Supporting Information

for

Boosting CO₂ Reduction Catalyzed by Tetragonal Metal Chalcogenides: A DFT Study

Fei Yang^a, Xu Huang^a, Chengfang Yang^a, Chao Su^a, Bei-Bei Xiao^{a*},

^aSchool of Energy and Power Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang,

Jiangsu, China

^{*} Corresponding author.

Dr. Xiao, B. B. E-mail: xiaobb11@mails.jlu.edu.cn, xbb420@just.edu.cn; Phone: 86-137-7535-8009;

Computational Method

Spin-unrestricted were performed during all calculations within the DMol³ code under the framework of DFT.^{1, 2} With the Perdew-Burke-Ernzerhof (PBE) functional, the generalized gradient approximation (GGA) was adopted to treat the exchange-correlation interaction effect.³ The Grimme correction (DFT-D) and DFT Semi-core Pseudo Potentials (DSPP) method was utilized in this study to accurately describe dispersion force and treat core electrons.⁴ A thermal smearing of 0.005 Ha (1 Ha = 27.2114 eV) to the orbital occupation was applied to achieve accurate electronic convergence. Double numerical plus polarization (DNP) was used to describe atomic orbitals.² The global cutoff quality was employed as fine for high precision. The convergence tolerances of energy, maximum force, and displacement were found to be 1.0×10^{-5} Ha, 0.002 Ha/Å, and 0.005 Å respectively during the geometry structural optimization. All the systems were relaxed without any constraints. Moreover, we used a conductor-like screening model (COSMO) to simulate the aqueous environment, where the dielectric constant of H₂O was 78.54.^{5, 6} A 2 \times 2 \times 1 supercell containing 8 TM and 8 S atoms was applied with at least 20 Å vacuum space in the z-direction which was enough to prevent spurious interactions between the tetragonal monolayer and periodic images.

The binding energies (E_b) were calculated to examine the stability of the designed catalysts by:

$$E_{\rm b} = E_{\rm catalyst} - E_{\rm substrate} - E_{\rm TM} \tag{1}$$

where E_{catalyst} , $E_{\text{substrate}}$, and E_{TM} , are the total energies of the catalyst, the substrate, and the adsorbed metal atoms.

To further reveal the stability of the designed catalysts, the formation energies (E_f) are calculated by:

$$E_{\rm f} = E_{\rm catalyst} - E_{\rm substrate} - E_{\rm TM, \ bulk} \tag{2}$$

where E_{catalyst} , $E_{\text{substrate}}$, and $E_{\text{TM, bulk}}$, are the total energies of the catalyst, the substrate, and the bulk energies of adsorbed metal atoms.

The Gibbs free energy difference (ΔG) of the elementary steps was calculated based on the computational hydrogen electrode (CHE) model proposed by Nørskov et al.,⁷ where the chemical potential of the (H⁺ + e^-) system in solution is substituted by half the chemical potential of one H₂ molecule.⁸⁻¹⁰ Thus, the Gibbs free energy change is calculated by:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{\rm U} + \Delta G_{\rm pH} \tag{3}$$

where ΔE_{ZPE} represents the zero-point energy difference obtained based on the reaction using DFT calculations of the vibrational frequencies and standard tables for gas phase molecules and *T* is set as 298.15 K herein. *ZPE* and *S* can be calculated from the vibrational frequencies according to standard methods. The substrates are fully constrained during the frequency calculation according to the suggestion of Wilcox et al.¹¹ $\Delta G_U = -eU$ expressed as the free energy contribution from the variation in electrode potential, and the pH correction of the free energy is expressed as $\Delta G_{pH} = -k_B T \ln 10 \times pH$, where k_B is the Boltzmann constant and pH is zero in this case. The limiting potential (U_L) is defined as required the energy between the elementary hydrogenations and spontaneous reaction, which is calculated by $U_L = -\Delta G_{max}/e$, where ΔG_{max} is the maximum change in free energy along varied elementary steps. The overpotential is calculated by $\eta = U_{eq} - U_L$, wherein U_{eq} are 0.17 V for the conversion from CO₂ to CH₄.¹²

Stability

 $E_{\rm f}$ of Co-FeS, Fe-CoS and Co-CoS are 1.79, 1.52 and 1.48 eV, respectively. There is a clustering possibility of TM adsorption^{13, 14}. However, we want to mentioned that when $E_{\rm b}$ that larger than –1.5 eV would provide enough kinetical fixation ability for TM adsorption.¹⁵ Herein, $E_{\rm b}$ values are –2.95, –3.78 and –3.25 eV for Co-FeS, Fe-CoS and Co-CoS, respectively, which indicates the mentioned candidates are stable kinetically. Furthermore, to provide other evidences to support our ideas, we have listed the formation energies $E_{\rm f}$ as well as the binding energies $E_{\rm b}$ of TM decorated MoS₂ for direct comparison, which have been well synthesized and adopted in catalysis field. Herein, $E_{\rm f}$ are 2.61, 2.47, 1.89 and 1.97 eV and the $E_{\rm b}$ values are evaluated to be –2.68, –2.26, –3.23 and –1.85 eV for Fe-MoS₂, Co-MoS₂, Ni-MoS₂ and Cu-MoS₂, respectively. All the data of our designed systems and TM decorated MoS₂ are in the same range that less than –1.5 eV.¹⁵ As we known, Fe-MoS₂,¹⁶ Co-MoS₂,¹⁷ Ni-MoS₂¹⁸ and Cu-MoS₂¹⁹ have been synthesized and were confirmed to be stable. Hence, it is reasonable to infer that the materials we designed are stable.

2e⁻ reduction

HCOOH is thermodynamically possible when CO₂ reduction catalyzed by Ni-FeS, Cu-FeS, and Ni-CoS due to the easy desorption of HCOOH as demonstrated in Fig. 3b. Herein, Fig. S14a presents the corresponding free energy profiles of CO₂ reduction via $2e^-$ protonation. ΔG_i stands for the free energy change of the ith protonation step. Taken Cu-FeS as an illustration, the CO₂ molecule firstly adsorbs on the Cu atom with ΔG_{*CO2} of -0.21 eV, indicating a spontaneous process. In the first protonation process, the H atom firstly attached to C atoms in *CO₂ and the *HCO₂ is formed with the ΔG_1 of 0.12 eV. Subsequently, the *HCOOH intermediate is generated with ΔG_2 of -0.30 eV. This means that both steps are thermodynamically favored. However, the HCOOH desorption needs a 0.76 eV extra energy. Thus, the HCOOH production catalyzed by Cu-FeS would be suffered from the recovery of active site for continuous working. The similar situations are found for Ni-FeS and Ni-CoS wherein the energy inputs of the protonation steps are extremely low, as indicated by ΔG_{max} of 0.01 and 0.10 eV, however, the desorption processes are endothermic with ΔG_{des} (HCOOH) of 0.68 and 0.52 eV, respectively. Note that the room temperature T of 300 K would provide an extra energy of 0.75 eV as previous reported,²⁰ which is expected to be a thermodynamically driving force for HCOOH desorption. Therefore, it is reasonably expected that HCOOH is formed via 2e⁻ reduction when CO₂ catalyzed by Ni-FeS, Cu-FeS and Ni-CoS, being competitive compared with the previous literatures.^{21, 22}

8e⁻ reduction

Firstly, the CO₂ molecule adsorbed on Co-FeS with ΔG_{*CO2} of -0.01 eV, a step of physical adsorption. The first-protonation step is $*CO_2 \rightarrow *HCO_2$ with ΔG_1 of -0.12 eV not the $*CO_2 \rightarrow$ *COOH with ΔG of 0.14 eV. ΔG_2 of *HCO₂ \rightarrow *HCOOH and ΔG_3 of *HCOOH \rightarrow *CHO are -0.20 eV and 0.06 eV, respectively. The fourth-hydrogenation step of *CHO \rightarrow *HCHO is identified as the potential-determining step (PDS) due to its maximum ΔG_4 of 0.41 eV, that is, ΔG_{max} of 0.41 eV. The *H₃CO formation accompanied by *H₃CO adsorption via O-Co bond, with ΔG_5 of -0.22 eV. It is worth mentioning that, for Co-FeS and Fe-CoS, the free energies of HCHO desorption ΔG_{des} (HCHO) are 0.58 eV and 0.45 eV, respectively, wherein HCHO desorption is thermodynamically preferred. That is, the *HCHO desorption is occurred. Furthermore, ΔG_{des} (HCHO) values are larger than the fifth-protonation step (*HCHO \rightarrow *H₃CO) with the ΔG_5 values are -0.22 and -0.59 eV. Hence, the *HCHO formation will not affect the entire CRR process to produce CH₄. Similarly, *CH₃OH formation is achieved with ΔG_6 of -0.54 eV. The detachment of the hydroxyl group (-OH) from *CH₃OH to produce H₂O is slightly endothermic and the corresponding ΔG_7 is 0.19 eV. Finally, ΔG_8 of the *CH₄ formation is -0.42 eV. The CH₄ desorption is a spontaneous process accompanied by $\Delta G_{\text{des}}(\text{CH}_4)$ of -0.18 eV. In a word, the optimal reaction pathway when CO₂ catalyzed by Co-FeS is summarized as $*CO_2(g) \rightarrow *HCO_2 \rightarrow *HCOOH \rightarrow *CHO \rightarrow *HCHO \rightarrow *H_3CO \rightarrow *CH_3OH \rightarrow *CHOOH \rightarrow *CHOO \rightarrow *CHOOH \rightarrow *CHOOH \rightarrow *CHOOH \rightarrow *CHOO \rightarrow *CHOOH \rightarrow *CHOO \rightarrow *CHOOH \rightarrow *CHOO \rightarrow *CHOO \rightarrow *CHOOH \rightarrow *CHOO \rightarrow *$ $*CH_3 \rightarrow *CH_4$. According to the free energy profiles shown in Fig. S12, the same reaction pathway is identified for Fe-CoS wherein the corresponding ΔG_i are -0.15, -0.13, 0.77, -0.07, -0.59, -0.14, 0.03and -0.61 eV, respectively. That is, the PDS of Fe-CoS is the third protonation step of *HCOOH \rightarrow *CHO with ΔG_{max} of 0.77 eV. However, a different reaction pathway is found when CO₂ catalyzed by

Co-CoS. The first-protonation step is $CO_2 \rightarrow COOH$ with ΔG_1 of -0.03 eV not the $CO_2 \rightarrow HCO_2$ with ΔG of 0.04 eV. According to the free energy profiles shown in Fig. S13, the favorable pathway is $CO_2(g) \rightarrow COOH \rightarrow CO \rightarrow CHO \rightarrow HCOH \rightarrow CH_2OH \rightarrow CH_3OH \rightarrow CH_3 \rightarrow CH_4$ with the corresponding ΔG_1 of -0.03, -0.66, 0.91, 0.18, -0.22, -0.64, 0.00 and -0.39 eV, respectively. Therefore, the third protonation step of $CO \rightarrow CHO$ is identified as the PDS step with ΔG_{max} of 0.91 eV.

Figure Captions

Fig. S1. (a) Binding energies E_b with TM adsorption at site-II. (b) Binding energies E_b with TM adsorption at site-III. (c) Mulliken charges of TM decoration atom.

Fig. S2. (a) PDOS between Co adsorption and its substrate. (b) PDOS between Fe adsorption and its substrate. (c) PDOS between Ni adsorption and its substrate. (d) PDOS between Cu adsorption and its substrate.

Fig. S3. (a) Charge density difference (CDD) between Co adsorption and its substrate. (b) Charge density difference (CDD) between Fe adsorption and its substrate. (c) Charge density difference (CDD) between Ni adsorption and its substrate. (d) Charge density difference (CDD) between Cu adsorption and its substrate.

Fig. S4. (a) Optimized structures of CO_2 adsorption on Fe decoration. (b) Optimized structures of CO_2 adsorption on Co decoration. (c) Optimized structures of CO_2 adsorption on Ni decoration. (d) Optimized structures of CO_2 adsorption on Cu decoration.

Fig. S5. Charge density difference (CDD) and the electron transfer for Co-FeS, Ni-FeS, Cu-FeS, Fe-CoS, Co-CoS and Ni-CoS.

Fig. S6. TDOS for free state CO_2 and adsorbed CO_2 .

Fig. S7. The comparison between ΔG_{*CO2} and ΔG_{*H} .

Fig. S8. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Fe-FeS, Fe-CoS, Fe-FeSe and Fe-CoSe.

Fig. S9. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Co-FeS, Co-CoS, Co-FeSe and Co-CoSe.

Fig. S10. Gibbs free energy diagrams of the CO₂ reduction to CH₄ for Ni-FeS, Ni-CoS, Ni-FeSe and

Ni-CoSe.

Fig. S11. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Cu-FeS, Cu-CoS, Cu-FeSe and Cu-CoSe.

Fig. S12. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Fe-CoS along the preferred reaction pathway.

Fig. S13. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Co-CoS along the preferred reaction pathway.

Fig. S14. (a) Gibbs free energy diagrams of the CO₂ reduction catalyzed by Ni-FeS, Cu-FeS, and Ni-CoS. (b) Overpotential comparison of our work and the reported literatures²²⁻²⁶.

Fig. S15. (a) The fitting of the limiting potential U_L as a function of ΔG_3 . (b) The fitting of the limiting potential U_L as a function of $\Delta G_3 - \Delta G_4$.

Table Captions

Table S1. Binding energies $E_{\rm b}$, formation energies $E_{\rm f}$, TM Mulliken charges $Q_{\rm TM}$, CO₂ adsorption free energies ΔG_{*CO2} , CO₂ Mulliken charges $Q_{\rm CO2}$, length $l_{\rm C=O}$ of C=O bond, bond angle $\theta_{\rm O=C=O}$ of O=C=O, hydrogen adsorption free energies $\Delta G_{*\rm H}$ ($E_{\rm b}$, $E_{\rm f}$, $\Delta G_{*\rm CO2}$ and $\Delta G_{\rm H}$ in eV, $l_{\rm C=O}$ in Å, $\theta_{\rm O=C=O}$ in °, Q and $Q_{\rm CO2}$ in e).

Table S2. Total Gibbs free energies G of corresponding intermediate species along CO₂ conversion into CH₄ for Fe decoration.

Table S3. Total Gibbs free energies G of corresponding intermediate species along CO₂ conversion into CH₄ for Co decoration.

Table S4. Total Gibbs free energies G of corresponding intermediate species along CO_2 conversion

into CH₄ for Ni decoration.

Table S5. Total Gibbs free energies G of corresponding intermediate species along CO_2 conversion into CH_4 for Cu decoration.

Fig. S1. (a) Binding energies E_b with TM adsorption at site-II. (b) Binding energies E_b with TM adsorption at site-III. (c) Mulliken charges of TM decoration atom.

Fig. S2. (a) PDOS between Co adsorption and its substrate. (b) PDOS between Fe adsorption and its substrate. (c) PDOS between Ni adsorption and its substrate. (d) PDOS between Cu adsorption and its substrate.

Fig. S3. (a) Charge density difference (CDD) between Co adsorption and its substrate. (b) Charge density difference (CDD) between Fe adsorption and its substrate. (c) Charge density difference (CDD) between Ni adsorption and its substrate. (d) Charge density difference (CDD) between Cu adsorption and its substrate.

Fig. S4. (a) Optimized structures of CO_2 adsorption on Fe decoration. (b) Optimized structures of CO_2 adsorption on Co decoration. (c) Optimized structures of CO_2 adsorption on Ni decoration. (d) Optimized structures of CO_2 adsorption on Cu decoration.

Fig. S5. Charge density difference (CDD) and the electron transfer for Co-FeS, Ni-FeS, Cu-FeS, Fe-

CoS, Co-CoS and Ni-CoS.

Fig. S6. TDOS for free state CO_2 and adsorbed CO_2 .

Fig. S7. The comparison between ΔG_{*CO2} and ΔG_{*H} .

Fig. S8. Gibbs free energy diagrams of the CO₂ reduction to CH₄ for Fe-FeS, Fe-CoS, Fe-FeSe and Fe-CoSe.

Fig. S9. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Co-FeS, Co-CoS, Co-FeSe and Co-CoSe.

Fig. S10. Gibbs free energy diagrams of the CO₂ reduction to CH₄ for Ni-FeS, Ni-CoS, Ni-FeSe and Ni-CoSe.

Fig. S11. Gibbs free energy diagrams of the CO₂ reduction to CH₄ for Cu-FeS, Cu-CoS, Cu-FeSe and

Cu-CoSe.

Fig. S12. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Fe-CoS along the preferred reaction pathway.

Co-CoS

Fig. S13. Gibbs free energy diagrams of the CO_2 reduction to CH_4 for Co-CoS along the preferred reaction pathway.

Fig. S14. (a) Gibbs free energy diagrams of the CO₂ reduction catalyzed by Ni-FeS, Cu-FeS, and Ni-CoS. (b) Overpotential comparison of our work and the reported literatures²²⁻²⁶.

Fig. S15. (a) The fitting of the limiting potential U_L as a function of ΔG_3 . (b) The fitting of the limiting potential U_L as a function of $\Delta G_3 - \Delta G_4$.

Table S1. Binding energies E_b , formation energies E_f , TM Mulliken charges Q_{TM} , CO₂ adsorption free energies ΔG_{*CO2} , CO₂ Mulliken charges Q_{CO2} , length $l_{C=O}$ of C=O bond, bond angle $\theta_{O=C=O}$ of O=C=O, hydrogen adsorption free energies ΔG_{*H} (E_b , ΔG_{*CO2} and ΔG_H in eV, $l_{C=O}$ in Å, $\theta_{O=C=O}$ in °, Q and Q_{CO2}

	E_{b}	E_{f}	$Q_{ ext{TM}}$	ΔG_{*CO2}	$Q_{\rm CO2}$	$l_{\rm C=O}$	$\theta_{\mathrm{O=C=O}}$	$\Delta G_{*_{\mathrm{H}}}$
Fe-FeS	-3.60	1.69	0.371	0.07	-0.150	1.250	148.460	0.27
Fe-CoS	-3.78	1.52	0.295	-0.13	0.106	1.185	179.645	0.17
Fe-FeSe	-4.64	0.65	0.232	0.19	-0.287	1.226	144.200	0.16
Fe-CoSe	-4.31	0.99	0.251	0.08	-0.248	1.259	143.318	0.10
Co-FeS	-2.95	1.79	0.140	-0.01	-0.139	1.257	145.650	0.20
Co-CoS	-3.25	1.48	0.068	-0.11	-0.153	1.260	145.085	-0.04
Co-FeSe	-4.19	0.55	0.058	0.21	-0.238	1.223	145.524	0.17
Co-CoSe	-3.48	1.25	0.024	0.33	-0.279	1.227	142.947	-0.19
Ni-FeS	-3.68	1.44	0.239	-0.08	0.091	1.185	179.169	0.46
Ni-CoS	-3.79	1.34	0.212	-0.06	0.099	1.183	179.685	0.12
Ni-FeSe	-4.59	0.54	0.158	0.30	-0.213	1.217	148.313	0.28
Ni-CoSe	-4.08	1.05	0.167	0.19	-0.269	1.221	145.888	0.05
Cu-FeS	-2.48	1.33	0.214	-0.21	0.120	1.184	179.099	0.33
Cu-CoS	-2.40	1.41	0.190	0.22	0.007	1.177	179.119	0.25
Cu-FeSe	-2.62	1.19	0.155	0.07	0.012	1.176	178.618	0.17
Cu-CoSe	-2.70	1.11	0.120	0.16	-0.001	1.176	179.543	0.34

in *e*).

$G\left(\mathrm{eV}\right)$	Fe-FeS	Fe-CoS	Fe-FeSe	Fe-CoSe
*	0	0	0	0
*CO ₂	0.07	-0.13	0.19	0.08
*COOH	0.24	0.11	-0.04	0.02
*CO	-0.50	-0.81	-0.68	-0.85
*COH	0.99	0.80	1.01	0.77
*C	2.51	2.42	2.49	2.22
*CH	1.51	1.39	1.48	1.35
*CH ₂	0.84	0.58	0.61	0.60
*CH ₃	-0.48	-0.41	-0.52	-0.51
*CH ₄	-1.05	-1.02	-0.97	-0.92
*HCO ₂	-0.35	-0.28	-0.47	-0.45
*H ₂ CO ₂	0.65	1.25	0.93	1.28
*H ₂ COOH	0.10	0.09	0.04	0.05
*HCHO	0.17	0.29	-0.02	0.26
*H ₃ CO	-0.31	-0.30	-0.49	-0.39
*O	-0.21	-0.17	-0.47	-0.29
*OH	-1.52	-1.42	-1.45	-1.47
*H ₂ O	-1.79	-1.68	-1.76	-1.69
*HCOOH	-0.24	-0.41	-0.31	-0.28
*CHO	0.51	0.36	0.13	0.27
*HCOH	0.80	0.41	0.46	0.40
*CH ₂ OH	0.18	0.33	0.08	0.28
*CH ₃ OH	-0.57	-0.44	-0.54	-0.53
* + CH4	-1.00	-1.02	-1.03	-1.02

Table S2. Total Gibbs free energies G of corresponding intermediate species along CO₂ conversion into CH₄ for Fe decoration.

$G\left(\mathrm{eV}\right)$	Co-FeS	Co-CoS	Co-FeSe	Co-CoSe
*	0	0	0	0
*CO ₂	-0.01	-0.11	0.21	0.33
*COOH	0.13	-0.14	-0.03	-0.22
*CO	-0.80	-0.80	-0.48	-0.93
*COH	0.97	1.11	1.23	1.00
*C	2.75	2.91	2.97	2.84
*CH	1.75	1.90	1.91	1.80
*CH ₂	0.84	0.72	0.76	0.64
*CH3	-0.43	-0.57	-0.48	-0.60
*CH ₄	-0.85	-0.96	-0.93	-0.91
*HCO ₂	-0.13	-0.07	-0.36	-0.32
*H ₂ CO ₂	1.35	1.43	1.08	1.47
*H ₂ COOH	0.22	0.23	0.21	0.25
*HCHO	0.14	0.31	0.18	0.26
*H ₃ CO	-0.08	-0.02	-0.23	-0.25
*O	-0.01	0.16	-0.11	0.01
*OH	-1.26	-1.12	-1.29	-1.21
*H ₂ O	-1.83	-1.73	-1.71	-1.72
*HCOOH	-0.33	-0.23	-0.25	-0.30
*CHO	-0.27	0.11	0.17	0.08
*HCOH	0.63	0.29	0.62	0.44
*CH ₂ OH	0.04	0.07	0.11	0.13
*CH ₃ OH	-0.62	-0.57	-0.50	-0.53
* + CH4	-1.03	-1.01	-1.03	-1.01

Table S3. Total Gibbs free energies G of corresponding intermediate species along CO₂ conversion into CH₄ for Co decoration.

G(eV)	Ni-FeS	Ni-CoS	Ni-FeSe	Ni-CoSe
*	0	0	0	0
*CO ₂	-0.08	-0.06	0.30	0.19
*COOH	0.40	0.19	0.11	-0.02
*CO	-0.56	-0.44	-0.41	-0.59
*COH	1.30	1.68	1.62	1.72
*C	3.91	4.03	3.56	3.88
*CH	2.34	2.66	2.45	2.58
*CH ₂	1.14	1.15	0.99	1.10
*CH ₃	-0.17	-0.34	-0.39	-0.46
*CH ₄	-0.94	-0.77	-0.87	-0.87
*HCO ₂	-0.07	0.04	-0.26	-0.19
*H ₂ CO ₂	1.54	1.57	1.31	1.68
*H ₂ COOH	0.63	0.47	0.35	0.49
*HCHO	0.41	0.55	0.15	0.27
*H ₃ CO	0.13	0.33	-0.09	0.12
*O	0.69	0.92	0.30	0.71
*OH	-0.97	-1.06	-1.17	-1.09
*H ₂ O	-1.62	-1.61	-1.64	-1.66
*HCOOH	-0.31	-0.16	-0.23	-0.18
*CHO	0.56	0.44	0.34	0.23
*HCOH	0.85	0.82	0.87	0.81
*CH ₂ OH	0.39	0.24	0.23	0.22
*CH ₃ OH	-0.45	-0.43	-0.44	-0.43
* + CH4	-1.02	-1.01	-1.03	-1.01

Table S4. Total Gibbs free energies G of corresponding intermediate species along CO₂ conversion into CH₄ for Ni decoration.

<i>G</i> (eV)	Cu-FeS	Cu-CoS	Cu-FeSe	Cu-CoSe
*	0	0	0	0
*CO ₂	-0.21	0.22	0.07	0.16
* COOH	0.34	0.37	0.31	0.38
*CO	-0.33	-0.27	-0.07	0.02
*COH	2.41	2.48	2.49	1.22
*C	4.88	5.07	4.85	5.08
*CH	3.06	3.19	3.17	3.30
*CH ₂	1.30	1.43	1.30	1.45
*CH ₃	-0.34	-0.38	-0.33	-0.24
*CH ₄	-1.13	-1.05	-1.03	-0.83
*HCO ₂	-0.09	-0.18	-0.31	-0.09
*H ₂ CO ₂	1.48	1.35	1.60	1.81
*H ₂ COOH	0.54	0.40	0.55	0.67
*HCHO	0.20	0.20	0.44	0.65
*H ₃ CO	0.13	0.21	0.16	0.33
*O	1.19	1.29	1.09	1.21
*OH	-1.05	-0.88	-1.07	-0.85
*H ₂ O	-1.72	-1.68	-1.62	-1.52
*HCOOH	-0.39	-0.26	-0.24	0.01
*CHO	0.70	0.67	0.70	0.78
*HCOH	0.88	1.05	1.15	1.34
*CH ₂ OH	0.46	0.38	0.47	0.58
*CH ₃ OH	-0.55	-0.49	-0.47	-0.30
* + CH4	-1.01	-1.02	-1.02	-1.02

Table S5. Total Gibbs free energies G of corresponding intermediate species along CO_2 conversioninto CH_4 for Cu decoration.

References

- 1. B. Delley, Comp. Mater. Sci., 2000, 17, 122-126.
- 2. B. Delley, J. Chem. Phys., 1990, 92, 508-517.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 4. B. Delley, *Phy. Rev. B*, 2002, **66**, 155125.
- 5. T. Todorova and B. Delley, *Mol. Simul.*, 2008, **34**, 1013-1017.
- 6. L. Yang, S. H. Feng and W. H. Zhu, J. Phys. Chem. Lett., 2022, 13, 1726-1733.
- J. Rossmeisl, Z. W. Qu, H. Zhu, G.-J. Kroes and J. K. Nørskov, *Electroanal. Chem.*, 2007, 607, 83-89.
- 8. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.
- 9. A. Kulkarni, S. Siahrostami, A. Patel and J. K. Nørskov, *Chem. Rev.*, 2018, **118**, 2302-2312.
- 10. J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Nørskov, ChemSusChem, 2015, 8, 2180-2186.
- 11. D.-H. Lim and J. Wilcox, J. Phys. Chem. C, 2012, 116, 3653-3660.
- 12. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energ. Environ. Sci.*, 2010, **3**, 1311-1315
- 13. C. N. M. Ouma, K. O. Obodo, M. Braun, G. O. Amolo and D. Bessarabov, *Appl. Surf. Sci.*, 2019, **470**, 107-113.
- I. C. Onyia, S. O. Ezeonu, D. Bessarabov and K. O. Obodo, *Computational Materials Science*, 2021, 197, 110613.
- 15. W. Zhao, L. Zhang, Q. Luo, Z. Hu, W. Zhang, S. Smith and J. Yang, *ACS Catal.*, 2019, **9**, 3419-3425.
- 16. Z. Li, H. Li, Z. Yang, X. Lu, S. Ji, M. Zhang, J. H. Horton, H. Ding, Q. Xu, J. Zhu and J. Yu, *Small*, 2022, **18**, 2201092.
- G. Liu, A. W. Robertson, M. M.-J. Li, W. C. H. Kuo, M. T. Darby, M. H. Muhieddine, Y.-C. Lin, K. Suenaga, M. Stamatakis, J. H. Warner and S. C. E. Tsang, *Nat. Chem.*, 2017, 9, 810-816.
- Q. Wang, Z. L. Zhao, S. Dong, D. S. He, M. J. Lawrence, S. B. Han, C. Cai, S. H. Xiang, P. Rodriguez, B. Xiang, Z. G. Wang, Y. Y. Liang and M. Gu, *Nano Energy*, 2018, 53, 458-467.
- 19. W. Du, Z. Sun, K. Chen, Y. Wei, R. Bao and K. Chu, Adv. Energy Mater., 2024, 14, 2401765.
- 20. C. Shang and Z.-P. Liu, J. Am. Chem. Soc., 2011, 133, 9938-9947.
- 21. Y.-w. Sun and J.-y. Liu, Phys. Chem. Chem. Phys., 2023, 25, 4773-4779.
- 22. Y. Linghu, T. Tong and C. Wu, J. Phys. Chem. C, 2023, 127, 15035-15042.
- 23. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energ. Environ. Sci.*, 2010, **3**, 1311-1315.
- 24. M. Pu, W. Guo and Y. Guo, ACS Appl. Mater. Interfaces, 2023, 15, 58388-58396.
- 25. S. Siahrostami, K. Jiang, M. Karamad, K. Chan, H. Wang and J. Nørskov, ACS Sustainable Chem. Eng., 2017, 5, 11080-11085.
- H. B. Yang, S.-F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H.-Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H. M. Chen, C. M. Li, T. Zhang and B. Liu, *Nat. Energy*, 2018, 3, 140-147.