wR2 = 0.1008Largest diff. peak/hole / e Å^30.60/-0.69Flack parameter0.02(2)	Empirical formula	$C_{36}H_{38}CI_2NO_5P$
Temperature/K100.00Crystal systemmonoclinicSpace group $P2_1$ $a/Å$ 12.6352(9) $b/Å$ $6.4448(4)$ $c/Å$ 20.9210(16) $a/°$ 90 $\beta/°$ 106.627(3) $\gamma/°$ 90 Volume/ų1632.4(2)Z 2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292 F(000)700.0Crystal size/mm³ $0.203 \times 0.037 \times 0.026$ RadiationMoK α ($\lambda = 0.71073$)2 Θ range for data collection/° 5.972 to 58.496Index ranges $-17 \le h \le 17, -8 \le k \le 8, -28 \le l \le 28$ Reflections collected107515Independent reflections8838 [R _{int} = 0.1007 , $R_{sigma} = 0.0442$]Data/restraints/parameters8838/1/409Goodness-of-fit on F² 1.028 Final R indexes [I>= 2σ (I)] $R_1 = 0.0456$, wR2 = 0.1008 Final R indexes [all data] $R_1 = 0.0601$, wR2 = 0.1008 Largest diff. peak/hole / e Å^3 $0.60/-0.69$ Flack parameter $0.02(2)$	Formula weight	666.54
Crystal system monoclinic Space group $P2_1$ $a/Å$ 12.6352(9) $b/Å$ 6.4448(4) $c/Å$ 20.9210(16) $a/°$ 90 $\beta/°$ 106.627(3) $\gamma/°$ 90 Volume/Å3 1632.4(2) Z 2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292 F(000) 700.0 Crystal size/mm ³ 0.203 × 0.037 × 0.026 Radiation MoK α (λ = 0.71073) 2Θ range for data collection/° 5.972 to 58.496 Index ranges $-17 \le h \le 17, -8 \le k \le 8, -28 \le l \le 28$ Reflections collected 107515 Independent reflections 8838 [R _{int} = 0.1007, R _{sigma} = 0.0442] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2 σ (I)] R_1 = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R_1 = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Temperature/K	100.00
Space group $P2_1$ $a/Å$ 12.6352(9) $b/Å$ 6.4448(4) $c/Å$ 20.9210(16) $a/°$ 90 $\beta/°$ 106.627(3) $\gamma/°$ 90 Volume/Å3 1632.4(2) Z 2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292 F(000) 700.0 Crystal size/mm ³ 0.203 × 0.037 × 0.026 Radiation MoK α (λ = 0.71073) 20 range for data collection/° 5.972 to 58.496 Index ranges -17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28 Reflections collected 107515 Independent reflections 8838 [R _{int} = 0.1007, R _{sigma} = 0.0442] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2 σ (I)] R_1 = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R_1 = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Crystal system	monoclinic
a/Å12.6352(9)b/Å6.4448(4)c/Å20.9210(16) α /°90 β /°106.627(3) γ /°90Volume/Å31632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm³0.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)2Ø range for data collection/°5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F²1.028Final R indexes [I>=2 σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å-³0.60/-0.69Flack parameter0.02(2)	Space group	P21
b/Å6.4448(4)c/Å20.9210(16) α /°90 β /°106.627(3) γ /°90Volume/Å31632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm³0.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)2 Θ range for data collection/°5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F²1.028Final R indexes [I>=2 σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å-³0.60/-0.69Flack parameter0.02(2)	a/Å	12.6352(9)
c/Å20.9210(16) $\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 106.627(3) $\gamma/^{\circ}$ 90Volume/Å31632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm^30.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)2 Θ range for data collection/°5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F ² 1.028Final R indexes [all data]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69Flack parameter0.02(2)	b/Å	6.4448(4)
$\alpha/^{\circ}$ 90 $\beta/^{\circ}$ 106.627(3) $\gamma/^{\circ}$ 90Volume/Å31632.4(2)Z2 $\rho_{calc}g/cm^{3}$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm30.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)2 Θ range for data collection/° 5.972 to 58.496Index ranges-17 < h < 17, -8 < k < 8, -28 < l < 28	c/Å	20.9210(16)
β/°106.627(3)γ/°90Volume/Å31632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356µ/mm ⁻¹ 0.292F(000)700.0Crystal size/mm³0.203 × 0.037 × 0.026RadiationMoKα (λ = 0.71073)20 range for data collection/° 5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F²1.028Final R indexes [I>=2σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69Flack parameter0.02(2)	α/°	90
$\gamma/^{\circ}$ 90Volume/ų1632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm³0.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)2Θ range for data collection/°5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F²1.028Final R indexes [I>=2 σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å-³0.60/-0.69Flack parameter0.02(2)	β/°	106.627(3)
Volume/Å31632.4(2)Z2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292F(000)700.0Crystal size/mm^30.203 × 0.037 × 0.026RadiationMoK α (λ = 0.71073)20 range for data collection/°5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F ² 1.028Final R indexes [I>=2 σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å- ³ 0.60/-0.69Flack parameter0.02(2)	γ/°	90
Z 2 $\rho_{calc}g/cm^3$ 1.356 μ/mm^{-1} 0.292 F(000) 700.0 Crystal size/mm ³ 0.203 × 0.037 × 0.026 Radiation MoKα ($\lambda = 0.71073$) 2Θ range for data collection/° 5.972 to 58.496 Index ranges -17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28 Reflections collected 107515 Independent reflections 8838 [R _{int} = 0.1007, R _{sigma} = 0.0442] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2σ (I)] R ₁ = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R ₁ = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Volume/ų	1632.4(2)
$\begin{array}{ll} \rho_{calc}g/cm^3 & 1.356 \\ \mu/mm^{-1} & 0.292 \\ F(000) & 700.0 \\ Crystal size/mm^3 & 0.203 \times 0.037 \times 0.026 \\ Radiation & MoK\alpha (\lambda = 0.71073) \\ 20 range for data collection/° 5.972 to 58.496 \\ Index ranges & -17 \leq h \leq 17, -8 \leq k \leq 8, -28 \leq l \leq 28 \\ Reflections collected & 107515 \\ Independent reflections & 8838 [R_{int} = 0.1007, R_{sigma} = 0.0442] \\ Data/restraints/parameters & 8838/1/409 \\ Goodness-of-fit on F^2 & 1.028 \\ Final R indexes [I>=2\sigma (I)] & R_1 = 0.0456, wR_2 = 0.1008 \\ Final R indexes [all data] & R_1 = 0.0601, wR_2 = 0.1088 \\ Largest diff. peak/hole / e Å^{-3} & 0.60/-0.69 \\ Flack parameter & 0.02(2) \\ \end{array}$	Z	2
μ /mm ⁻¹ 0.292F(000)700.0Crystal size/mm ³ 0.203 × 0.037 × 0.026RadiationMoKa (λ = 0.71073)20 range for data collection/° 5.972 to 58.496Index ranges-17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F ² 1.028Final R indexes [I>=2 σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69Flack parameter0.02(2)	$\rho_{calc}g/cm^3$	1.356
F(000)700.0Crystal size/mm³ $0.203 \times 0.037 \times 0.026$ RadiationMoKa (λ = 0.71073)20 range for data collection/° 5.972 to 58.496 Index ranges $-17 \le h \le 17, -8 \le k \le 8, -28 \le l \le 28$ Reflections collected107515Independent reflections8838 [R _{int} = 0.1007, R _{sigma} = 0.0442]Data/restraints/parameters8838/1/409Goodness-of-fit on F²1.028Final R indexes [I>=2 σ (I)]R ₁ = 0.0456, wR ₂ = 0.1008Final R indexes [all data]R ₁ = 0.0601, wR ₂ = 0.1088Largest diff. peak/hole / e Å-³0.60/-0.69Flack parameter0.02(2)	µ/mm⁻¹	0.292
Crystal size/mm ³ 0.203 × 0.037 × 0.026 Radiation MoKα ($\lambda = 0.71073$) 2Θ range for data collection/° 5.972 to 58.496 Index ranges -17 ≤ h ≤ 17, -8 ≤ k ≤ 8, -28 ≤ l ≤ 28 Reflections collected 107515 Independent reflections 8838 [R _{int} = 0.1007, R _{sigma} = 0.0442] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2σ (I)] R ₁ = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R ₁ = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	F(000)	700.0
Radiation MoKα (λ = 0.71073) 2Θ range for data collection/° 5.972 to 58.496 Index ranges $-17 \le h \le 17, -8 \le k \le 8, -28 \le l \le 28$ Reflections collected 107515 Independent reflections 8838 [R _{int} = 0.1007, R _{sigma} = 0.0442] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2σ (I)] R ₁ = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R ₁ = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Crystal size/mm ³	0.203 × 0.037 × 0.026
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Radiation	ΜοΚα (λ = 0.71073)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	20 range for data collection/°	5.972 to 58.496
Reflections collected 107515 Independent reflections 8838 [$R_{int} = 0.1007, R_{sigma} = 0.0442$] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2 σ (I)] $R_1 = 0.0456, wR_2 = 0.1008$ Final R indexes [all data] $R_1 = 0.0601, wR_2 = 0.1088$ Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Index ranges	$-17 \leq h \leq 17, -8 \leq k \leq 8, -28 \leq l \leq 28$
Independent reflections 8838 [$R_{int} = 0.1007, R_{sigma} = 0.0442$] Data/restraints/parameters 8838/1/409 Goodness-of-fit on F ² 1.028 Final R indexes [I>=2 σ (I)] $R_1 = 0.0456, wR_2 = 0.1008$ Final R indexes [all data] $R_1 = 0.0601, wR_2 = 0.1088$ Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Reflections collected	107515
Data/restraints/parameters $8838/1/409$ Goodness-of-fit on F ² 1.028 Final R indexes [I>= 2σ (I)] $R_1 = 0.0456$, wR ₂ = 0.1008 Final R indexes [all data] $R_1 = 0.0601$, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ $0.60/-0.69$ Flack parameter $0.02(2)$	Independent reflections	8838 [R_{int} = 0.1007, R_{sigma} = 0.0442]
Goodness-of-fit on F^2 1.028 Final R indexes [I>=2 σ (I)] R ₁ = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R ₁ = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Data/restraints/parameters	8838/1/409
Final R indexes [I>= 2σ (I)] R ₁ = 0.0456, wR ₂ = 0.1008 Final R indexes [all data] R ₁ = 0.0601, wR ₂ = 0.1088 Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Goodness-of-fit on F ²	1.028
Final R indexes [all data] $R_1 = 0.0601$, $wR_2 = 0.1088$ Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Final R indexes [I>=2σ (I)]	$R_1 = 0.0456$, $wR_2 = 0.1008$
Largest diff. peak/hole / e Å ⁻³ 0.60/-0.69 Flack parameter 0.02(2)	Final R indexes [all data]	$R_1 = 0.0601$, $wR_2 = 0.1088$
Flack parameter 0.02(2)	Largest diff. peak/hole / e Å $^{\text{-}3}$	0.60/-0.69
	Flack parameter	0.02(2)

DFT calculations

All computational input files were prepared in GaussView 6.0 on a local Windows 10 terminal. Input files were then transferred to the Rijksuniversiteit Groningen Peregrine HPC cluster where DFT calculations were carried out using the Gaussian 16 (g16) suite of programs.

⁵ L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3–10.

⁶ G. M. Sheldrick, Acta Cryst. A **2015**, 71, 3–8.

⁷ G. M. Sheldrick, Acta Cryst. A 2008, 64, 112–122.

⁸ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339–341.

The DFT thermochemistry of stationary points and the C-H activation step transition state of the catalytic cycle were examined. Geometry optimization of structures to stationary point minima or a transition states (TS) were done using the g16 opt command at the B3LYP functional and def2-SVP basis set level of theory with implicit solvation using the polarization continuum model (PCM) with dichloromethane as the implicit solvent. Transition state geometry inputs were the result of rational guess based on bond-breaking atomic distances, or were the result of potential energy surface relaxed coordinate scans using the g16 scan command at the B3LYP/def2-SVP/PCM=DCM level. Intrinsic reaction coordinate (IRC)iv calculations were carried out on the C-H activation transition state structure to verify that it is connected to the associated reactant and product minima structures. After optimization, frequency DFT calculations of the optimized structures were carried out using the g16 *freq* command at the B3LYP/def2-SVP/PCM=DCM level, to confirm that minima structures had zero imaginary frequencies and that transition states had a single imaginary frequency. All shown free energies (Figure S3 below) are ZPE and thermally corrected and were obtained from the frequency calculations. All shown free energies are reported in kcal/mol, at 298.15 K and 1 atm.

A proposed catalytic cycle of the investigated C(sp³)–H acetoxylation of (*R*)-1 to (*R*,*R*)-2, which is supported by Density Functional Theory calculations.

(R)-1 optimised geometry [# opt=(calcfc) b3lyp scrf=(solvent=dichloromethane) guess=read pop=full geom=check #empiricaldispersion=gd3 #freq=noraman #p chkbasis gfinput integral=ultrafinegrid iop(6/7=3) scf=tight def2svp]

EE + Thermal Free Energy Correction: -1244.760707

01			
С	-1.81146500	1.10359100	0.11162500
С	-0.62632200	1.32953400	0.84843500
С	-0.09649100	2.61890200	0.97797700
С	-0.72527200	3.70376200	0.36566300
С	-1.89240800	3.50045700	-0.37981000
С	-2.42544300	2.21550300	-0.49560600
С	-2.41770700	-0.24794000	0.01726700
С	-1.62865100	-1.39253600	-0.23278500
С	-2.20787100	-2.66309200	-0.32471000
С	-3.58859300	-2.81571500	-0.18571700
С	-4.39107600	-1.69394300	0.05234100
С	-3.80701600	-0.42976900	0.15225100
н	0.80778600	2.74591200	1.57581100
н	-0.30233400	4.70611300	0.46875900
н	-2.38716700	4.34153000	-0.87099300
н	-3.33354300	2.05806500	-1.08245200
н	-1.55551000	-3.51624600	-0.52180600
н	-4.03638000	-3.80958500	-0.26230700
н	-5.47183600	-1.80422600	0.16815300
н	-4.43431800	0.44081000	0.35778600
0	-0.00454800	0.30401500	1.51357100
0	-0.28038600	-1.26383600	-0.46153500
Р	0.80970600	-1.02162200	0.82398200
N	2.07109000	-0.41292400	-0.10415700
С	3.46127400	-0.79290000	0.26063000
н	4.09393900	-0.39189500	-0.54445000
С	3.67726500	-2.31151800	0.27355300
н	3.11286800	-2.79320100	1.08766400
н	3.35380300	-2.75663000	-0.67975600
н	4.74381900	-2.54362900	0.42308700
С	3.91106000	-0.13217400	1.56936900
н	4.97440700	-0.34159500	1.76881500
н	3.77367200	0.95849600	1.52155300
н	3.32629500	-0.51228000	2.42355600
С	1.87634800	0.45801900	-1.28875300
н	0.80818500	0.71140100	-1.30542500
С	2.18010300	-0.30230600	-2.58519300
н	1.97279900	0.33172900	-3.46216500
н	3.23792500	-0.60802600	-2.63775900
Н	1.55360300	-1.20404100	-2.64836300
С	2.65470100	1.77405700	-1.18850600
н	3.74432400	1.61653200	-1.22296600
Н	2.38898200	2.42771600	-2.03413500
н	2.41031900	2.30483600	-0.25773100

Pd(OAc)₂ (A') optimised geometry [# opt=(calcfc) b3lyp scrf=(solvent=dichloromethane) guess=read pop=full geom=check #empiricaldispersion=gd3 #freq=noraman #p chkbasis gfinput integral=ultrafinegrid iop(6/7=3) scf=tight def2svp]

EE + Thermal Free Energy Correction: -584.540974

01			
0	-1.76694800	1.08237900	-0.01155700
0	-1.76688900	-1.08243600	-0.01154700
С	-2.44153000	-0.00005400	-0.00480600
С	-3.93272400	0.00001500	0.04284600
н	-4.24957100	0.00537500	1.09863000
н	-4.32767400	0.90251700	-0.44226900
н	-4.32771900	-0.90701100	-0.43363000
0	1.76694300	1.08238100	-0.01155600
С	2.44153300	-0.00004700	-0.00480700
0	1.76690400	-1.08243700	-0.01155000
С	3.93272800	0.00002500	0.04284700
н	4.24957300	0.00483400	1.09863400
н	4.32772800	-0.90676700	-0.43407500
н	4.32767500	0.90276400	-0.44182400
Pd	-0.00000300	-0.00000900	-0.01157100

AgOAc optimised geometry [# opt=(calcfc) b3lyp scrf=(solvent=dichloromethane) guess=read pop=full geom=check #empiricaldispersion=gd3 #freq=noraman #p chkbasis gfinput integral=ultrafinegrid iop(6/7=3) scf=tight def2svp]

```
EE + Thermal Free Energy Correction: -375.335423
```

01 С $-3.08243700 \quad -0.01650200 \quad -0.00004900$ -3.43510200 -0.56707400 -0.88598100 Н Н -3.50650500 0.99562700 0.00098900 н -3.43531000 -0.56909500 0.88452800 С -1.55903400 0.01496700 0.000070000 -0.97202700 1.13087400 0.00005600 0 -0.95365900 -1.09616200 0.00006200 Ag 1.14109000 -0.00272200 -0.00001300 **B'** optimised geometry [# opt=(calcfc) b3lyp scrf=(solvent=dichloromethane) guess=read pop=full geom=check #empiricaldispersion=gd3 #freq=noraman #p chkbasis gfinput integral=ultrafinegrid iop(6/7=3) scf=tight def2svp]

EE + Thermal Free Energy Correction: -2204.690737 (-33.7 kcal/mol)

01			
С	-2.84060700	1.79892700	-0.17842800
С	-1.44231100	1.94911500	-0.12133500
С	-0.80529700	3.16512700	-0.36792800
С	-1.57426800	4.27413500	-0.72660000
С	-2.96537800	4.15270900	-0.82902200
С	-3.58667300	2.93471400	-0.54787800
С	-3.51102800	0.52878200	0.20599700
С	-3.05087300	-0.73944600	-0.19871900
С	-3.68656300	-1.91936500	0.18273100
С	-4.82301100	-1.85988300	0.98833700
С	-5.31159200	-0.61666100	1.40555700
С	-4.66147200	0.55547900	1.01900600
н	0.27786400	3.22665500	-0.24095700
н	-1.08627400	5.23120100	-0.92407300
Н	-3.57087700	5.01337400	-1.12170400
н	-4.67288100	2.85029300	-0.62327400
н	-3.27290800	-2.86860500	-0.16091000
н	-5.32173600	-2.78229000	1.29388300
н	-6.19616900	-0.55946700	2.04373500
н	-5.03494100	1.52054600	1.36787900
0	-0.65467800	0.87059500	0.26328400
0	-1.97777000	-0.85436800	-1.07689900
Ρ	-0.44467900	-0.44572300	-0.70636700
Ν	0.15098800	-0.01397700	-2.18216000
С	-0.56852200	-0.07217100	-3.48927500
н	0.19252700	0.24957100	-4.21340200
С	-1.71809300	0.93467900	-3.57586600
Н	-2.08967500	0.98203800	-4.61161000
Н	-2.55744700	0.65095300	-2.92667200
Н	-1.37987600	1.93922300	-3.28117100
С	-0.97548600	-1.49594000	-3.88257500
н	-1.31890300	-1.50718600	-4.92894800
н	-0.12059300	-2.18141600	-3.78749200
н	-1.79195200	-1.87110600	-3.25043700
С	1.60380000	0.33581400	-2.19730800
н	1.93170000	0.38274100	-1.14667800
С	1.83527800	1.73401500	-2.77293300
н	2.88953600	2.00371000	-2.62601000
н	1.60842800	1.78280000	-3.84939500
н	1.21485900	2.47805500	-2.25412600
С	2.44781000	-0.73640000	-2.88867500
н	2.21034500	-0.80964600	-3.96219000
н	3.51392300	-0.47802900	-2.79720200
н	2.27942900	-1.71915900	-2.42646200
Pd	0.70584100	-1.94798200	0.43342300
0	0.67985800	-0.78744900	2.14651200
0	-1.38404800	-1.53885400	2.57662800
0	1.88698100	-3.86583700	0.78185800

0	0.96225300	-3.28712900	-1.11641600
С	-0.43650700	-0.83239800	2.86717000
С	-0.44077000	0.09383500	4.06605500
н	-0.67109100	1.11485600	3.71923700
н	-1.21970900	-0.21991500	4.77216100
н	0.54017200	0.11648300	4.56154800
С	1.66490300	-4.12331200	-0.42907400
С	2.21210800	-5.33891700	-1.11293400
н	3.08982000	-5.03957600	-1.70859300
н	2.52057100	-6.08854200	-0.37325700
н	1.46471800	-5.75613600	-1.80228000
0	3.79240900	1.73274100	-0.21049000
С	3.35819500	2.83812500	0.14656600
0	2.49485200	3.02269800	1.08403200
С	3.80122100	4.10364700	-0.57883000
н	3.05270000	4.33706300	-1.35423100
н	3.84929100	4.96053100	0.10755700
Н	4.77043100	3.94912200	-1.07175300
Ag	1.79777100	1.13097600	1.83016400

B' (without AgOAc) optimised geometry [# opt=(calcfc) b3lyp scrf=(solvent=dichloromethane) guess=read pop=full geom=check #empiricaldispersion=gd3 #freq=noraman #p chkbasis gfinput integral=ultrafinegrid iop(6/7=3) scf=tight def2svp]

EE + Thermal Free Energy Correction: -1829.334899 (-20.8 kcal/mol)

```
01
С
         2.88088500 1.31242600 -0.11897700
С
         2.55009500 0.16999200 0.64071400
С
         3.53293300 -0.63668500 1.21780800
         4.88153700 -0.32819600 1.03213100
С
С
         5.23935300 0.78997400 0.27065100
С
         4.24872900 1.59780200 -0.28980200
С
         1.83714400 2.21131800 -0.67141200
С
         0.68635500 1.70663400 -1.30426200
С
         -0.32521800 2.53639000 -1.78796000
С
         -0.18295800 3.92075700 -1.67534600
С
         0.96277900 4.45664300 -1.07545800
С
         1.95528200 3.61082800 -0.57775700
         3.21775600 -1.49056400 1.81970300
н
н
         5.64992000 -0.96102800 1.48199800
         6.29218800 1.03453500 0.11341600
н
         4.53234900 2.46808300 -0.88585700
н
         -1.21022600 2.07680800 -2.23084100
н
         -0.96973600 4.57945600 -2.05003300
н
         1.07632200 5.53878300 -0.97929900
н
          2.83070500 4.03457800 -0.08101800
н
0
          1.22719300 -0.14104100 0.90898600
0
          0.55888300 0.33249100 -1.49481200
Ρ
         0.11629900 -0.61080300 -0.22052300
Ν
          0.45540600 -2.11885600 -0.79673000
С
         -0.34362000 -3.30969100 -0.38004800
н
         0.17358600 -4.15860600 -0.84690600
         -1.76710500 -3.30155200 -0.94427300
С
н
         -2.38646800 -2.51768900 -0.48192700
н
         -1.75404900 -3.13005100 -2.03077000
```

Н	-2.25099200	-4.27104500	-0.74819000
С	-0.29210700	-3.52389600	1.13612400
Н	-0.82248700	-4.45001900	1.40745000
Н	0.75163300	-3.61017800	1.47527400
Н	-0.75891000	-2.69046000	1.68453300
С	1.63682900	-2.34035900	-1.68586600
Н	2.14817100	-1.37151900	-1.76009300
С	1.18074400	-2.73041400	-3.09356800
н	2.05142200	-2.83087700	-3.76023200
н	0.64694800	-3.69425000	-3.09213600
Н	0.51044300	-1.96191800	-3.50595000
С	2.63651400	-3.33434600	-1.08863400
Н	2.23446200	-4.35812100	-1.04561500
н	3.54041000	-3.36155800	-1.71640800
Н	2.93420900	-3.03326300	-0.07487600
Pd	-1.91807000	-0.07597300	0.47636400
0	-1.35120800	-0.42682400	2.37267200
0	-0.69547300	1.71126500	2.61928000
0	-3.99474000	0.65754900	0.47352400
0	-2.84140600	0.28548000	-1.34506700
С	-0.79476400	0.56286800	3.02849200
С	-0.23703700	0.12368300	4.37185800
Н	0.67255800	-0.47054000	4.18707700
н	0.01864900	0.99970000	4.98169100
Н	-0.95125800	-0.52082800	4.90447700
С	-3.92812200	0.68503800	-0.78736800
С	-5.05055100	1.19826700	-1.63596400
н	-5.14230500	0.59482700	-2.54980200
н	-5.99147600	1.19527400	-1.07108900
н	-4.81711900	2,23300600	-1.93553700

C-H Activation TS optimised geometry [# opt=(calcfc,ts,noeigen) freq=noraman b3lyp scrf=(solvent=dichloromethane) #empiricaldispersion=gd3 #p #pop=none def2svp gfinput integral=ultrafinegrid iop(6/7=3) scf=tight]

EE + Thermal Free Energy Correction: -2204.630968 (+3.8 kcal/mol)

01			
С	-3.89396400	0.69969100	-0.74875600
С	-3.15332400	-0.45097300	-1.09406300
С	-3.77183900	-1.52763700	-1.74663300
С	-5.13894600	-1.50959100	-2.01126100
С	-5.90441500	-0.40361500	-1.62412000
С	-5.28129500	0.68087500	-1.01059600
С	-3.27905600	1.92575200	-0.18224900
С	-2.28857500	1.89696600	0.81995300
С	-1.85117900	3.07235300	1.44120300
С	-2.33899500	4.31103900	1.02886600
С	-3.27418100	4.37310400	-0.01047400
С	-3.73875300	3.19544200	-0.59371200
н	-3.15494700	-2.37638100	-2.04464200
н	-5.60590600	-2.36030400	-2.51338200
н	-6.98147000	-0.38332400	-1.80477400
н	-5.88118200	1.54365000	-0.71361000
Н	-1.13291200	2.98694100	2.25536500
Н	-1.98589300	5.22352900	1.51507500
Н	-3.64923000	5.33754400	-0.36037300
Н	-4.47593300	3.25095800	-1.39724100
0	-1.79693000	-0.52480100	-0.92255700
0	-1.79221300	0.70123500	1.29919300
Ρ	-0.80399900	-0.34759900	0.44200100
Ν	-0.95858900	-1.85051200	1.14404700
С	-0.25429500	-1.85255400	2.43577500
н	0.37978700	-2.75269500	2.48895700
С	-1.20943300	-1.85125000	3.63422600
Н	-1.87705800	-0.97652700	3.58661400
н	-1.82693700	-2.75988800	3.66851400
н	-0.63177100	-1.80306700	4.57103700
С	0.61484200	-0.59979400	2.38665400
Н	0.67960400	-0.13979200	3.38715100
Н	1.64315400	-0.85108200	2.06700200
Н	0.67326300	0.83912000	1.96404400
С	-1.73377600	-2.99790700	0.63594900
н	-1.75422400	-2.87549600	-0.45469400
С	-3.18336100	-3.02880100	1.14399500
Н	-3.77027100	-3.75810100	0.56368900
Н	-3.23258700	-3.32184500	2.20267200
н	-3.66423300	-2.04734100	1.03724000
С	-1.01219400	-4.31747300	0.92914900
Н	-1.04442100	-4.57009200	2.00041100
Н	-1.50747700	-5.13426600	0.38216500
Н	0.04057100	-4.27693400	0.61711400
Pd	0.95440000	0.32226400	-0.81545000
0	2.23405600	-2.65990500	-0.18711600
0	0.92394200	-1.55176500	-1.65484000
0	1.06772000	1.91881100	2.06017200

0	0.98897400	2.26995500	-0.15586100
С	1.47108900	-2.60406900	-1.17955800
С	1.13684900	-3.87645500	-1.93354500
н	1.60681700	-4.74726100	-1.46075400
н	0.04556500	-4.00824100	-1.97127700
н	1.49064800	-3.78095000	-2.97153500
С	1.24127300	2.63647600	1.01687300
С	1.79290500	4.01971000	1.21660600
н	1.73045200	4.32403600	2.26827300
н	2.84878000	4.00802800	0.90095400
н	1.25583900	4.72759500	0.57053800
0	2.61581000	0.99150200	-2.01297600
С	3.64996100	1.47542900	-1.45723100
0	4.10587800	1.13063500	-0.33124100
С	4.36318400	2.58581900	-2.20354200
н	5.38692800	2.72114900	-1.83204400
н	4.36507600	2.38378300	-3.28365600
н	3.79729900	3.51801600	-2.04097600
Ag	3.33079500	-0.80676300	0.41606900

C' optimised geometry [# opt=(calcfc) b3lyp scrf=(solvent=dichloromethane) guess=read pop=full geom=check #empiricaldispersion=gd3 #freq=noraman #p chkbasis gfinput integral=ultrafinegrid iop(6/7=3) scf=tight def2svp]

EE + Thermal Free Energy Correction: -2204.703146 (-41.5 kcal/mol)

01			
С	-3.64191800	1.33855700	-0.35504500
С	-3.00477900	0.44983900	-1.24361100
С	-3.64936200	-0.05766100	-2.37254600
С	-4.97169500	0.30479800	-2.63244400
С	-5.63665000	1.17501500	-1.76052100
С	-4.97583700	1.68575200	-0.64260200
С	-2.92260400	1.92559300	0.80063800
С	-2.07022400	1.15336500	1.61371800
С	-1.33329900	1.72011700	2.65494400
С	-1.45421900	3.08591700	2.91789300
С	-2.31775300	3.87288000	2.14648700
С	-3.04056100	3.29569500	1.10216200
Н	-3.09865000	-0.73045800	-3.03181900
Н	-5.48139400	-0.09419100	-3.51219000
н	-6.67472700	1.45586700	-1.95132700
н	-5.50153200	2.35959500	0.03732200
н	-0.65760400	1.08539200	3.22869400
н	-0.87018800	3.53356100	3.72510500
н	-2.41564500	4.94186300	2.34803900
н	-3.68432500	3.91986600	0.47870800
0	-1.67224400	0.09367500	-1.04421700
0	-1.99598300	-0.21864900	1.42652900
Р	-1.13063600	-0.92480000	0.20694300
N	-1.84316300	-2.41027900	0.09634100
С	-0.85049200	-3.51853900	0.04241200
н	-1.26892000	-4.28997000	-0.62643000
С	-0.58222000	-4.14456100	1.41596900
н	-0.16834000	-3.38768900	2.10192200
н	-1.48800600	-4.56663900	1.86862700
н	0.15609100	-4.95547700	1.31583100
С	0.44044500	-2.97121200	-0.58058400
н	1.29032300	-3.64161200	-0.39175900
н	0.32342100	-2.83375200	-1.66979600
С	-3.30904000	-2.62090700	0.16081900
н	-3.74750600	-1.61918200	0.05267000
С	-3.79219200	-3.16458000	1.50998800
н	-3.52455300	-4.22269300	1.64633400
н	-3.36334600	-2.58112100	2.33746200
н	-4.88981900	-3.09070000	1.56332500
С	-3.80442700	-3.46336000	-1.01657200
н	-3.47386400	-4.51074300	-0.93548500
н	-4.90505400	-3.46280300	-1.03672700
н	-3.44113100	-3.05593200	-1.97160400
Pd	1.03053900	-1.15008300	0.18333000
0	1.60189100	0.85474400	0.74819700
0	1.66757100	0.39075900	2.94166400
С	1.83406500	1.15160400	1.98512800
с	2.32746100	2.58008500	2.19213700

Н	1.57776200	3.28715800	1.80377500
н	2.50688600	2.78166500	3.25621500
н	3.25532400	2.74255600	1.62093700
0	3.03299800	-1.91118300	0.28700800
С	4.22498200	-1.60779700	0.00866600
0	4.62505500	-0.58596100	-0.61667600
С	5.29171000	-2.57452300	0.50072600
н	6.25549000	-2.38607700	0.01056200
н	5.41069400	-2.43804400	1.58800000
н	4.96978000	-3.61209500	0.33231900
Ag	3.38658300	1.07437300	-1.18945700
0	1.99009100	2.75590700	-1.73218400
С	0.82415300	2.37374000	-1.65807600
0	0.49504700	1.20618000	-2.18168300
н	-0.39503000	0.88790700	-1.89616900
С	-0.23620000	3.16316300	-0.95286200
н	-1.22161200	3.06101900	-1.42552100
н	-0.29838600	2.75662700	0.06886500
н	0.05991200	4.21668400	-0.89315900

¹H NMR (300 MHz, CDCl₃)

 $\begin{array}{c} 7.58\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.759\\ 7.753\\ 7.752\\ 7.7$

57 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 f1 (ppm)

	170	0	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
f1 (ppm)																					

¹H NMR (300 MHz, CDCl₃)

 $\begin{array}{c} 7.59\\ 7.795\\ 7.795\\ 7.795\\ 7.798\\ 7.798\\ 7.798\\ 7.798\\ 7.798\\ 7.798\\ 7.798\\ 7.728\\ 7.7$

¹H NMR (600 MHz, CDCl₃)

31

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR (600 MHz, CDCl₃)

-1 100 90 f1 (ppm)

										· · · · ·											
80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-2
										f1 (j	ppm)										

							1 1					1						
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
f1 (ppm)																		

80 70 f1 (ppm)

³¹P NMR (162 MHz, CDCl₃)

90 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -3 f1 (ppm) ¹H NMR (600 MHz, CDCl₃)

77.95 77.95 77.95 75

<u> </u>		· · ·		· ·	· ·	· · ·	- · ·	· · ·	- · ·		· · ·		· ·		· · ·	· ·				· · ·		<u> </u>	
80	170	160)	150	140	130	120	110	100	90	8	0	70	60	50	40	30	20	10	0	-10	-20	-2
f1 (ppm)																							

¹H NMR (400 MHz, CDCl₃)

100 90 f1 (ppm) -1

· · · ·	- · ·	- · ·	1 1		· ·		- · ·		- · ·	- · ·		- · ·	- · ·	- · ·	- · ·	- · ·	- · ·	1 '	- · ·		1
80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20 -	į
f1 (ppm)																					

¹H NMR (600 MHz, CDCl₃)

³¹P NMR (162 MHz, CDCl₃)

48

³¹P NMR (162 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

40 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -1 f1 (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

f1 (ppm)