Supporting Information

Direct Organocatalytic Esterification of Carboxylic Acids and Alcohols by Redox Neutral Sulfur (IV) Catalysis *via* Intramolecularly Interrupted Pummerrer Intermediates.

Ashish Biswas, Priyanka Pradhan, Sumit Ashok Wakpanjar, and Pavan K. Kancharla*

Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039

Table of Contents

1.	General information	3
2.	List of alcohol used in esterification reaction	4
3.	List of acids used in esterification reaction	5
4.	Procedures for catalytic esterification reaction	5
5.	Optimization Table	6
6.	Preparation of the catalysts	7
7.	Spectral data of all the catalysts	8
8.	Control experiments	16
9.	Preparation of labelled alcohol and acid	17
10. NMR spectra of all the compounds		
11	. XRD data of the catalyst	105

General Information

All solvents used were in commercial grade for the reaction without further purification. Reagents were purchased from Sigma-Aldrich, Merck, Spectro-chem, Alfa Aesar, Loba, BLD Pharm. and used without further purification.

Analysis and characterization

Reactions were monitored by TLC on Kiesel-gel 60 F254 (Merck). Detection was done by examination under UV light (254 nm) and by charring with 10% sulfuric acid in water. Purification was performed in the normal phase using silica gel [Merck, 60-120 mesh]. Extracts were concentrated in vacuo using both Büchi rotary evaporators (bath temperatures up to 40°C) at a pressure of either 15 mmHg (diaphragm pump) and 0.7 mmHg (oil pump), at room temperature. ¹H and ¹³C NMR were recorded on a Bruker 600MHz, 500MHz and 400MHz spectrometer using CDCl₃ as solvent. Chemical shift values are reported in ppm with the solvent as the internal standard (CDCl₃: δ 7.26 for 1H, δ 77.16 for 13C). Data are reported as follows: chemical shifts (δ), multiplicity (s = singlet, d = doublet, dd = doublet, ddd = doublet of doublets, dt = doublet of triplet, t = triplet, td = triplet of doublet, q = quartet, m = multiplet) etc., coupling constants J (Hz), and integration. High-Resolution Mass measurements were performed using Agilent Technologies High-Resolution Mass spectrometer QTOF 6520. Structural assignments were made with additional information from gNOESY, gCOSY and gHSQC experiments. Suitable crystals for single-crystal X-ray diffraction (SCXRD) analysis were obtained by dissolving "X" in Ethyl Acetate/Hexane, followed by slow evaporation of the solvent mixture at room temperature. The X-ray diffraction data were collected at 296 K with Mo K α radiation (λ =0.71073 Å) using a Micro focused based Bruker D8 QUEST diffractometer. Apex IV software was used for data collection, indexing the reflections, and determining the unit cell parameters; the collected data was integrated using Saint Software. The structures were solved by Intrinsic phasing and refined by full-matrix least-squares calculations using SHELXTL 2018 software.

Different alcohols used in the study

Different acids used in the study

General procedure 1 (GP1) for Esterification reaction

Scheme 1: General procedure for Esterification reaction

A suspension of alcohol (1.5 equiv.), phenylacetic acid (1.0 equiv.) and catalyst **S5** (10 mol%) in Toluene (2 mL) was heated to reflux in a Dean-Stark apparatus and stirred for 30 hours. The reaction mixture was then cooled to room temperature, diluted with EtOAc and washed water twice then brine. The organic phase was dried over MgSO₄ and concentrated in vacuo. The crude residue was purified by flash column chromatography to afford the ester product.

Optimization study

Optimization Table 1

Entry	Catalyst	Catalyst	Yield (%)
		(mol%)	
1	S1	10	30
2	S2	10	45
3	S3	10	15
4	S4	10	10
5	S5	10	85
6	S 6	10	20
7	S7	10	58
8	S5	15	55
9	S5	20	65

Reaction conditions: **1aa** (1.0 equiv. 0.7 mmol), **2m** (1.5 equiv. 1.09 mmol), catalyst (10 mol%) in toluene (2 ml) was refluxed in a Dean-Stark apparatus for 30 h.

General procedure 2 (GP2) for synthesis of the precursor of the Catalyst

Scheme 2: synthesis of the precursor of the catalyst.

To a solution of 2,4-di-tertbutylphenol (1) (2.4 mmol) in dry THF then K_2CO_3 (4.8 mmol) was added and stirred at room temperature for 0.5 h in argon atmosphere. Paraformaldehyde (2.4 mmol) was added to the reaction mixture and stirred at 60°c temperature for additional 30 h. then reaction mixture was poured over 10 ml of water and extracted with DCM 3 times. The organic extract was dried over Na₂SO₄, evaporated to over reduced pressure. The crude residue was then purified by column chromatography over silica gel (60-120 mesh) using hexane and ethyl acetate (8:2) as an eluent to afford the desired product (2) 86% yield. The identification and purification of the product was confirmed by spectroscopic analysis.

General procedure 3 (GP3) for synthesis of the precursor of the Catalyst

To a solution of 2,4-di-tert-butyl-6-(hydroxymethyl) phenol (2) (1.6 mmol) in dry DCM then Thiophenol (1.8 mmol) was added and stirred at room temperature for 10 minutes in argon atmosphere at 0° c. HBF₄ in ether (1.3 mmol) was added to the reaction mixture and stirred at 0° c temperature for additional 3 h, then workup done by NaHCO₃ and extracted with DCM 3 times. The organic extract was dried over Na₂SO₄, evaporated to over reduced pressure. The crude residue was then purified by column chromatography over silica gel (60-120 mesh) using

7

hexane and ethyl acetate (9:1) as an eluent to afford the desired product (**3**) 90 % yield. The identification and purification of the product was confirmed by spectroscopic analysis.

General procedure 4 (GP4) for synthesis of the sulfoxide Catalyst

Scheme 4: synthesis of the sulfoxide catalyst S1.

To a solution of 2,4-di-tert-butyl-6-((phenylthio)methyl) phenol (**3**) (1.52 mmol) in CH₂Cl₂ at 0° c was added mCPBA (1.5 mmol) after which the mixture was warmed at room temperature stirring to 2 h before quenching with NaHCO₃, workup done by DCM 3 times, washing with brine, drying and concentration. The crude residue was then purified by column chromatography over silica gel (60-120 mesh) using hexane and ethyl acetate (7:3) as an eluent to afford the desired product (**S1**) 80 % yield. The identification and purification of the product was confirmed by spectroscopic analysis.

Synthesis of 2,4-di-tert-butyl-6-(hydroxymethyl)phenol (2)

General procedure 2 was used to prepared compound 2 from 1 (500 mg, 2.4 mmol). Flash column chromatography was used to refine the crude product to get 2 (490 mg, 86%) as a white solid, Rf = 0.5 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.53 (s, 1H),

7.28 (d, J = 2.6 Hz, 1H), 6.89 (d, J = 2.2 Hz, 1H), 4.83 (d, J = 6.0 Hz, 2H), 2.12 (t, J = 5.8 Hz, 1H), 1.43 (s, 9H), 1.28 (s, 9H). ¹³C NMR (126 MHz, chloroform-d) δ 152.07, 140.59, 135.49, 123.05, 122.94, 121.57, 64.85, 33.91, 33.18, 30.70, 28.64. HRMS (ESI) calcd for C₁₅H₂₄O₂ [M+Na]⁺ 259.1669, found 259.1661.

Synthesis of 2-(hydroxymethyl)-4,6-dimethylphenol (5)

General procedure 2 was used to prepared compound **5** from **4** (300 mg, 2.4 mmol). Flash column chromatography was used to refine the crude product to get **5** (310 mg, 80%) as a yellow syrup, Rf = 0.6 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.21 (s, 1H), 6.87 (s, 1H), 6.63 (s, 1H), 4.72 (s, 2H), 2.68 (s, 1H), 2.20 (d, *J* = 4.2 Hz, 6H). ¹³C NMR (**126 MHz, chloroform-d**) δ 150.85, 130.31, 127.72, 124.87, 124.05, 122.91, 63.61, 19.30, 14.50. **HRMS (ESI)** calcd for C₉H₁₂O₂ [M+Na]⁺ 175.0730, found 175.0735.

Synthesis of 2,4-di-tert-butyl-6-((phenylthio)methyl)phenol (3)

General procedure 3 was used to prepared compound **3** from **2** (400 mg, 1.6 mmol). Flash column chromatography was used to refine the crude product to get **3** (505 mg, 90%) as a yellow oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.24 (dd, J = 8.0, 1.9 Hz, 2H), 7.19 – 7.10 (m, 4H), 6.72 (d, J = 2.6 Hz, 1H), 6.07 (s, 1H), 4.06 (s, 2H), 1.35 (s, 9H), 1.13 (s, 9H). ¹³C NMR (126 MHz, chloroform-d) δ 150.44, 141.32, 136.02, 132.93, 130.57, 127.85, 126.37, 124.39, 122.69, 120.76, 36.76, 33.92, 33.12, 30.46, 28.80. . HRMS (ESI) calcd for C₂₁H₂₈OS [M+Na]⁺ 351.1753, found 351.1740.

Synthesis of 2,4-dimethyl-6-((phenylthio)methyl)phenol (6)

General procedure 3 was used to prepared compound **6** from **5** (270 mg, 1.6 mmol). Flash column chromatography was used to refine the crude product to get **6** (354 mg, 90%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.38 – 7.31 (m, 2H), 7.26 (t, *J* = 7.5 Hz, 2H), 7.20 (t, *J* = 7.3 Hz, 1H), 6.86 (d, *J* = 2.2 Hz, 1H), 6.72 (d, *J* = 2.2 Hz, 1H), 5.71 (s, 1H), 4.12 (s, 2H), 2.22 (s, 3H), 2.17 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 149.64, 133.98, 130.16, 129.44, 128.41, 127.90, 127.64, 125.89, 124.01, 120.64, 34.90, 19.32, 14.79. HRMS (ESI) calcd for C₁₅H₁₆OS [M+Na]⁺ 267.0814, found 267.0810.

Synthesis of 2-(((4-methoxyphenyl)thio)methyl)-4,6-dimethylphenol (7)

General procedure 3 was used to prepared compound **7** from **5** (100 mg, 0.65 mmol). Flash column chromatography was used to refine the crude product to get **7** (150 mg, 91%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.32 – 7.25 (m, 3H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.82 – 6.77 (m, 2H), 6.59 (d, *J* = 2.2 Hz, 1H), 5.89 (s, 1H), 4.01 (s, 2H), 3.78 (s, 3H), 2.23 (s, 3H), 2.15 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 158.54, 149.73, 133.27, 130.06, 128.27, 127.65, 124.14, 123.67, 121.05, 113.54, 54.31, 37.10, 19.31, 14.80. HRMS (ESI) calcd for C₁₆H₁₈O₂S [M+Na]⁺ 297.0920, found 297.0929. Synthesis of 2,4-dimethyl-6-(((4-(trifluoromethyl)phenyl)thio)methyl)phenol (8)

General procedure 3 was used to prepared compound **8** from **5** (100 mg, 0.65 mmol). Flash column chromatography was used to refine the crude product to get **8** (180 mg, 84 %) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 2.4 Hz, 1H), 6.82 (d, *J* = 2.4 Hz, 1H), 5.32 (s, 1H), 4.19 (s, 2H), 2.22 (s, 3H), 2.19 (s, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 149.31, 140.15, 130.33, 128.75, 127.71, 127.52, 124.66, 124.63, 124.59, 124.56, 123.47, 120.14, 32.90, 19.33, 14.73. ¹⁹F NMR (**471 MHz, chloroform-d**) δ -62.46. HRMS (**ESI**) calcd for C₁₆H₁₅F₃OS [M+Na]⁺ 335.0688, found 335.0680.

Synthesis of 2-(((4-bromophenyl)thio)methyl)-4,6-dimethylphenol (9)

General procedure 3 was used to prepared compound **9** from **5** (150 mg, 0.98 mmol). Flash column chromatography was used to refine the crude product to get **9** (280 mg, 88 %) as a white solid, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.37 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.86 (d, *J* = 2.4 Hz, 1H), 6.71 (d, *J* = 2.4 Hz, 1H), 5.53 (s, 1H), 4.09 (s, 2H), 2.21 (s, 3H), 2.17 (s, 3H).¹³C NMR (126 MHz, chloroform-d) δ 149.43, 133.26, 130.91, 130.25, 128.53, 127.68, 123.75, 120.43, 119.85, 34.59, 19.34, 14.78. HRMS (ESI) calcd for C₁₅H₁₅BrOS [M+Na]⁺ 344.9919, found 344.9920.

Synthesis of 2-((ethylthio)methyl)-4,6-dimethylphenol (10)

General procedure 3 was used to prepared compound 10 from 5 (200 mg, 1.31 mmol). Flash column chromatography was used to refine the crude product to get 10 (220 mg, 85 %) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 6.88 (d, *J* = 2.1 Hz, 1H), 6.72 (d, *J* = 2.4 Hz, 1H), 6.55 (s, 1H), 3.76 (s, 2H), 2.42 (q, *J* = 7.4 Hz, 1Hz, 1Hz), 6.72 (d, *J* = 2.4 Hz, 1Hz), 6.55 (s, 1Hz), 3.76 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.42 (q, *J* = 7.4 Hz), 4.55 (s, 2Hz), 2.45 (s, 2Hz), 2.45 (s, 2Hz), 2.45 (s, 2Hz), 4.55 (s, 2Hz), 2.45 (s, 2Hz), 4.55 (s, 2Hz), 4.

2H), 2.22 (d, J = 2.1 Hz, 6H), 1.23 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 150.33, 130.03, 127.96, 127.46, 124.65, 120.44, 31.70, 23.73, 19.38, 14.77, 13.21. HRMS (ESI) calcd for C₁₁H₁₆OS [M+Na]⁺ 219.0814, found 219.813.

Synthesis of 2,4-dimethyl-6-((propylthio)methyl)phenol (11)

General procedure 3 was used to prepared compound **11** from **5** (300 mg, 1.97 mmol). Flash column chromatography was used to refine the crude product to get **11** (350 mg, 84 %) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 6.89 (d, *J* = 2.2 Hz, 1H), 6.71 (d, *J* = 2.2 Hz, 1H), 6.59 (s, 1H), 3.75 (s, 2H), 2.38 (t, *J* = 7.3 Hz, 2H), 2.22 (d, *J* = 1.7 Hz, 6H), 1.63 – 1.55 (m, 3H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 150.36, 130.03, 127.96, 127.47, 124.66, 120.51, 32.11, 31.77, 21.33, 19.38, 14.78, 12.32. HRMS (ESI) calcd for C₁₂H₁₈OS [M+Na]⁺ 233.0971, found 233.0960.

Synthesis of 2,4-di-tert-butyl-6-((phenylsulfinyl)methyl)phenol (S1)

General procedure 4 was used to prepared catalyst **S1** from **3** (500 mg, 1.52 mmol). Flash column chromatography was used to refine the crude product to get **S1** (420 mg, 80 %) as a white solid, Rf = 0.5 (Hexane/EtOAc, 7:3, v/v). ¹H NMR (500 MHz, chloroform-d) δ 8.94 (s, 1H), 7.49 – 7.40 (m, 5H), 7.19 (d, J = 2.4 Hz, 1H), 6.33 (d, J = 2.6 Hz, 1H), 4.47 (d, J = 13.7 Hz, 1H), 3.90 (d, J = 13.7 Hz, 1H), 1.43 (s, 9H), 1.11 (s, 9H). ¹³C NMR (126 MHz, chloroform-d) δ 152.53, 141.21, 139.56, 138.01, 130.40, 128.05, 125.27, 123.49, 123.11, 117.74, 58.75, 34.07, 33.01, 30.39, 28.78. HRMS (ESI) calcd for C₂₁H₂₈O₂S [M+H]⁺ 345.1883, found 325.1880.

13

Synthesis of 2,4-dimethyl-6-((phenylsulfinyl)methyl)phenol (S2)

General procedure 4 was used to prepared catalyst **S2** from **6** (300 mg, 1.22 mmol). Flash column chromatography was used to refine the crude product to get **S2** (280 mg, 88%) as a white solid, Rf = 0.5 (Hexane/EtOAc, 7:3, v/v). ¹H NMR (400 MHz, chloroform-d) δ 8.71 (s, 1H), 7.58 – 7.44 (m, 5H), 6.86 (d, *J* = 2.6 Hz, 1H), 6.32 (d, *J* = 2.6 Hz, 1H), 4.22 (d, *J* = 13.8 Hz, 1H), 4.00 (d, *J* = 13.8 Hz, 1H), 2.25 (s, 3H), 2.09 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 151.87, 140.08, 131.29, 130.53, 128.54, 128.25, 128.16, 126.55, 123.12, 116.83, 58.93, 19.12, 15.33. HRMS (ESI) calcd for C₁₅H₁₆O₂S [M+H]⁺ 261.0944, found 261.0943.

Synthesis of 2-(((4-bromophenyl)sulfinyl)methyl)-4,6-dimethylphenol (S3)

General procedure 4 was used to prepared compound **S3** from **9** (170 mg, 0.52 mmol). Flash column chromatography was used to refine the crude product to get **S3** (140 mg, 78%) as a white solid, Rf = 0.5 (Hexane/EtOAc, 7:3, v/v). ¹H NMR (500 MHz, chloroform-d) δ 8.39 (s, 1H), 7.59 – 7.52 (m, 2H), 7.33 – 7.29 (m, 2H), 6.81 (d, *J* = 2.4 Hz, 1H), 6.21 (d, *J* = 2.4 Hz, 1H), 4.22 (d, *J* = 13.7 Hz, 1H), 3.87 (d, *J* = 13.7 Hz, 1H), 2.17 (s, 3H), 2.03 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 151.73, 139.08, 131.47, 131.36, 128.52, 128.46, 126.65, 125.10, 124.76, 116.32, 58.71, 19.16, 15.31. HRMS (ESI) calcd for C₁₅H₁₅BrO₂S [M+H]⁺ 339.0049, found 339.0049.

Synthesis of 2,4-dimethyl-6-(((4-(trifluoromethyl)phenyl)sulfinyl)methyl)phenol (S4)

General procedure 4 was used to prepared compound S4 from 8 (130 mg, 0.41 mmol). Flash column chromatography was used to refine the crude product to get S4 (100 mg, 73%) as a white solid, Rf = 0.4 (Hexane/EtOAc, 7:3, v/v). ¹H NMR (500 MHz, chloroform-d) δ 8.24 (s, 1H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 2.4 Hz, 1H), 6.19 (d, *J* = 2.1 Hz, 1H), 4.40 (d, *J* = 13.7 Hz, 1H), 3.94 (d, *J* = 13.7 Hz, 1H), 2.24 (s, 3H), 2.05 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 168.75, 151.58, 144.25, 131.55, 129.21, 128.80, 128.57, 128.47, 125.05, 123.73, 115.99, 58.46, 19.00, 15.28. ¹⁹F NMR (471 MHz, chloroform-d) δ -62.96. HRMS (ESI) calcd for C₁₆H₁₅F₃O₂S [M+H]⁺ 329.0818, found 329.0818.

Synthesis of 2-(((4-methoxyphenyl)sulfinyl)methyl)-4,6-dimethylphenol (S5)

General procedure 4 was used to prepared Catalyst **S5** from **7** (100 mg, 0.36 mmol). Flash column chromatography was used to refine the crude product to get **S5** (90 mg, 85%) as a white solid, Rf = 0.5 (Hexane/EtOAc, 7:3, v/v). ¹H NMR (400 MHz, chloroform-d) δ 8.87 (s, 1H), 7.52 – 7.45 (m, 2H), 7.03 – 6.96 (m, 2H), 6.89 (d, *J* = 2.2 Hz, 1H), 6.37 (d, *J* = 2.6 Hz, 1H), 4.15 (d, *J* = 13.3 Hz, 1H), 4.01 (d, *J* = 13.3 Hz, 1H), 3.85 (s, 3H), 2.26 (s, 3H), 2.12 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 157.71, 148.28, 127.55, 127.30, 124.87, 124.51, 122.94, 121.42, 113.29, 110.00, 55.51, 50.83, 15.47, 11.63. HRMS (ESI) calcd for C₁₆H₁₈O₃S [M+H]⁺ 291.1049, found 291.1048.

Synthesis of 2-((ethylsulfinyl)methyl)-4,6-dimethylphenol (S6)

General procedure 4 was used to prepared compound **S6** from **10** (100 mg, 0.50 mmol). Flash column chromatography was used to refine the crude product to get **S6** (75 mg, 73%) as a colourless oil, Rf = 0.4 (Hexane/EtOAc, 7:3, v/v). ¹**H NMR (400 MHz, chloroform-d)** δ 9.03 (s, 1H), 6.94 (d, *J* = 2.2 Hz, 1H), 6.65 (d, *J* = 2.2 Hz, 1H), 4.34 (d, *J* = 14.2 Hz, 1H), 3.79 (d, *J* = 14.2 Hz, 1H), 2.80 – 2.57 (m, 2H), 2.24 (d, *J* = 3.4 Hz, 6H), 1.31 (t, *J* = 7.5 Hz, 3H). ¹³**C NMR (126 MHz, chloroform-d)** δ 150.45, 132.09, 129.67, 128.80, 126.72, 114.03, 76.26, 76.00, 75.75, 54.52, 44.33, 19.36, 15.15, 5.28. **HRMS (ESI)** calcd for C₁₁H₁₆OS [M+Na]⁺ 235.0763, found 235.0760.

Synthesis of 2,4-dimethyl-6-((propylsulfinyl)methyl)phenol (S7)

General procedure 4 was used to prepared compound **S7** from **11** (350 mg, 1.66 mmol). Flash column chromatography was used to refine the crude product to get **S7** (300 mg, 79%) as a white solid, Rf = 0.4 (Hexane/EtOAc, 7:3, v/v).¹H NMR (400 MHz, chloroform-d) δ 8.96 (s, 1H), 6.87 (d, *J* = 2.6 Hz, 1H), 6.58 (d, *J* = 2.6 Hz, 1H), 4.29 (d, *J* = 14.2 Hz, 1H), 3.70 (d, *J* = 14.2 Hz, 1H), 2.70 – 2.59 (m, 1H), 2.51 – 2.41 (m, 1H), 2.17 (d, *J* = 2.6 Hz, 6H), 1.76 – 1.64 (m, 2H) 1.00 (t, *J* = 7.5 Hz, 3H).¹³C NMR (126 MHz, chloroform-d) δ 151.62, 131.47, 128.74, 128.18, 127.01, 116.41, 52.40, 50.86, 19.32, 15.42, 15.27, 12.36. HRMS (ESI) calcd for C₁₂H₁₈O₂S [M+H]⁺ 227.1100, found 270.1092.

Control experiments:

Scheme 5. Reactions condition 1aa (1equv.) and 2c (1.5equv.) in 2 ml dry toluene at 85°C for 30h, A. Without catalyst 10% yield B. Diphenyl sulfoxide (10 mol%), 8% yield C. Catalyst S8 (10mol%), 10% yield, all the rection yield was NMR calculated yield with internal standard 1,3,5-trimethoxy benzene.

¹H NMR of all the controls experiments

Figure 1. A, B, C are the ¹H NMR of all the controls experiments and D was ¹H NMR of reference ester product 3c.

Procedures for the Mechanistic Experiments

¹⁸O-enriched benzyl alcohol (2ca)

The dimethoxymethyl benzene (0.47 ml, 3.2 mmol) was dissolved in THF (1 mL) and [¹⁸O] H₂O (60 μ L, 3.9 mmol, 95% ¹⁸O isotopic purity) was added, followed by HCl (16 μ L of a 1.0 M solution in Et₂O). The reaction flask was fitted with an empty Dean-Stark trap and run under argon. The reaction was refluxed for 1.5 hours. Additional THF (10 mL), 1.0 M HCl in Et₂O (0.1 mL) and [¹⁸O] H₂O (30 μ L, 1.95 mmol, 95% ¹⁸O isotopic purity) were added and the reaction mixture was refluxed for a further 1.5 hours. The reaction was concentrated in vacuo, and the crude residue was dissolved in THF (2 mL) under argon and cooled to 0 °C. NaBH₄ (228 mg, 5.9 mmol), was added, and dry CH₃OH (~1mL) was then added slowly over 15 min. The reaction was stirred for 1 h, then diluted with Et₂O (5 mL). The organic phase was washed

with H₂O (10 mL), HCl (10 mL of a 1.0 M solution in H₂O), then brine (30 mL), then dried over MgSO₄, then concentrated in vacuo. The crude residue was purified by flash column chromatography (Hexane/EtOAc, 9:1, v/v) to afford the title compound as a colourless oil (220 mg, 61%).¹H NMR (500 MHz, chloroform-d) δ 7.35 (d, *J* = 1.6 Hz, 4H), 7.31 – 7.25 (m, 1H), 4.65 (s, 2H), 2.04 (s, 1H). ¹³C NMR (126 MHz, chloroform-d) δ 139.84, 127.53, 126.60, 125.96, 64.27(0.51 C, C¹⁶O), 64.25(0.49 C,C¹⁸O). HRMS (ESI) calcd for C₇H₇¹⁸O [M+K]⁺ 149.0249, found 149.0239. High-resolution ¹³C NMR (126 MHz) indicated approximately 49% ¹⁸O incorporation by integration of the two peaks at 64.27 and 64.25 ppm.

Briefly, in oven-dried screw cap reaction vial (cooled in a nitrogen atmosphere to room temperature) with a magnetic string bar 2-phenylacetyl chloride (77.3 mg, 0.5 mmol, 1.0 equiv.), dry Toluene (5 mL) and H₂¹⁸O (11 mg, 0.55 mmol, 1.1 equiv.), was charged. The mixture was stirred for 3 h at room temperature (constant temperature oil-bath pan and 98% ¹⁸O isotope water was used here). The mixture was diluted with CH₂Cl₂ (10 mL) and washed successively with saturated aqueous NaHCO₃, and brine. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel and eluted with MeOH/CH₂Cl₂ (1:50, v/v) to afford the corresponding ¹⁸O- phenylacetic acid. ¹H NMR (500 MHz, chloroform-d) δ 7.35 – 7.30 (m, 2H), 7.30 – 7.25 (m, 3H), 3.63 (s, 2H). ¹³C NMR (126 MHz, chloroform-d) δ 177.20 (0.48 C, C¹⁶O), 177.18 (0.52 C, C¹⁸O), 132.20, 128.34, 127.61, 126.32, 40.05. HRMS (ESI) calcd for C₈H₈O¹⁸O [M+K]⁺ 177.0198, found 177.0207. High-resolution ¹³C NMR (126 MHz) indicated approximately 52% ¹⁸O incorporation by integration of the two peaks at 177.20 and 177.18 ppm.

Synthesis of 3ab ¹⁸O enriched ester product

General procedure 1 was used to prepared compound **3ab** from **1aa** (55 mg, 0.40 mmol). Flash column chromatography was used to refine the crude product to get **3a** (67 mg, 80%) as a yellow oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.37 – 7.24 (m, 10H), 5.13 (s, 2H), 3.67 (s, 2H). ¹³C NMR (126 MHz, chloroform-d) δ 170.38, 134.83, 132.87, 128.28, 127.55, 127.51, 127.19, 127.09, 126.10, 65.58 (0.49 C, C¹⁶O), 65.55 (0.51 C, C¹⁸O), 40.32. HRMS (ESI) calcd for C₁₅H₁₄¹⁶O [M+K]⁺ 249.0886, found 249.0886 and also C₁₅H₁₄¹⁸O [M+K]⁺ 251.0928, found 251.0938. High-resolution ¹³C NMR (126 MHz) indicated approximately 51% ¹⁸O incorporation by integration of the two peaks at 65.58 and 65.55 ppm.

Synthesis of 3ad ¹⁸O enriched ester product

General procedure 1 was used to prepared compound **3ad** from **1ab** (40 mg, 0.77 mmol). Flash column chromatography was used to refine the crude product to get **3ad** (155 mg, 80%) as a yellow oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.30 (pd, J = 8.8, 4.9 Hz, 10H), 5.13 (s, 2H), 3.66 (s, 2H). ¹³C NMR (**126** MHz, chloroform-d) δ 170.37(0.72C, C¹⁶O), 170.33(0.28C, C¹⁸O), 134.82, 132.86, 128.27, 127.55, 127.50, 127.18, 127.09, 126.09, 65.58, 40.31. HRMS (ESI) calcd for C₁₅H₁₄¹⁶O [M+K]⁺ 249.0886, found 249.0884 and also C₁₅H₁₄¹⁸O [M+K]⁺ 251.0928, found 251.0937. High-resolution ¹³C NMR (126 MHz) indicated approximately 22% ¹⁸O incorporation by integration of the two peaks at 170.37 and 170.33 ppm.

Synthesis of sulfoxide catalyst S8

Iodomethane was added to a solution of 2,4-dimethyl-6-((phenylthio) methyl) phenol (**6**) in dry DMF via a syringe followed by K₂CO₃ under Ar. The mixture was stirred at room temperature for additional 24 h, then poured into ice-water. The aqueous solution was extract with ethyl acetate 3 times then washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (60-120 mesh) using hexane and ethyl acetate (95:5) as an eluent to afford (2-methoxy-3,5-dimethylbenzyl) (phenyl)sulfane (**13**) product 82 % yield. ¹**H NMR (400 MHz, chloroform-d)** δ 7.38 – 7.32 (m, 2H), 7.30 – 7.23 (m, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 6.93 – 6.87 (m, 2H), 4.14 (s, 2H), 3.77 (s, 3H), 2.26 (s, 3H), 2.21 (s, 3H). ¹³**C NMR (126 MHz, chloroform-d)** δ 153.53, 136.11, 132.28, 130.29, 129.72, 128.52, 127.98, 127.85, 127.80, 125.11, 60.01, 32.26, 19.63, 15.08. **HRMS (ESI)** calcd for C₁₆H₁₈OS[M+Na]⁺ 281.0971, found 281.0980.

To a solution of (2-methoxy-3,5-dimethylbenzyl) (phenyl)sulfane (**13**) (1.52 mmol) in CH₂Cl₂ at 0°c was added mCPBA (1.5 mmol) after which the mixture was warmed at room temperature stirring to 2 h before quenching with NaHCO₃, workup done by DCM 3 times, washing with brine, drying and concentration. The crude residue was then purified by flash column chromatography over silica gel (60-120 mesh) using hexane and ethyl acetate (8:2) as an eluent to afford the desired product (**S8**) 80 % yield. The identification and purification of the product was confirmed by spectroscopic analysis. Flash column chromatography was used to refine the crude product to get **S8** (155 mg, 80%) as a white solid, Rf = 0.4 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**400** MHz, chloroform-d) δ 7.78 – 7.71 (m, 2H), 7.65 – 7.57 (m, 1H), 7.48 (t, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 2.6 Hz, 1H), 6.83 (d, *J* = 2.2 Hz, 1H), 4.39 (s, 2H), 3.59 (s, 3H), 2.19 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (**126** MHz, chloroform-d) δ 155.57, 138.88, 133.59, 133.21, 133.12, 130.78, 130.08, 128.84, 128.66, 120.60, 60.93, 56.66, 20.62, 16.36. HRMS (ESI) calcd for C₁₇H₁₈O₂S[M+Na]⁺ 297.0920, found 297.0930.

Scheme 6. reaction condition S5 (1.0 equiv. 0.0 mmol), Tf_2NH (50 mol%) in toluene (2 mL) was in Dean-Stark apparatus for 1 hour.

Figure 2. ¹H NMR of S5 and intermediate 1.

Spectral data of compounds

Synthesis of octyl 2-phenylacetate (3a)

General procedure 1 was used to prepared compound **3a** from **1a** (105.2 mg, 0.77 mmol). Flash column chromatography was used to refine the crude product to get **3a** (155 mg, 80%) as a yellow oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.28 – 7.14 (m, 5H), 3.93 (d, *J* = 6.0 Hz, 2H), 3.54 (s, 2H), 1.46 (q, *J* = 5.8 Hz, 1H), 1.25 – 1.15 (m, 8H), 0.79 (m, *J* = 6.9 Hz, 6H). ¹³C NMR (**126 MHz, chloroform-d**) δ 170.74, 133.23, 128.23, 127.48, 125.98, 66.23, 40.58, 37.74, 29.36, 27.85, 22.76, 21.93, 12.99, 9.95. HRMS (ESI) calcd for C₁₆H₂₄O₂ [M+Na]⁺ 271.1669, found 271.1660.

Synthesis of decyl 2-phenylacetate (3b)

General procedure 1 was used to prepared compound 3b from 1a (103.5 mg, 0.76 mmol). Flash column chromatography was used to refine the crude product to get 3b (170 mg, 85%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.35 – 7.23 (m, 5H), 4.08 (t, J = 6.7 Hz, 2H), 3.61 (s, 2H), 1.59 (q, J = 6.8 Hz, 2H), 1.27 (m, 14H), 0.88 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 170.67, 133.19, 128.22, 127.49, 125.99, 64.01, 40.47, 30.87, 28.53, 28.49, 28.28, 28.17, 27.54, 24.81, 21.66, 13.10. HRMS (ESI) calcd for C₁₈H₂₈O₂ [M+Na]⁺ 299.1982 found 299.1980.

Synthesis of benzyl 2-phenylacetate (3c)

General procedure 1 was used to prepared compound 3c from 1a (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get 3c (150 mg, 90%) as a yellow oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.30 (m, J = 11.6, 6.9, 4.1 Hz, 10H), 5.13 (s, 2H), 3.66 (s, 2H). ¹³C NMR (126 MHz, chloroform-d) δ

170.38, 134.82, 132.87, 128.27, 127.55, 127.51, 127.18, 127.09, 126.10, 65.58, 40.31**. HRMS** (**ESI**) calcd for C₁₅H₁₄O₂ [M+Na]⁺ 249.0886, found 249.0882.

Synthesis of 4-methylbenzyl 2-phenylacetate (3d)

General procedure 1 was used to prepared compound **3d** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3d** (140 mg, 80%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.34 – 7.25 (m, 5H), 7.21 (d, *J* = 8.2 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 5.09 (s, 2H), 3.65 (s, 2H), 2.35 (s, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 170.45, 137.06, 132.93, 131.82, 128.28, 128.20, 127.54, 127.28, 126.08, 65.57, 40.34, 20.17. HRMS (ESI) calcd for C₁₆H₁₆O₂ [M+Na]⁺ 263.1043, found 263.1031.

Synthesis of [1,1'-biphenyl]-4-ylmethyl 2-phenylacetate (3e)

General procedure 1 was used to prepared compound **3e** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3e** (189 mg, 85%) as a white solid, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.57 (m, *J* = 8.0, 4.6 Hz, 4H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.38 (m, *J* = 8.2 Hz, 3H), 7.36 – 7.25 (m, 5H), 5.17 (s, 2H), 3.69 (s, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 170.43, 140.20, 139.63, 133.81, 132.86, 128.30, 127.78, 127.60, 127.57, 126.43, 126.28, 126.13, 126.10, 65.36, 40.36. HRMS (ESI) calcd for C₂₁H₁₈O₂ [M+Na]⁺ 325.1199, found 325.1197.

Synthesis of 4-methoxybenzyl 2-phenylacetate (3f)

General procedure 1 was used to prepared compound **3f** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3f** (150 mg, 80%) as a yellow syrup, Rf = 0.7 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ^{1} H NMR (**400 MHz, CDCl**₃) δ 7.25 – 7.16 (m, 7H), 6.83 – 6.77 (m, 2H), 4.99 (s, 2H), 3.73 (s, 3H), 3.57 (s, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 170.48, 158.62, 151.10, 129.00, 128.80, 128.26, 127.53, 126.06, 112.91, 65.45, 54.27, 40.35. HRMS (ESI) calcd for C₁₆H₁₆O₃ [M+Na]⁺ 279.0992, found 279.0998.

Synthesis of 3-methoxybenzyl 2-phenylacetate (3g)

General procedure 1 was used to prepared compound **3g** from **1a** (70 mg, 0.51 mmol). Flash column chromatography was used to refine the crude product to get **3g** (100 mg, 76%) as a yellow syrup, Rf = 0.6 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, **chloroform-d**) δ 7.35 – 7.22 (m, 6H), 6.91 – 6.80 (m, 3H), 5.11 (s, 2H), 3.77 (s, 3H), 3.68 (s, 2H). ¹³C NMR (126 MHz, **chloroform-d**) δ 170.33, 158.71, 136.35, 132.87, 128.56, 128.29, 127.56, 126.11, 119.17, 112.85, 112.25, 65.41, 54.19, 40.35. **HRMS (ESI)** calcd for C₁₆H₁₆O₃ [M+Na]⁺ 279.0992, found 279.0984.

Synthesis of 2-cyclohexylethyl 2-phenylacetate (3h)

General procedure 1 was used to prepared compound **3h** from **1a** (103.5 mg, 0.76 mmol). Flash column chromatography was used to refine the crude product to get **3h** (155 mg, 82%) as a colourless oil, $R_f = 0.8$ (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.35 – 7.23 (m, 5H), 4.12 (t, J = 6.8 Hz, 2H), 3.61 (s, 2H), 1.66 (d, J = 10.5 Hz, 5H), 1.50 (q, J = 6.8 Hz, 2H), 1.21 – 1.11 (m, 3H), 0.93 – 0.82 (m, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 170.67, 133.20, 128.22, 127.50, 126.00, 62.16, 40.53, 34.86, 33.47, 32.09, 25.44, 25.17. HRMS (ESI) calcd for C₁₆H₂₂O₂ [M+H]⁺ 247.1693, found 247.1682.

Synthesis of 2-(6,6-dimethylbicyclo[3.1.1]hept-2-en-3-yl)ethyl 2-phenylacetate (3i)

General procedure 1 was used to prepared compound **3i** from **1a** (105.3 mg, 0.76 mmol). Flash column chromatography was used to refine the crude product to get **3i** (135 mg, 62%) as a colourless oil, $R_f = 0.8$ (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.35 -7.23 (m, 5H), 5.26 -5.19 (m, 1H), 4.10 (qt, J = 10.8, 6.8 Hz, 2H), 3.59 (s, 2H), 2.33 (dt, J =8.7, 5.8 Hz, 1H), 2.26 (m, J = 5.5, 2.5 Hz, 2H), 2.23 -2.15 (m, 2H), 2.08 -2.04 (m, 1H), 2.01 (dd, J = 5.5, 1.6 Hz, 1H), 1.25 (s, 3H), 1.09 (d, J = 8.4 Hz, 1H), 0.78 (s, 3H).¹³C NMR (**126** MHz, chloroform-d) δ 170.55, 142.92, 133.10, 128.27, 127.49, 125.99, 117.84, 62.05, 44.62, 40.50, 39.69, 36.96, 34.87, 30.58, 30.31, 25.25, 20.06. HRMS (ESI) calcd for C₁₉H₂₄O₂ [M+Na]⁺ 307.1669, found 307.1659.

Synthesis of 4-hydroxybut-2-yn-1-yl 2-phenylacetate (3j)

General procedure 1 was used to prepared compound **3j** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3j** (60 mg, 40%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 6:4, v/v). ¹H NMR (500 MHz, **chloroform-d**) δ 7.35 – 7.24 (m, 5H), 4.72 (s, 2H), 4.26 (s, 2H), 3.66 (s, 2H), 2.19 (dd, *J* = 16.7, 5.4 Hz, 1H). ¹³C

26

General procedure 1 was used to prepared compound **3k** from **1a** (102.5 mg, 0.75 mmol). Flash column chromatography was used to refine the crude product to get **3k** (173mg, 90%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400** MHz, chloroform-d) δ 7.27 (m, *J* = 7.7, 4.7 Hz, 5H), 7.21 (m, *J* = 10.1, 6.7 Hz, 3H), 7.15 (d, *J* = 7.3 Hz, 2H), 4.25 – 4.10 (m, 2H), 3.56 (s, 2H), 3.06 (m, *J* = 7.1 Hz, 1H), 1.24 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (**126** MHz, chloroform-d) δ 170.42, 142.03, 132.98, 128.23, 127.48, 127.42, 126.27, 125.98, 125.61, 68.67, 40.41, 37.86, 16.87. HRMS (ESI) calcd for C₁₇H₁₈O₂ [M+H]⁺ 277.1186, found 277.1186.

Synthesis of cyclobutyl 2-phenylacetate (3l)

General procedure 1 was used to prepared compound **3k** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3k** (84 mg, 60%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.36 – 7.22 (m, 5H), 4.99 (p, *J* = 7.4 Hz, 1H), 3.59 (s, 2H), 2.33 (dtt, *J* = 10.4, 7.8, 2.7 Hz, 2H), 2.05 (qdd, *J* = 10.1, 7.9, 2.9 Hz, 2H), 0.92 – 0.80 (m, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 169.98, 133.09, 128.21, 127.52, 126.00, 68.19, 40.34, 29.24, 28.69, 12.48. HRMS (ESI) calcd for C₁₂H₁₄O₂ [M+Na]⁺ 213.0886, found 213.0880.

Synthesis of cyclohexyl 2-phenylacetate (3m)

General procedure 1 was used to prepared compound **3m** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3m** (128 mg, 85%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400** MHz, chloroform-d) δ 7.28 (m, *J* = 10.8, 7.3 Hz, 5H), 4.77 (m, *J* = 3.9 Hz, 1H), 3.59 (s, 2H), 1.87 – 1.76 (m, 2H), 1.67 (dd, *J* = 9.5, 3.4 Hz, 2H), 1.46 – 1.21 (m, 6H). ¹³C NMR (**126** MHz, chloroform-d) δ 170.05, 133.42, 128.17, 127.46, 125.91, 72.00, 40.82, 30.48, 24.34, 22.59. HRMS (ESI) calcd for C₁₄H₁₈O₂ [M+Na]⁺ 241.1199, found 241.1196.

Synthesis of cycloheptyl 2-phenylacetate (3n)

General procedure 1 was used to prepared compound **3n** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3n** (119 mg, 70%) as a colourless oil, $R_f = 0.8$ (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.28 – 7.14 (m, 5H), 4.86 (m, 1H), 3.51 (s, 2H), 1.84 – 1.73 (m, 2H), 1.57 (m, 4H), 1.48 – 1.45 (m, 4H), 1.35 (m, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 169.94, 151.31, 128.17, 127.46, 125.89, 74.56, 40.85, 32.68, 32.50, 27.46, 27.17, 21.95, 21.66. HRMS (ESI) calcd for $C_{15}H_{20}O_2$ [M+Na]⁺ 255.1356, found 255.1350.

Synthesis of cyclododecyl 2-phenylacetate (30)

General procedure 1 was used to prepared compound **30** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **30** (133 mg, 60%) as a

colourless oil, $R_f = 0.8$ (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.34 – 7.24 (m, 5H), 4.94 (m, 1H), 3.58 (s, 2H), 1.86 (m, 2H), 1.71 – 1.49 (m, 12H), 1.48 – 1.37 (m, 2H), 1.26 (s, 4H), 0.86 (dt, J = 18.4, 6.4 Hz, 2H). ¹³C NMR (126 MHz, chloroform-d) δ 169.95, 131.65, 128.18, 127.47, 125.91, 74.59, 54.36, 40.87, 32.69, 28.69, 27.18, 21.85, 13.09. HRMS (ESI) calcd for C₂₀H₃₀O₂ [M+Na]⁺ 325.2138, found 325.2130.

Synthesis of (3S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 2-phenylacetate (3r)

General procedure 1 was used to prepared compound **3r** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3r** (145 mg, 40%) as a white solid, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹**H NMR (400 MHz, chloroform-d)** δ 7.40 – 7.21 (m, 5H), 4.70 (m, *J* = 11.1, 4.9 Hz, 1H), 3.58 (s, 2H), 1.95 (dt, *J* = 12.9, 3.6 Hz, 1H), 1.81 (m, 2H), 1.71 (dt, *J* = 13.3, 3.7 Hz, 1H), 1.67 – 1.61 (m, 1H), 1.61 – 1.52 (m, 4H), 1.38 – 1.29 (m, 6H), 1.29 – 1.22 (m, 6H), 1.10 (m, *J* = 14.2, 5.4 Hz, 5H), 1.00 (m, *J* = 11.3, 5.8 Hz, 4H), 0.89 (d, *J* = 6.5 Hz, 4H), 0.86 (dd, *J* = 6.6, 1.9 Hz, 6H), 0.81 (s, 3H), 0.64 (s, 3H). ¹³**C NMR (126 MHz, chloroform-d)** δ 170.15, 133.38, 128.14, 127.47, 125.90, 73.25, 55.39, 55.25, 53.18, 43.63, 41.57, 40.75, 38.96, 38.50, 35.71, 35.15, 34.78, 34.44, 32.92, 30.97, 28.69, 27.58, 27.22, 26.99, 26.41, 23.18, 22.82, 21.80, 21.54, 20.18, 17.65, 11.22, 11.05. **HRMS (ESI)** calcd for C₃₅H₅₄O₂ [M+Na]⁺ 529.4016, found 529.4015.

Synthesis of (3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 2phenylacetate (3s)

General procedure 1 was used to prepared compound **3s** from **1a** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **3s** (166 mg, 45%) as a white solid, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.22 (m, 5H), 5.28 (d, *J* = 5.8 Hz, 1H), 4.60 – 4.51 (m, 1H), 3.52 (s, 2H), 2.24 (d, *J* = 7.1 Hz, 2H), 2.14 (s, 2H), 1.97 – 1.85 (m, 3H), 1.76 (td, *J* = 9.9, 5.0 Hz, 4H), 1.53 – 1.35 (m, 12H), 0.94 (s, 6H), 0.84 (d, *J* = 6.6 Hz, 3H), 0.79 (m, 9H), 0.60 (s, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 170.00, 133.33, 128.17, 127.49, 125.95, 73.45, 55.76, 55.69, 55.17, 55.14, 49.02, 41.32, 40.72, 38.74, 38.52, 37.03, 36.03, 35.59, 35.18, 34.78, 30.86, 28.69, 27.21, 27.00, 26.72, 23.27, 22.82, 21.79, 21.55, 20.03, 18.31, 17.71, 10.85. **HRMS (ESI)** calcd for C₃₅H₅₂O₂ [M+Na]⁺ 527.3860, found 527.3850.

Synthesis of ((2S,4S,5S)-3,4,5-tris(benzyloxy)-6-methoxytetrahydro-2H-pyran-2yl)methyl 2-phenylacetate (3t)

General procedure **1** was used to prepared compound **3t** from **1a** (25 mg, 0.18 mmol). Flash column chromatography was used to refine the crude product to get **3t** (75 mg, 75%) as a yellow oil, Rf = 0.8 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.41 – 7.33 (m, 6H), 7.33 – 7.22 (m, 14H), 4.92 – 4.79 (m, 3H), 4.73 – 4.62 (m, 3H), 4.47 (d, *J* = 11.6 Hz, 1H), 4.19 (dd, *J* = 11.2, 7.2 Hz, 1H), 4.02 (m, 2H), 3.88 (dd, *J* = 10.1, 3.0 Hz, 1H), 3.81 (t, *J* = 6.7 Hz, 1H), 3.74 (d, *J* = 3.4 Hz, 1H), 3.56 (s, 2H), 3.24 (s, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 170.04, 137.68, 137.40, 137.25, 132.80, 128.25, 127.57, 127.41, 127.34,

127.30, 127.28, 127.08, 126.72, 126.58, 126.49, 126.14, 97.71, 77.93, 75.26, 73.87, 73.56, 72.60, 72.43, 67.09, 62.75, 54.16, 40.32. **HRMS (ESI)** calcd for $C_{36}H_{38}O_7$ [M+Na]⁺ 605.2510, found 605.2510.

Synthesis of benzyl 3-phenylpropanoate (4a)

General procedure 1 was used to prepared compound **4a** from **2c** (70 mg, 0.46 mmol). Flash column chromatography was used to refine the crude product to get **4a** (100 mg, 90%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.31 (m, *J* = 7.3 Hz, 5H), 7.25 (d, *J* = 7.3 Hz, 2H), 7.19 (m, *J* = 7.7 Hz, 3H), 5.10 (s, 2H), 2.96 (t, *J* = 7.7 Hz, 2H), 2.68 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 171.68, 139.36, 134.88, 127.50, 127.47, 127.37, 127.26, 127.17, 125.23, 65.24, 34.85, 29.90. HRMS (ESI) calcd for C₁₆H₁₆O₂ [M+Na]⁺ 241.1223, found 241.1215.

Synthesis of benzyl cinnamate (4b)

General procedure 1 was used to prepared compound 4b from 2c (100 mg, 0.67 mmol). Flash column chromatography was used to refine the crude product to get 4b (140 mg, 88%) as a yellow syrup, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.72 (d, *J* = 15.9 Hz, 1H), 7.48 (dd, *J* = 6.7, 3.2 Hz, 2H), 7.44 – 7.26 (m, 8H), 6.47 (d, *J* = 15.9 Hz, 1H), 5.24 (s, 2H). ¹³C NMR (126 MHz, chloroform-d) δ 165.69, 144.11, 135.03, 133.30, 129.28, 127.83, 127.54, 127.22, 127.19, 127.05, 116.83, 65.28. HRMS (ESI) calcd for C₁₆H₁₄O₂ [M+Na]⁺ 261.0886, found 261.0880.

Synthesis of benzyl pent-4-enoate (4c)

General procedure 1 was used to prepared compound **4c** from **2c** (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get **4c** (126 mg, 90%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.35 (d, *J* = 4.7 Hz, 5H), 5.82 (m, *J* = 16.8, 10.3, 6.2 Hz, 1H), 5.12 (s, 2H), 5.05 (d, *J* = 17.2 Hz, 1H), 5.00 (d, *J* = 9.9 Hz, 1H), 2.52 – 2.33 (m, 4H). ¹³C NMR (**126 MHz, chloroform-d**) δ 172.88, 136.60, 136.01, 128.55, 128.43, 128.22, 115.57, 66.24, 33.57, 28.85. HRMS (ESI) calcd for C₁₂H₁₄O₂ [M+Na]⁺ 191.1067, found 191.1060.

Synthesis of benzyl (E)-but-2-enoate (4d)

General procedure 1 was used to prepared compound **4d** from **2c** (100 mg, 1.16 mmol). Flash column chromatography was used to refine the crude product to get **4d** (160 mg, 78%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.40 – 7.29 (m, 5H), 7.07 – 6.98 (m, 1H), 5.90 (dt, *J* = 15.6, 1.9 Hz, 1H), 5.17 (s, 2H), 1.88 (dd, *J* = 6.8, 1.8 Hz, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 165.32, 144.16, 135.16, 127.51, 127.49, 127.13, 121.46, 64.94, 16.99. HRMS (ESI) calcd for C₁₁H₁₂O₂ [M+Na]⁺ 199.0730, found 199.0718.

Synthesis of benzyl pent-4-ynoate (4e)

General procedure 1 was used to prepared compound 4e from 2c (100 mg, 0.73 mmol). Flash column chromatography was used to refine the crude product to get 4e (124 mg, 90%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.36

(m, J = 3.9 Hz, 5H), 5.15 (s, 2H), 2.64 – 2.57 (m, 2H), 2.56 – 2.49 (m, 2H), 1.97 (t, J = 2.6 Hz, 1H). ¹³C NMR (126 MHz, chloroform-d) δ 171.60, 135.76, 128.58, 128.31, 128.25, 82.41, 69.12, 66.53, 33.37, 14.37. HRMS (ESI) calcd for C₁₂H₁₂O₂ [M+Na]⁺ 211.0730, found 211.0721.

Synthesis of benzyl 3-phenylpropiolate (4f)

General procedure 1 was used to prepared compound **4f** from **2c** (100 mg, 0.68 mmol). Flash column chromatography was used to refine the crude product to get **4f** (113 mg, 70%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹**H NMR (400 MHz, chloroform-d)** δ 7.57 (d, *J* = 7.6 Hz, 2H), 7.46 – 7.32 (m, 8H), 5.26 (s, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 152.87, 133.88, 131.98, 129.66, 127.64, 127.59, 127.56, 127.53, 118.49, 85.70, 79.46, 66.67. **HRMS (ESI)** calcd for C₁₆H₁₂O₂ [M+H]⁺ 237.0910, found 237.0901.

Synthesis of benzyl 2-(4-methoxyphenyl) acetate (4g)

General procedure 1 was used to prepared compound **4g** from **2c** (100 mg, 0.60 mmol). Flash column chromatography was used to refine the crude product to get **4g** (115 mg, 75%) as a colourless oil, Rf = 0.6 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.39 – 7.28 (m, 5H), 7.24 – 7.17 (m, 2H), 6.90 – 6.82 (m, 2H), 5.12 (s, 2H), 3.79 (s, 3H), 3.61 (s, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 170.72, 157.71, 134.89, 129.30, 127.51, 127.17, 127.10, 124.96, 112.99, 65.53, 54.24, 39.41. HRMS (ESI) calcd for C₁₆H₁₆O₃ [M+Na]⁺ 257.1172, found 257.1158.

Synthesis of benzyl 2-(4-nitrophenyl) acetate(4h)

33

General procedure 1 was used to prepared compound 4h from 2c (100 mg, 0.55 mmol). Flash column chromatography was used to refine the crude product to get 4h (143 mg, 93%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (400 MHz, chloroform-d) δ 8.23 – 8.13 (m, 2H), 7.49 – 7.41 (m, 2H), 7.39 – 7.28 (m, 5H), 5.15 (s, 2H), 3.78 (s, 2H). ¹³C NMR (126 MHz, chloroform-d) δ 165.25, 142.50, 136.43, 130.63, 125.59, 123.91, 123.78, 123.59, 119.02, 62.42, 36.23. HRMS (ESI) calcd for C₁₅H₁₃NO₄ [M+Na]⁺ 294.0737, found 294.0730.

Synthesis of (trifluoromethyl)phenyl) acetate (4i)

General procedure 1 was used to prepared compound 4i from 2c (102.5 mg, 0.50 mmol). Flash column chromatography was used to refine the crude product to get 4i (133 mg, 90%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.58 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.33 (m, *J* = 7.1, 2.4 Hz, 5H), 5.14 (s, 2H), 3.72 (s, 2H). ¹³C NMR (126 MHz, chloroform-d) δ 169.55, 136.81, 134.54, 128.69, 128.65, 127.58, 127.37, 127.22, 124.50, 124.47, 65.91, 40.02. ¹⁹F NMR (471 MHz, chloroform-d) δ -62.54. HRMS (ESI) calcd for C₁₆H₁₃F₃O₂ [M+Na]⁺ 317.0760, found 317.0739.

Synthesis of benzyl 2-phenylpropanoate (4j)

33

34

General procedure 1 was used to prepared compound **4j** from **2c** (100 mg, 0.66 mmol). Flash column chromatography was used to refine the crude product to get **4j** (135 mg, 85%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.29 (m, *J* = 2.8 Hz, 7H), 7.27 – 7.19 (m, 3H), 5.10 (q, *J* = 12.5 Hz, 2H), 3.77 (q, *J* = 7.1 Hz, 1H), 1.52 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 173.27, 139.39, 135.00, 127.57, 127.43, 127.02, 126.81, 126.51, 126.11, 65.37, 44.52, 17.44. HRMS (ESI) calcd for C₁₆H₁₆O₂ [M+Na]⁺ 241.1213, found 241.1211.

Synthesis of benzyl cyclohexanecarboxylate (4k)

General procedure 1 was used to prepared compound **4k** from **2c** (100 mg, 0.78 mmol). Flash column chromatography was used to refine the crude product to get **4k** (150 mg, 88%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.39 – 7.28 (m, 5H), 5.10 (s, 2H), 2.35 (tt, *J* = 11.6, 3.7 Hz, 1H), 1.93 (dd, *J* = 13.5, 3.8 Hz, 2H), 1.79 – 1.71 (m, 2H), 1.67 – 1.60 (m, 1H), 1.46 (m, *J* = 11.6, 3.7 Hz, 2H), 1.33 – 1.18 (m, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 175.92, 136.36, 128.54, 128.07, 127.97, 65.90, 43.23, 29.04, 25.76, 25.46. HRMS (ESI) calcd for C₁₄H₁₈O₂ [M+Na]⁺ 241.1199, found 241.1189.

Synthesis of benzyl (S)-2-(4-isobutylphenyl)propanoate (4l)

General procedure 1 was used to prepared compound **4I** from **2c** (100 mg, 0.48 mmol). Flash column chromatography was used to refine the crude product to get **4I** (120 mg, 84%) as a colourless oil, Rf = 0.6 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500** MHz, chloroform-d) δ 7.29 (d, *J* = 7.1 Hz, 3H), 7.26 – 7.17 (m, 4H), 7.08 (d, *J* = 8.2 Hz, 2H), 5.14 – 5.06 (m, 2H), 3.75 (q, *J* = 7.1 Hz, 1H), 2.45 (d, *J* = 7.4 Hz, 2H), 1.85 (m, 1H), 1.50 (d, *J* = 7.4 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (**126** MHz, chloroform-d) δ 173.49, 139.53, 136.60, 135.09, 128.29, 127.40, 126.96, 126.73, 126.21, 65.25, 44.13, 44.02, 29.17, 21.35, 17.38. HRMS (ESI) calcd for C₂₀H₂₄O₂ [M+Na]⁺ 319.1669, found 319.1669.

Synthesis of benzyl (S)-2-(6-methoxynaphthalen-2-yl) propanoate (4m)

General procedure 1 was used to prepared compound **4m** from **2c** (100 mg, 0.43 mmol). Flash column chromatography was used to refine the crude product to get **4m** (110 mg, 80%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.64 – 7.54 (m, 3H), 7.31 (dd, *J* = 8.4, 2.1 Hz, 1H), 7.22 – 7.13 (m, 5H), 7.08 – 7.00 (m, 2H), 5.09 – 4.97 (m, 2H), 3.83 (d, *J* = 7.4 Hz, 1H), 3.81 (s, 3H), 1.50 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 173.41, 156.62, 134.99, 134.54, 132.69, 128.26, 127.91, 127.42, 127.03, 126.89, 126.10, 125.26, 124.91, 117.91, 104.58, 65.43, 54.25, 44.44, 17.50. HRMS (**ESI**) calcd for C₂₁H₂₀O₃ [M+H]⁺ 321.1481, found 321.1481.

Synthesis of benzyl dodecanoate (4n)

General procedure 1 was used to prepared compound **4n** from **2c** (105 mg, 0.52 mmol). Flash column chromatography was used to refine the crude product to get **4n** (128 mg, 85%) as a colourless oil, Rf = 0.8 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**500** MHz, chloroform-d) δ 7.42 – 7.29 (m, 5H), 5.11 (s, 2H), 2.35 (t, *J* = 7.6 Hz, 2H), 1.64 (m, *J* = 7.4 Hz, 2H), 1.25 (m, 16H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (**126** MHz, chloroform-d) δ 173.73, 136.17, 128.55, 128.17,

66.06, 34.37, 31.93, 29.61, 29.46, 29.34, 29.26, 29.15, 24.98, 22.70, 14.13. **HRMS (ESI)** calcd for C₁₉H₃₀O₂ [M+Na]⁺ 313.2138, found 313.2127.

Synthesis of benzyl palmitate (40)

General procedure 1 was used to prepared compound **4o** from **2c** (100 mg, 0.35 mmol). Flash column chromatography was used to refine the crude product to get **4o** (120 mg, 91%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.32 – 7.22 (m, 5H), 5.04 (s, 2H), 2.28 (t, *J* = 7.5 Hz, 2H), 1.57 (p, *J* = 7.5 Hz, 2H), 1.19 (d, *J* = 12.5 Hz, 24H), 0.81 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 172.67, 135.17, 127.51, 127.13, 65.03, 33.33, 30.92, 28.69, 28.66, 28.63, 28.58, 28.44, 28.35, 28.24, 28.12, 23.96, 21.68, 13.09. **HRMS (ESI)** calcd for C₂₃H₃₈O₂ [M+Na]⁺ 369.2764, found 369.2751.

Synthesis of benzyl oleate (4p)

General procedure 1 was used to prepared compound 4p from 2c (100 mg, 0.35 mmol). Flash column chromatography was used to refine the crude product to get 4p (115 mg, 88%) as a yellow syrup, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (500 MHz, chloroform-d) δ 7.32 – 7.22 (m, 5H), 5.32 – 5.22 (m, 2H), 5.04 (s, 2H), 2.28 (t, *J* = 7.6 Hz, 2H), 1.93 (q, *J* = 6.7 Hz, 4H), 1.57 (p, *J* = 7.4 Hz, 2H), 1.25 – 1.17 (m, 20H), 0.81 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, chloroform-d) δ 172.65, 135.14, 128.98, 128.73, 127.52, 127.14, 65.03, 33.31, 30.89, 28.75, 28.66, 28.50, 28.31, 28.13, 28.08, 26.20, 26.15, 23.94, 21.66, 13.09. HRMS (ESI) calcd for C₂₅H₄₀O₂ [M+Na]⁺ 395.2921, found 395.2907.
Synthesis of benzyl (9Z,12Z)-octadeca-9,12-dienoate (4q)

General procedure 1 was used to prepared compound **4q** from **2c** (100 mg, 0.35 mmol). Flash column chromatography was used to refine the crude product to get **4q** (120 mg, 91%) as a yellow syrup, Rf = 0.5 (Hexane/EtOAc, 9:1, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.40 – 7.28 (m, 5H), 5.36 (p, *J* = 6.2 Hz, 4H), 5.11 (s, 2H), 2.77 (t, *J* = 6.2 Hz, 2H), 2.35 (t, *J* = 7.5 Hz, 2H), 2.11 – 1.98 (m, 4H), 1.64 (p, *J* = 7.3 Hz, 2H), 1.34 – 1.25 (m, 14H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (**126 MHz, chloroform-d**) δ 172.64, 135.13, 129.21, 129.03, 127.52, 127.14, 127.03, 126.90, 65.04, 33.31, 30.51, 28.56, 28.33, 28.13, 28.08, 26.19, 24.62, 23.93, 21.55, 13.05. HRMS (ESI) calcd for C₂₅H₃₈O₂ [M+Na]⁺ 393.2764, found 393.2760.

Synthesis of benzyl (tert-butoxycarbonyl)-L-alaninate (5a)

General procedure 1 was used to prepared compound **5a** from **2c** (100 mg, 0.52 mmol). Flash column chromatography was used to refine the crude product to get **5a** (65 mg, 51%) as a yellow syrup, Rf = 0.8 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.41 – 7.29 (m, 5H), 5.17 (q, *J* = 12.5 Hz, 2H), 5.06 (d, *J* = 7.7 Hz, 1H), 4.35 (m, *J* = 7.5 Hz, 1H), 1.43 (s, 9H), 1.39 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (**151 MHz, chloroform-d**) δ 173.26, 155.13, 135.46, 128.62, 128.40, 128.16, 79.87, 67.01, 49.31, 28.34, 18.66. HRMS (ESI) calcd for C₁₅H₂₁NO₄ [M+Na]⁺ 302.1363, found 302.1364.

Synthesis of benzyl (3R)-3-(benzyloxy)-2-((tert-butoxycarbonyl) amino)butanoate (5b)

General procedure 1 was used to prepared compound **5b** from **2c** (100 mg, 0.32 mmol). Flash column chromatography was used to refine the crude product to get **5b** (90 mg, 70%) as a white solid, Rf = 0.5 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**400 MHz, chloroform-d**) δ 7.33 – 7.24 (m, 8H), 7.17 (dd, *J* = 7.5, 1.9 Hz, 2H), 5.31 (d, *J* = 9.5 Hz, 1H), 5.12 (s, 2H), 4.48 (d, *J* = 11.6 Hz, 1H), 4.34 (dd, *J* = 9.9, 2.2 Hz, 1H), 4.26 (d, *J* = 11.6 Hz, 1H), 4.15 (m, *J* = 6.0, 3.0 Hz, 1H), 1.44 (s, 9H), 1.25 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (151 MHz, chloroform-d) δ 171.06, 156.22, 137.89, 135.39, 128.54, 128.39, 128.36, 128.34, 127.70, 127.62, 79.88, 74.59, 70.86, 67.10, 58.40, 28.32, 16.31. HRMS (ESI) calcd for C₂₃H₂₉NO₅ [M+Na]⁺ 422.1938, found 422.1937.

Synthesis of benzyl (((9H-fluoren-9-yl)methoxy)carbonyl)-D-phenylalaninate (5c)

General procedure 1 was used to prepared compound **5c** from **2c** (100 mg, 0.25 mmol). Flash column chromatography was used to refine the crude product to get **5c** (80 mg, 55%) as a white solid, Rf = 0.7 (Hexane/EtOAc, 9:2, v/v). ¹H NMR (**500 MHz, chloroform-d**) δ 7.75 (d, *J* = 7.6 Hz, 2H), 7.59 – 7.51 (m, 2H), 7.41 – 7.28 (m, 8H), 7.25 – 7.17 (m, 4H), 7.00 (dd, *J* = 6.3, 2.9 Hz, 2H), 5.29 (d, *J* = 8.4 Hz, 1H), 5.14 (q, *J* = 12.2 Hz, 2H), 4.72 (q, *J* = 6.1 Hz, 1H), 4.43 (d, *J* = 7.1 Hz, 1H), 4.37 – 4.29 (m, 1H), 4.19 (t, *J* = 7.1 Hz, 1H), 3.11 (m, *J* = 13.9, 5.8 Hz, 2H). ¹³C NMR (**126 MHz, chloroform-d**) δ 171.33, 155.52, 143.85, 143.73, 141.30, 135.56, 135.03, 129.36, 128.62, 128.59, 127.70, 127.09, 127.05, 125.11, 125.05, 119.98, 67.29, 66.96, 54.78, 47.15, 38.18. HRMS (ESI) calcd for C₃₁H₂₇NO₄ [M+H]⁺ 478.2013, found 478.2007.

Synthesis of tert-butyl (R)-(1-(benzyloxy)-2-(4-(benzyloxy)phenyl) ethyl) carbamate (5d)

General procedure 1 was used to prepared compound 5d from 2c (100 mg, 0.26 mmol). Flash column chromatography was used to refine the crude product to get 5d (80 mg, 66%) as a white solid, Rf = 0.7 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (400 MHz, chloroform-d) δ 7.46 – 7.27 (m, 10H), 6.94 (d, J = 8.2 Hz, 2H), 6.83 (d, J = 8.4 Hz, 2H), 5.20 - 5.06 (m, 2H), 5.01 (s, 2H), 4.97 (d, J = 8.2 Hz, 1H), 4.58 (q, J = 6.0 Hz, 1H), 3.02 (d, J = 6.5 Hz, 2H), 1.41 (s, 9H). ¹³C NMR (126 MHz, chloroform-d) δ 170.77, 156.86, 154.08, 136.00, 134.21, 129.35, 127.56, 127.54, 127.42, 127.07, 126.94, 126.43, 113.85, 78.86, 68.97, 66.03, 53.54, 36.38, 27.28. HRMS (ESI) calcd for C₂₈H₃₁NO₅ $[M+Na]^+$ 484.2094, found 484.2103.

SynthesisofbenzylN2-(((9H-fluoren-9-yl)methoxy)carbonyl)-N6-(tert-butoxycarbonyl)lysinate (5e)

General procedure 1 was used to prepared compound **5e** from **2c** (100 mg, 0.21 mmol). Flash column chromatography was used to refine the crude product to get **5e** (71 mg, 60%) as a colourless oil, Rf = 0.5 (Hexane/EtOAc, 8:2, v/v). ¹H NMR (**400** MHz, chloroform-d) δ 7.76 (d, *J* = 7.3 Hz, 2H), 7.60 (d, *J* = 7.7 Hz, 2H), 7.47 – 7.27 (m, 9H), 5.40 (d, *J* = 8.2 Hz, 1H), 5.18 (q, *J* = 12.0 Hz, 2H), 4.56 – 4.33 (m, 4H), 4.21 (t, *J* = 7.3 Hz, 1H), 3.07 (d, *J* = 6.9 Hz, 2H), 1.92 – 1.80 (m, 1H), 1.65 (d, *J* = 32.3 Hz, 4H), 1.43 (s, 10H). ¹³C NMR (126 MHz, 2H)

chloroform-d) δ 172.30, 156.07, 155.99, 143.93, 143.76, 141.33, 135.29, 128.65, 128.54, 128.37, 127.71, 127.08, 125.11, 119.98, 79.19, 67.21, 67.05, 53.81, 47.19, 40.08, 29.70, 29.59, 28.43, 22.30. **HRMS (ESI)** calcd for C₃₃H₃₈N₂O₆ [M+Na]⁺ 581.2622, found 581.2605.

Spectra of catalysts

¹³C{¹H} NMR spectrum of compound 6 (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 7 (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 8 (126 MHz CDCl₃)

¹H NMR spectrum of compound 9 (500 MHz CDCl₃)

¹H NMR spectrum of compound S3 (500 MHz CDCl₃)

¹H NMR spectrum of compound S4 (500 MHz CDCl₃)

 $^{13}C\{^{1}H\}$ NMR spectrum of compound S7 (126 MHz CDCl_3)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound $^{18}\mathrm{O}\text{-}\mathrm{benzyl}$ alcohol (2ca) (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3ab (126 MHz CDCl₃) (Ester from ¹⁸O-benzyl alcohol)

¹³C{¹H} NMR spectrum of compound ¹⁸O-phenylacetic acid (1ab) (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 13 (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3b (126 MHz CDCl₃)

 $^{13}C\{^1H\}$ NMR spectrum of compound 3d (126 MHz CDCl_3)

¹³C{¹H} NMR spectrum of compound 3f (126 MHz CDCl₃)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR spectrum of compound 3g (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3h (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3i (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3j (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3k (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3l (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3r (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 3s (126 MHz CDCl₃

¹³C{¹H} NMR spectrum of compound 3t (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 4a (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 4b (126 MHz CDCl₃)

2.55 2.55 2.55 2.55 1.97 1.98 1.98 1.98

ſ

¹H NMR spectrum of compound 4e (500 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 4e (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 4g (126 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 4h (126 MHz CDCl₃)

¹H NMR spectrum of compound 4m (500 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 4n (126 MHz CDCl₃)

¹H NMR spectrum of compound 4o (500 MHz CDCl₃)

¹H NMR spectrum of compound 4p (500 MHz CDCl₃)

¹H NMR spectrum of compound 4q (500 MHz CDCl₃)

¹H NMR spectrum of compound 5a (500 MHz CDCl₃)

¹H NMR spectrum of compound 5e (500 MHz CDCl₃)

¹³C{¹H} NMR spectrum of compound 5e (126 MHz CDCl₃)

Table 2. Crystal parameters of compound S5

Compound S5	CCDC 2412439
Formula	$C_{16}H_{18}O_3S$
Formula weight	290.36
<i>T</i> /K	299(2)
Crystal system	Monoclinic
Space group	P 21/c
a/Å	23.9875(19)
b/Å	6.6512(5)
c/Å	9.5172(7)
$\alpha/^{o}$	90
β/°	99.885(2)
γ/°	90
V/Å ³	1495.9(2)
Z	4
Abs. Coeff./mm ⁻¹	0.221
Abs. Correction	none
GOF on F^2	0.844
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	<i>R1</i> = 0.0364
	wR2 = 0.1147
R indices [all data]	R1 = 0.0420
	wR2 = 0.1275

Figure 5. ORTEP diagram of compound S5 with thermal ellipsoid of 50% probability.