Supporting Information

Phosphine-mediated [2+3]/[2+3] domino annulation reaction: Access

to cyclopentane[3,4]pyrrolo[1,2-a]indoles

Yannan Zhu^a, Nan He,^a Yumeng Li,^a Yuxuan Zhu^a and Gang Qi^{*a} ^aFaculty of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China E-mail: 15022522775@163.com

Table of Contents

1.	General information	S1
2.	References	S1
3.	General procedures	S1
4.	Characterization data	S3
5.	NMR data	S14
6.	X-ray crystallography data	S46

1.General information

All the solvents were used without further purification. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) were recorded on a Bruker AV 400 (400 MHz) spectrometer with CDCl₃ as solvent. Chemical shifts were recorded in parts per million (ppm) relative to tetramethylsilane as an internal reference. All shifts are reported in ppm as downfield from TMS as standard. Multiplicity is indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet). Coupling constants J are reported in Hz. HRMS were obtained on an VG ZAB-HS mass spectrometer with ESI resource. Melting points were measured on a RY-I apparatus and are reported uncorrected. Column chromatography was performed on silica gel 200-300 mesh. The starting materials indole-derived enones **2**¹ were prepared according to the known methods.

2.References

1. (a) C. Zhao, F. D. Toste and R. G. Bergman, *J. Am. Chem. Soc.*, 2011, **133**, 10787–10789; (b) T. Su, X. Han and X. Lu, *Tetrahedron Lett.*, 2014, **55**, 27–30; (c) Y. Chen, R. Yang, F. Xiao, T. Xu, G. Mao and G.-J. Deng, *Org. Lett.*, 2023, **25**, 3702–3707.

3.General procedures

3.1 General procedure for the synthesis of cyclopentane[3,4]pyrrolo[1,2-a]indoles 3:

The indole-derived enones 2 (0.20 mmol), PBu₃ (0.24 mmol, 1.2 equiv.) and CHCl₃ (2.0 mL) were added to a 15 mL dry sealed tube at 60 °C in water bath. Then MBH carbonates 1 (0.24 mmol, 1.2 equiv.) were added in one portion. This solution was stirred at 60 °C for 6 hours until the complete consumption of indole-derived enones 2 monitored by TLC. The reaction mixture was concentrated and the residue was purified by flash column chromatography (petroleum ether: EtOAc = 20:1) on silica gel to afford corresponding products 3.

3.2 Procedure for the gram-scale synthesis of 3z:

The indole-derived enone **2a** (4.0 mmol, 1.13 g), PBu₃ (4.8 mmol, 1.2 equiv., 971 mg) and CHCl₃ (40 mL) were added to a 250 mL dry round bottom flask at 60 °C in water bath. Then MBH carbonate **1b** (4.8 mmol, 1.2 equiv., 1.04 g) was added in one portion. This solution was stirred at 60 °C for 6 hours until the complete consumption of indole-derived enone **2a** monitored by TLC. The reaction mixture was concentrated and the residue was purified by flash column chromatography (petroleum ether: EtOAc = 20:1) on silica gel to afford product **3z** as white solid (1.18 g, 81% yield, >20:1 dr).

3.3 Procedure for the derivatizations of 3z:

To a suspension of lithium aluminium tetrahydride (0.60 mmol, 3.0 equiv., 22.8 mg) in THF (6 mL) was

added 3z (0.20 mmol, 72.8 mg) in one portion, mixture was stirred 30 min at 25 °C. NH₄Cl (aq) was added in small portions. Then, extracted with EtOAc, dried with Na₂SO₄ and concentrated in vacuo. The residue was purified by column chromatography (petroleum ether: EtOAc = 4:1) on silica gel to afford product **5** (59.0 mg, 88% yield, > 20:1 dr).

To a stirred solution of 3z (0.20 mmol, 72.8 mg) in THF (2.0 mL), H₂O (1.0 mL) and MeOH (0.5 mL) at room temperature was added LiOH•H₂O (0.60 mmol, 3.0 equiv., 25.2 mg), and the resulting mixture was stirred at 65 °C in an oil bath for 8 h. Acidify the solution with the 1M HCl, followed by adding 10 mL of water and 10 mL EtOAc. The aqueous phase was separated and extracted three times with 10 mL EtOAc. The combined organic phases were dried over Na₂SO₄ and the solvents were removed in vacuo. Add 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDCl) (0.2 mmol, 1.0 equiv., 38.3 mg), above residue and 4-dimethyl-aminopyridine (DMAP) (0.02 mmol, 0.1 equiv., 2.4 mg) to a stirred solution of aniline (0.2 mmol, 1.0 equiv., 18.6 mg) in CH₂Cl₂ at 0 °C in an ice-water bath. Stir the reaction mixture at this temperature for 2 hours. After completion (TLC control using petroleum ether: EtOAc = 10:1 as eluent), wash the reaction mixture with water and brine. Dry the organic layer with Na₂SO₄. The crude residue was purified by column chromatography on silica gel (petroleum ether: EtOAc = 10:1) to afford the product **6** (54.5 mg, 64% yield (for two steps), > 20:1 dr).

A solution of **3z** (0.20 mmol, 72.8 mg) in anhydrous toluene (4.0 mL) was added CH₃MgBr (1.0 mmol, 1.0 M in THF) dropwise at 0 °C in an ice-water bath under argon atmosphere. After addition, the mixture was stirred at 40 °C in an oil bath for 5 h. The mixture was quenched by adding saturated NH₄Cl (4.0 mL) and extracted with EtOAc (2 × 6.0 mL). The organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The product was purified by column chromatography on silica gel (petroleum ether: EtOAc = 5:1) to afford the product 7 (53.6 mg, 74% yield, > 20:1 dr). **3.4 Procedure for the deuterium labeling experiment:**

The indole-derived enone **2a** (0.20 mmol, 56.3 mg), PBu₃ (0.24 mmol, 1.2 equiv., 48.6 mg), CHCl₃ (2.0 mL) and D₂O (2.0 mmol, 10 equiv., 40 μ L) were added to a 15 mL dry sealed tube at 60 °C in water bath.

Then MBH carbonate 1a (0.24 mmol, 1.2 equiv., 62.0 mg) was added in one portion. This solution was stirred at 60 °C for 6 hours until the complete consumption of indole-derived enone 2a monitored by TLC. The reaction mixture was concentrated and the residue was purified by flash column chromatography (petroleum ether: EtOAc = 20:1) on silica gel to afford corresponding product d-3a.

4. Characterization data

tert-butyl 10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)carboxylate (3a)

63.7 mg, 78% yield.; white solid; mp 133-135°C.

¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.7 Hz, 1H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.30 (m, 3H), 7.29 – 7.15 (m, 3H), 6.17 (d, *J* = 2.5 Hz, 1H), 4.53 (dd, *J* = 10.4, 1.8 Hz, 1H), 4.49 – 4.44 (m, 1H), 4.40 (dd, *J* = 10.4, 1.8 Hz, 1H), 3.50 (ddt, *J* = 16.3, 8.1, 2.1 Hz, 1H), 3.38 (dd, *J* = 16.2, 1.9 Hz, 1H), 1.57 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.3, 141.9, 134.8, 131.2, 129.9, 128.5, 128.4, 126.3, 125.3, 121.7, 120.0, 117.9, 109.8, 96.3, 82.2, 71.7, 52.1, 43.6, 37.4, 28.1.

HRMS (ESI): m/z calcd for $C_{25}H_{25}CINO_2$ ([M+H]⁺): 406.1568; found: 406.1564.

tert-butyl 10-chloro-2-(p-tolyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)carboxylate (3b)

63.1 mg, 75% yield.; white solid; mp 120-122°C.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (dt, *J* = 7.3, 1.7 Hz, 1H), 7.31 (dd, *J* = 8.2, 1.5 Hz, 2H), 7.17 (ddt, *J* = 8.3, 6.6, 1.5 Hz, 2H), 7.11 (td, *J* = 8.5, 7.7, 1.9 Hz, 3H), 6.07 – 5.99 (m, 1H), 4.43 (dd, *J* = 10.3, 1.1 Hz, 1H), 4.37 (dt, *J* = 8.1, 1.7 Hz, 1H), 4.30 (dd, *J* = 10.3, 1.3 Hz, 1H), 3.40 (ddt, *J* = 16.2, 8.1, 2.1 Hz, 1H), 3.28 (dq, *J* = 16.1, 1.8 Hz, 1H), 2.30 (s, 3H), 1.48 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.9, 145.2, 142.0, 138.3, 132.0, 131.2, 129.9, 129.2, 126.2, 124.3, 121.7, 119.9, 117.9, 109.8, 96.2, 82.1, 71.6, 52.1, 43.6, 37.4, 28.1, 21.3.

HRMS (ESI): m/z calcd for $C_{26}H_{27}CINO_2$ ([M+H]⁺): 420.1725; found: 420.1717.

tert-butyl 2-(4-(tert-butyl)phenyl)-10-chloro-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3c)

59.8 mg, 65% yield.; white solid; mp 145-147°C.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (dq, J = 7.2, 1.4 Hz, 1H), 7.42 – 7.29 (m, 4H), 7.23 – 7.06 (m, 3H), 6.06 (dd, J = 2.6, 1.3 Hz, 1H), 4.46 – 4.41 (m, 1H), 4.38 (dq, J = 8.0, 1.6 Hz, 1H), 4.31 (dt, J = 10.4, 1.2 Hz, 1H), 3.47 – 3.37 (m, 1H), 3.31 (dq, J = 16.1, 1.6 Hz, 1H), 1.55 – 1.46 (s, 9H), 1.30 – 1.27 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.9, 151.6, 145.2, 141.9, 132.0, 131.2, 129.9, 126.0, 125.4, 124.6, 121.7, 119.9, 117.9, 109.8, 96.3, 82.1, 71.6, 52.0, 43.6, 37.4, 34.7, 31.3, 28.1. HRMS (ESI): m/z calcd for C₂₉H₃₃ClNO₂ ([M+H]⁺): 462.2194; found: 462.2186.

tert-butyl 10-chloro-2-(4-fluorophenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3d)

64.9 mg, 77% yield.; white solid; mp 162-164°C.

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.42 – 7.35 (m, 2H), 7.22 – 7.08 (m, 3H), 7.02 – 6.94 (m, 2H), 6.03 (dd, J = 2.4, 1.4 Hz, 1H), 4.44 (d, J = 10.4 Hz, 1H), 4.38 (dd, J = 8.1, 1.6 Hz, 1H), 4.31 (d, J = 10.4 Hz, 1H), 3.39 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.26 (dt, J = 16.2, 1.6 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7, 162.7 (d, J = 248.2 Hz), 143.0 (d, J = 247.0 Hz), 131.1, 131.0 (d,

J = 3.4 Hz), 129.9, 128.0 (d, *J* = 8.1 Hz), 125.0 (d, *J* = 1.9 Hz), 121.8, 120.0, 117.9, 115.4 (d, *J* = 21.6 Hz), 109.8, 96.3, 82.3, 71.7, 52.0, 43.6, 37.5, 28.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.97 (s, 1F).

HRMS (ESI): m/z calcd for C₂₅H₂₄ClFNO₂ ([M+H]⁺): 424.1474; found: 424.1467.

tert-butyl 10-chloro-2-(4-chlorophenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-

3a(4H)-carboxylate (3e)

70.8 mg, 80% yield.; white solid; mp 139-142°C.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 7.2, 1.4 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.28 – 7.23 (m, 2H), 7.22 – 7.10 (m, 3H), 6.09 (dd, J = 2.4, 1.4 Hz, 1H), 4.45 (d, J = 10.4 Hz, 1H), 4.39 (dd, J = 8.1, 1.7 Hz, 1H), 4.32 (d, J = 10.4 Hz, 1H), 3.39 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.26 (dt, J = 16.2, 1.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 144.2, 141.6, 134.1, 133.2, 131.1, 129.9, 128.6, 127.5, 125.9, 121.8, 120.0, 117.9, 109.8, 96.3, 82.3, 71.7, 52.0, 43.6, 37.4, 28.1.

HRMS (ESI): m/z calcd for $C_{25}H_{24}Cl_2NO_2$ ([M+H]⁺): 440.1179; found: 440.1171.

tert-butyl 2-(4-bromophenyl)-10-chloro-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3f)

70.5 mg, 73% yield.; light yellow solid; mp 144-146°C.

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.51 (m, 1H), 7.45 – 7.40 (m, 2H), 7.31 – 7.26 (m, 2H), 7.23 – 7.10 (m, 3H), 6.10 (dd, J = 2.4, 1.4 Hz, 1H), 4.45 (d, J = 10.4 Hz, 1H), 4.39 (dd, J = 8.1, 1.7 Hz, 1H), 4.32 (d, J = 10.4 Hz, 1H), 3.40 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.26 (dt, J = 16.1, 1.6 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 144.2, 141.6, 133.6, 131.6, 131.1, 129.9, 127.8, 126.0, 122.3, 121.8, 120.0, 117.9, 109.8, 96.3, 82.4, 71.7, 51.9, 43.6, 37.3, 28.1.

HRMS (ESI): m/z calcd for C₂₅H₂₄BrClNO₂ ([M+H]⁺): 484.0673; found: 484.0667.

tert-butyl 10-chloro-2-(4-(trifluoromethyl)phenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2a]indole-3a(4H)-carboxylate (3g)

54.1 mg, 57% yield.; white solid; mp 110-112°C.

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.48 (m, 5H), 7.23 – 7.10 (m, 3H), 6.21 (dd, J = 2.4, 1.4 Hz, 1H), 4.47 (d, J = 10.4 Hz, 1H), 4.41 (dd, J = 8.1, 1.6 Hz, 1H), 4.35 (d, J = 10.5 Hz, 1H), 3.44 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.30 (dt, J = 16.2, 1.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.4, 144.1, 141.4, 138.1 (d, *J* = 1.5 Hz), 131.1, 130.1 (q, *J* = 32.6 Hz), 129.9, 127.8, 126.5, 125.4 (q, *J* = 3.8 Hz), 121.8, 120.1, 118.0, 109.8, 96.4, 82.5, 71.7, 51.9, 43.6, 37.3, 28.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.60 (s, 3F).

HRMS (ESI): m/z calcd for $C_{26}H_{24}ClF_3NO_2$ ([M+H]⁺): 474.1442; found: 474.1433.

tert-butyl 10-chloro-2-(4-(methoxycarbonyl)phenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3h)

72.7 mg, 78% yield.; white solid; mp 115-117°C.

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.94 (m, 2H), 7.56 – 7.51 (m, 1H), 7.51 – 7.44 (m, 2H), 7.23 – 7.09 (m, 3H), 6.23 (dd, J = 2.4, 1.4 Hz, 1H), 4.47 (d, J = 10.4 Hz, 1H), 4.41 (dd, J = 8.1, 1.7 Hz, 1H), 4.35 (d, J = 10.4 Hz, 1H), 3.90 (s, 3H), 3.45 (ddd, J = 16.3, 8.1, 2.5 Hz, 1H), 3.31 (dt, J = 16.2, 1.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.4, 166.7, 144.5, 141.5, 139.0, 131.1, 129.9, 129.8, 129.7, 127.8, 126.2, 121.8, 120.0, 117.9, 109.8, 82.5, 71.7, 52.2, 52.0, 43.6, 37.3, 28.1.

HRMS (ESI): m/z calcd for C₂₇H₂₇ClNO₄ ([M+H]⁺): 464.1623; found: 464.1619.

tert-butyl 2-([1,1'-biphenyl]-4-yl)-10-chloro-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3i)

71.9 mg, 75% yield.; white solid; mp 182-185°C.

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.47 (m, 7H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.36 – 7.30 (m, 1H), 7.22 – 7.09 (m, 3H), 6.14 (t, *J* = 1.8 Hz, 1H), 4.46 (d, *J* = 10.4 Hz, 1H), 4.41 (dd, *J* = 8.0, 1.7 Hz, 1H), 4.34 (d, *J* = 10.4 Hz, 1H), 3.46 (ddd, *J* = 16.2, 8.0, 2.4 Hz, 1H), 3.34 (dt, *J* = 16.1, 1.6 Hz, 1H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.8, 144.9, 141.8, 141.1, 140.5, 133.7, 131.2, 129.9, 128.9, 127.5, 127.1, 127.0, 126.7, 125.4, 121.7, 120.0, 117.9, 109.8, 96.3, 82.2, 71.7, 52.0, 43.6, 37.4, 28.1. HRMS (ESI): m/z calcd for C₃₁H₂₉ClNO₂ ([M+H]⁺): 482.1881; found: 482.1875.

tert-butyl 10-chloro-2-(m-tolyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)carboxylate (3j)

56.3 mg, 67% yield.; white solid; mp 153-155°C.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.7 Hz, 1H), 7.27 – 7.10 (m, 6H), 7.09 – 7.04 (m, 1H), 6.08 (s, 1H), 4.44 (d, *J* = 10.4 Hz, 1H), 4.38 (d, *J* = 7.9 Hz, 1H), 4.32 (d, *J* = 10.4 Hz, 1H), 3.42 (ddd, *J* = 16.2, 8.1, 2.4 Hz, 1H), 3.29 (d, *J* = 16.1 Hz, 1H), 2.32 (s, 3H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 145.4, 141.9, 138.0, 134.7, 131.1, 129.1, 128.4, 127.0, 125.1, 123.4, 121.7, 119.9, 117.9, 109.8, 96.3, 82.2, 71.6, 52.0, 43.5, 37.4, 28.1, 21.5.

HRMS (ESI): m/z calcd for C₂₆H₂₇ClNO₂ ([M+H]⁺): 420.1725; found: 420.1715.

tert-butyl 10-chloro-2-(3-methoxyphenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3k)

49.1 mg, 56% yield.; light yellow solid; mp 170-172°C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.24 – 7.08 (m, 4H), 7.02 (dq, J = 7.7, 1.2 Hz, 1H), 6.94 (dt, J = 2.9, 1.4 Hz, 1H), 6.80 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 6.09 (dt, J = 2.8, 1.4 Hz, 1H), 4.44 (d, J = 10.5 Hz, 1H), 4.37 (dt, J = 8.1, 1.5 Hz, 1H), 4.31 (dd, J = 10.4, 1.0 Hz, 1H), 3.78 (s, 3H), 3.41 (ddt, J = 16.2, 8.1, 1.9 Hz, 1H), 3.28 (dt, J = 16.1, 1.6 Hz, 1H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 159.6, 145.2, 141.8, 136.2, 131.1, 129.5, 125.7, 121.7, 120.0, 118.8, 117.9, 113.7, 112.0, 109.8, 96.3, 82.2, 71.6, 55.3, 52.0, 43.5, 37.5, 28.1.

HRMS (ESI): m/z calcd for C₂₆H₂₇ClNO₃ ([M+H]⁺): 436.1674; found: 436.1667.

tert-butyl 10-chloro-2-(3-chlorophenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3l)

65.5 mg, 74% yield.; white solid; mp 124-126°C.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.3, 1.5 Hz, 1H), 7.40 (t, *J* = 1.4 Hz, 1H), 7.27 (qd, *J* = 4.4, 1.7 Hz, 1H), 7.25 – 7.08 (m, 5H), 6.12 (t, *J* = 1.8 Hz, 1H), 4.44 (d, *J* = 10.4 Hz, 1H), 4.39 (dd, *J* = 8.1, 1.6 Hz, 1H), 4.32 (d, *J* = 10.4 Hz, 1H), 3.40 (ddd, *J* = 16.2, 8.1, 2.4 Hz, 1H), 3.26 (dt, *J* = 16.3, 1.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.5, 144.1, 141.6, 136.6, 134.5, 131.1, 129.9, 129.7, 128.3, 126.7, 126.3, 124.4, 121.8, 120.0, 118.0, 109.8, 96.4, 82.4, 71.6, 52.0, 43.5, 37.4, 28.1.

HRMS (ESI): m/z calcd for C₂₅H₂₄Cl₂NO₂ ([M+H]⁺): 440.1179; found: 440.1172.

tert-butyl 10-chloro-2-(o-tolyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)carboxylate (3m)

49.0 mg, 58% yield.; white solid; mp 138-140°C.

¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 1H), 7.24 – 7.17 (m, 2H), 7.16 – 7.06 (m, 5H), 5.71 – 5.67 (m, 1H), 4.49 (d, J = 10.4 Hz, 1H), 4.33 – 4.27 (m, 2H), 3.39 (ddd, J = 16.5, 7.9, 2.4 Hz, 1H), 3.25 (dd, J = 16.6, 1.7 Hz, 1H), 2.25 (s, 3H), 1.52 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.9, 146.8, 141.7, 135.9, 135.7, 131.2, 130.6, 129.9, 129.2, 128.3, 127.8, 125.8, 121.7, 119.9, 118.0, 109.9, 96.3, 82.1, 71.8, 51.7, 44.1, 40.6, 28.1, 20.8.

HRMS (ESI): m/z calcd for C₂₆H₂₇ClNO₂ ([M+H]⁺): 420.1725; found: 420.1716.

tert-butyl 10-chloro-2-(2-fluorophenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3n)

56.2 mg, 66% yield.; white solid; mp 117-119°C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 1H), 7.32 (td, J = 7.8, 1.8 Hz, 1H), 7.25 – 7.17 (m, 3H), 7.14 (ddd, J = 10.7, 7.7, 1.3 Hz, 1H), 7.11 – 7.06 (m, 1H), 7.02 (ddd, J = 11.8, 8.2, 1.2 Hz, 1H), 6.32 (q, J = 1.7 Hz, 1H), 4.47 (d, J = 10.4 Hz, 1H), 4.38 – 4.32 (m, 2H), 3.48 (ddd, J = 16.2, 8.1, 2.5 Hz, 1H), 3.33 (dt, J = 16.1, 1.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 160.9 (d, J = 252.0 Hz), 141.7, 139.4 (d, J = 3.0 Hz), 131.1, 130.4 (d, J = 11.7 Hz), 129.9, 129.5 (d, J = 8.8 Hz), 129.1 (d, J = 3.9 Hz), 124.1 (d, J = 3.5 Hz), 122.8 (d, J = 12.3 Hz), 121.7, 120.0, 117.9, 116.0 (d, J = 22.9 Hz), 109.8, 96.3, 82.3, 72.1 (d, J = 1.2 Hz), 52.0, 42.8, 38.6 (d, J = 1.5 Hz), 28.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -110.55 (s, 1F).

HRMS (ESI): m/z calcd for C₂₅H₂₄ClFNO₂ ([M+H]⁺): 424.1474; found: 424.1466.

tert-butyl 10-chloro-2-(2-chlorophenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (30)

67.1 mg, 76% yield.; white solid; mp 128-130°C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dq, J = 7.5, 1.0 Hz, 1H), 7.37 – 7.30 (m, 1H), 7.24 – 7.19 (m, 2H), 7.19 – 7.14 (m, 3H), 7.14 – 7.10 (m, 1H), 6.04 (p, J = 1.1 Hz, 1H), 4.49 (d, J = 10.4 Hz, 1H), 4.37 – 4.29 (m, 2H), 3.52 (dddd, J = 16.4, 8.1, 2.5, 1.0 Hz, 1H), 3.30 (dq, J = 16.3, 1.4 Hz, 1H), 1.52 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.6, 144.1, 141.6, 134.8, 132.6, 131.2, 131.0, 130.2, 130.0, 129.9, 128.9, 126.7, 121.7, 119.9, 118.0, 109.9, 82.2, 71.8, 51.7, 43.8, 39.9, 28.1. HRMS (ESI): m/z calcd for C₂₅H₂₄Cl₂NO₂ ([M+H]⁺): 440.1179; found: 440.1170.

tert-butyl 10-chloro-2-(2,4-dichlorophenyl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3p)

72.9 mg, 77% yield.; white solid; mp 150-152°C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 7.4, 1.5 Hz, 1H), 7.36 (d, J = 2.0 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.17 – 7.13 (m, 2H), 7.12 (s, 1H), 6.05 (t, J = 1.5 Hz, 1H), 4.49 (d, J = 10.5 Hz, 1H), 4.35 – 4.28

(m, 2H), 3.49 (ddd, J = 16.3, 8.1, 2.5 Hz, 1H), 3.26 (dt, J = 16.5, 1.8 Hz, 1H), 1.51 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 143.0, 141.4, 134.0, 133.3, 131.6, 131.2, 130.8, 130.0, 129.9, 127.0, 121.8, 120.0, 118.0, 109.9, 96.4, 82.4, 71.8, 51.6, 43.8, 39.8, 28.1. HRMS (ESI): m/z calcd for C₂₅H₂₃Cl₃NO₂ ([M+H]⁺): 474.0789; found: 474.0782.

tert-butyl 10-chloro-2-(furan-2-yl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)carboxylate (3q)

54.6 mg, 69% yield.; white solid; mp 140-142°C.

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.50 (m, 1H), 7.35 (d, J = 1.8 Hz, 1H), 7.21 – 7.09 (m, 3H), 6.36 (dd, J = 3.4, 1.8 Hz, 1H), 6.32 (d, J = 3.4 Hz, 1H), 6.01 (d, J = 2.0 Hz, 1H), 4.43 (d, J = 10.4 Hz, 1H), 4.36 (dd, J = 8.0, 1.6 Hz, 1H), 4.31 (d, J = 10.4 Hz, 1H), 3.32 (ddd, J = 16.0, 8.0, 2.4 Hz, 1H), 3.19 (dt, J = 16.0, 1.6 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 150.4, 142.8, 141.5, 135.1, 131.1, 129.8, 123.7, 121.7, 120.0, 117.9, 111.3, 109.8, 108.9, 96.3, 82.3, 71.7, 52.0, 43.6, 36.4, 28.1.

HRMS (ESI): m/z calcd for C₂₃H₂₃ClNO₃ ([M+H]⁺): 396.1361; found: 396.1353.

tert-butyl 10-chloro-2-(thiophen-2-yl)-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3r)

49.7 mg, 60% yield.; light yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.52 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.06 (m, 3H), 7.05 – 6.90 (m, 2H), 5.93 (d, *J* = 6.9 Hz, 1H), 4.49 – 4.17 (m, 3H), 3.47 – 3.34 (m, 1H), 3.28 (dd, *J* = 16.5, 7.0 Hz, 1H), 1.58 – 1.23 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 141.5, 139.3, 138.7, 131.1, 129.9, 127.4, 125.8, 125.7, 124.4, 121.8, 120.0, 117.9, 109.8, 82.3, 71.7, 51.9, 43.7, 38.2, 28.1.

HRMS (ESI): m/z calcd for C₂₃H₂₃ClNO₂S ([M+H]⁺): 412.1133; found: 412.1125.

tert-butyl 10-chloro-8-methyl-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3s)

70.6 mg, 84% yield.; white solid; mp 133-136°C.

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.33 – 7.29 (m, 2H), 7.29 – 7.20 (m, 2H), 7.08 (d, *J* = 8.3 Hz, 1H), 6.97 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.09 (dt, *J* = 2.3, 1.0 Hz, 1H), 4.42 (d, *J* = 10.4 Hz, 1H), 4.37 (dt, *J* = 7.9, 1.4 Hz, 1H), 4.29 (d, *J* = 10.3 Hz, 1H), 3.41 (ddd, *J* = 16.3, 8.0, 2.4 Hz, 1H), 3.29 (dq,

J = 16.3, 1.3 Hz, 1H, 2.43 (s, 3H), 1.49 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 171.9, 145.3, 141.9, 134.8, 130.1, 129.5, 129.4, 128.5, 128.3, 126.3, 125.3, 123.3, 117.5, 109.5, 95.6, 82.1, 71.7, 52.1, 43.6, 37.4, 28.1, 21.6. HRMS (ESI): m/z calcd for C₂₆H₂₇ClNO₂ ([M+H]⁺): 420.1725; found: 420.1719.

tert-butyl 10-chloro-8-methoxy-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3t)

61.0 mg, 70% yield.; white solid; mp 166-168°C.

¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.33 – 7.28 (m, 2H), 7.27 – 7.22 (m, 1H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.81 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.10 (t, *J* = 2.0 Hz, 1H), 4.42 (d, *J* = 10.3 Hz, 1H), 4.37 (dd, *J* = 8.1, 1.7 Hz, 1H), 4.29 (d, *J* = 10.3 Hz, 1H), 3.84 (s, 3H), 3.41 (ddd, *J* = 16.2, 8.1, 2.4 Hz, 1H), 3.29 (dt, *J* = 16.2, 1.7 Hz, 1H), 1.49 (s, 9H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 171.8, 154.6, 145.2, 142.4, 134.8, 130.2, 128.5, 128.4, 126.3, 126.3, 125.3, 112.1, 110.7, 99.5, 82.2, 71.7, 55.9, 52.2, 43.8, 37.4, 28.1.

HRMS (ESI): m/z calcd for C₂₆H₂₇ClNO₃ ([M+H]⁺): 436.1674; found: 436.1667.

tert-butyl 10-chloro-8-fluoro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3u)

68.5 mg, 81% yield.; white solid; mp 168-170°C.

¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.33 – 7.22 (m, 3H), 7.17 (dd, J = 9.4, 2.5 Hz, 1H), 7.08 (dd, J = 8.8, 4.2 Hz, 1H), 6.88 (td, J = 9.1, 2.5 Hz, 1H), 6.10 (dt, J = 2.3, 1.2 Hz, 1H), 4.43 (d, J = 10.3 Hz, 1H), 4.40 – 4.36 (m, 1H), 4.30 (d, J = 10.4 Hz, 1H), 3.42 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.29 (dq, J = 16.1, 1.4 Hz, 1H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 158.2 (d, J = 235.6 Hz), 145.3, 143.7, 134.6, 130.2 (d, J = 10.4 Hz), 128.5, 128.5, 127.8, 126.3, 125.1, 110.6 (d, J = 9.8 Hz), 110.1 (d, J = 26.6 Hz), 103.1 (d, J = 24.8 Hz), 96.3 (d, J = 4.8 Hz), 82.3, 71.7, 52.3, 43.8, 37.3, 28.1.

¹⁹F NMR (376 MHz, CDCl₃) δ -123.45 (s, 1F).

HRMS (ESI): m/z calcd for C₂₅H₂₄ClFNO₂ ([M+H]⁺): 424.1474; found: 424.1467.

tert-butyl 8,10-dichloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)carboxylate (3v)

64.9 mg, 74% yield.; white solid; mp 151-153°C.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (t, *J* = 1.3 Hz, 1H), 7.37 – 7.32 (m, 2H), 7.26 – 7.15 (m, 3H), 7.00 (d, *J* = 1.3 Hz, 2H), 6.02 (t, *J* = 1.9 Hz, 1H), 4.35 (d, *J* = 10.5 Hz, 1H), 4.29 (dd, *J* = 8.2, 1.6 Hz, 1H), 4.21 (d, *J* = 10.5 Hz, 1H), 3.34 (ddd, *J* = 16.2, 8.1, 2.4 Hz, 1H), 3.21 (dt, *J* = 16.1, 1.6 Hz, 1H), 1.41 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.5, 144.3, 142.3, 133.5, 129.7, 128.5, 127.4, 127.4, 125.2, 124.8, 124.0, 120.9, 116.4, 109.7, 94.9, 81.3, 70.6, 51.1, 42.6, 36.2, 27.0.

HRMS (ESI): m/z calcd for C₂₅H₂₄Cl₂NO₂ ([M+H]⁺): 440.1179; found: 440.1171.

tert-butyl 8-bromo-10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3w)

84.2 mg, 87% yield.; light yellow solid; mp 130-132°C.

¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 1.8 Hz, 1H), 7.45 – 7.40 (m, 2H), 7.34 – 7.28 (m, 2H), 7.28 – 7.24 (m, 1H), 7.21 (dd, J = 8.6, 1.9 Hz, 1H), 7.03 (d, J = 8.6 Hz, 1H), 6.10 (p, J = 1.1 Hz, 1H), 4.42 (d, J = 10.4 Hz, 1H), 4.37 (dd, J = 8.2, 1.6 Hz, 1H), 4.29 (d, J = 10.5 Hz, 1H), 3.42 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.28 (dt, J = 16.1, 1.6 Hz, 1H), 1.49 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.6, 145.4, 143.2, 134.6, 131.4, 129.8, 128.5, 128.5, 126.3, 125.1, 124.6, 120.5, 113.3, 111.2, 95.8, 82.4, 71.6, 52.1, 43.7, 37.3, 28.1.

HRMS (ESI): m/z calcd for C₂₅H₂₄BrClNO₂ ([M+H]⁺): 484.0673; found: 484.0666.

tert-butyl 7-bromo-10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3x)

75.9 mg, 78% yield.; white solid; mp 117-119°C.

¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.37 – 7.27 (m, 4H), 7.27 – 7.21 (m, 1H), 7.18 (dd, J = 8.5, 1.7 Hz, 1H), 6.26 – 6.02 (m, 1H), 4.39 (d, J = 10.5 Hz, 1H), 4.35 (d, J = 1.6 Hz, 1H), 4.26 (d, J = 10.5 Hz, 1H), 3.42 (ddd, J = 16.2, 8.1, 2.4 Hz, 1H), 3.28 (dt, J = 16.1, 1.5 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.5, 145.4, 142.5, 134.6, 131.8, 128.8, 128.5, 128.5, 126.3, 125.1, 123.2, 119.2, 115.1, 112.8, 96.7, 82.3, 71.6, 52.0, 43.5, 37.3, 28.1.

HRMS (ESI): m/z calcd for C₂₅H₂₄BrClNO₂ ([M+H]⁺): 484.0673; found: 484.0666.

tert-butyl 2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3y)

38.8 mg, 52% yield.; white solid; mp 128-130°C.

¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.51 (m, 1H), 7.41 (dq, *J* = 6.2, 1.3 Hz, 2H), 7.29 (td, *J* = 7.3, 1.3 Hz, 2H), 7.27 – 7.20 (m, 2H), 7.11 (tt, *J* = 8.1, 1.2 Hz, 1H), 7.08 – 7.01 (m, 1H), 6.22 (d, *J* = 1.2 Hz, 1H),

6.11 (p, *J* = 1.3 Hz, 1H), 4.47 (dd, *J* = 10.5, 1.1 Hz, 1H), 4.36 – 4.29 (m, 2H), 3.51 – 3.42 (m, 1H), 3.08 (dq, *J* = 15.8, 1.4 Hz, 1H), 1.50 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 172.1, 148.1, 145.0, 135.0, 132.9, 132.2, 128.4, 128.2, 126.2, 125.6, 120.5, 120.5, 119.4, 109.4, 92.3, 81.9, 71.6, 51.3, 43.9, 39.9, 28.1.

HRMS (ESI): m/z calcd for C₂₅H₂₆NO₂ ([M+H]⁺): 372.1958; found: 372.1956.

methyl 10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3z)

61.9 mg, 85% yield.; white solid; mp 161-163°C.

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 7.6 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.24 – 7.13 (m, 3H), 7.12 – 7.00 (m, 3H), 6.02 (s, 1H), 4.40 (d, J = 10.3 Hz, 1H), 4.36 – 4.31 (m, 1H), 4.27 (d, J = 10.4 Hz, 1H), 3.70 (s, 3H), 3.36 (ddd, J = 16.3, 8.1, 2.4 Hz, 1H), 3.24 (d, J = 16.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 173.2, 145.7, 141.6, 134.5, 131.2, 130.0, 128.5, 126.3, 124.6, 121.8, 120.0, 118.0, 109.8, 96.4, 70.6, 52.8, 52.1, 43.8, 37.4.

HRMS (ESI): m/z calcd for C₂₂H₁₉ClNO₂ ([M+H]⁺): 364.1099; found: 364.1092.

butyl 10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3aa)

65.8 mg, 81% yield.; white solid; mp 154-156°C.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (ddd, J = 6.3, 3.3, 1.7 Hz, 1H), 7.40 (dt, J = 7.9, 1.5 Hz, 2H), 7.31 – 7.20 (m, 3H), 7.19 – 7.08 (m, 3H), 6.09 (q, J = 2.0 Hz, 1H), 4.45 (d, J = 10.4 Hz, 1H), 4.41 (dq, J = 8.0, 1.6 Hz, 1H), 4.34 (dd, J = 10.4, 1.4 Hz, 1H), 4.18 (ttd, J = 6.1, 4.1, 2.3 Hz, 2H), 3.42 (ddq, J = 16.3, 8.0, 1.9, 1.4 Hz, 1H), 3.32 (dp, J = 16.2, 1.8 Hz, 1H), 1.70 – 1.57 (m, 2H), 1.38 (dqd, J = 9.5, 7.4, 5.5 Hz, 2H), 0.93 (tt, J = 7.4, 2.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.8, 145.6, 141.6, 134.6, 131.2, 129.9, 128.5, 128.5, 126.3, 124.9, 121.8, 120.0, 118.0, 109.8, 96.4, 70.8, 65.6, 52.0, 43.7, 37.4, 30.7, 19.2, 13.8.

HRMS (ESI): m/z calcd for C₂₅H₂₅ClNO₂ ([M+H]⁺): 406.1568; found: 406.1561.

benzyl 10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxylate (3ab)

CI ĊO₂Bn

73.2 mg, 83% yield.; white solid; mp 142-144°C. ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, *J* = 7.2, 1.6 Hz, 1H), 7.43 – 7.37 (m, 2H), 7.37 – 7.30 (m, 5H), 7.30 – 7.21 (m, 3H), 7.19 – 7.08 (m, 3H), 6.11 (t, J = 1.8 Hz, 1H), 5.21 (s, 2H), 4.48 – 4.41 (m, 2H), 4.35 (d, J = 10.4 Hz, 1H), 3.44 (ddd, J = 16.3, 8.0, 2.4 Hz, 1H), 3.32 (dt, J = 16.3, 1.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 172.5, 145.9, 141.5, 135.5, 134.5, 131.1, 129.9, 128.8, 128.6, 128.5, 128.1, 128.1, 126.3, 124.6, 121.8, 120.0, 118.0, 109.8, 96.5, 70.7, 67.4, 52.0, 43.7, 37.4. HRMS (ESI): m/z calcd for C₂₈H₂₃ClNO₂ ([M+H]⁺): 440.1412; found: 440.1405.

tert-butyl (E)-2-((3-chloro-2-(3-oxo-3-phenylprop-1-en-1-yl)-1H-indol-1-yl)methyl)acrylate (4a)

¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.97 (m, 3H), 7.84 (d, *J* = 15.7 Hz, 1H), 7.68 (d, *J* = 8.0 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.50 (dd, *J* = 8.2, 6.8 Hz, 2H), 7.32 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.28 – 7.17 (m, 2H), 6.16 (d, *J* = 1.9 Hz, 1H), 5.10 (t, *J* = 2.0 Hz, 2H), 4.91 (d, *J* = 2.0 Hz, 1H), 1.56 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 189.5, 164.5, 138.1, 137.2, 137.1, 133.0, 129.7, 129.4, 128.8, 128.5, 126.0, 125.6, 124.8, 123.5, 121.5, 119.3, 110.5, 110.1, 82.1, 44.5, 28.2. HRMS (ESI): m/z calcd for C₂₅H₂₄ClNO₃ ([M+H]⁺): 422.1517; found: 422.1515.

10-chloro-N,2-diphenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indole-3a(4H)-carboxamide (5)

54.2 mg, 64% yield.; white solid; mp 167-169°C.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 2.7 Hz, 1H), 7.51 (dtdd, *J* = 10.5, 6.3, 4.7, 2.2 Hz, 5H), 7.40 – 7.29 (m, 5H), 7.26 – 7.10 (m, 4H), 6.26 (t, *J* = 1.8 Hz, 1H), 5.01 (d, *J* = 10.1 Hz, 1H), 4.32 (dd, *J* = 7.2, 2.6 Hz, 1H), 4.25 (d, *J* = 10.1 Hz, 1H), 3.52 – 3.36 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 148.9, 140.9, 137.2, 133.9, 131.2, 130.1, 129.2, 129.2, 128.8, 126.4, 125.1, 123.9, 121.8, 120.3, 120.0, 118.0, 110.0, 96.1, 72.0, 52.0, 46.8, 36.9.

HRMS (ESI): m/z calcd for C₂₇H₂₂ClN₂O ([M+H]⁺): 425.1415; found: 425.1407.

2-(10-chloro-2-phenyl-1,10b-dihydrocyclopenta[3,4]pyrrolo[1,2-a]indol-3a(4H)-yl)propan-2-ol (6)

53.7 mg, 74% yield.; white solid; mp 181-183°C.

¹H NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 7.5, 1.5 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.29 (t, J = 7.3 Hz, 2H), 7.27 – 7.23 (m, 1H), 7.22 (s, 1H), 7.19 (td, J = 7.1, 1.5 Hz, 1H), 7.12 (ddd, J = 14.3, 7.7, 1.4 Hz, 2H), 6.10 (t, J = 1.9 Hz, 1H), 4.40 (d, J = 9.9 Hz, 1H), 4.06 (d, J = 10.0 Hz, 1H), 4.03 (dd, J = 7.3, 2.7 Hz, 1H), 3.32 – 3.16 (m, 2H), 1.33 (s, 3H), 1.30 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.3, 143.4, 135.0, 131.2, 129.9, 128.5, 128.2, 127.3, 126.1, 121.4,

119.8, 117.8, 109.9, 95.5, 74.9, 74.1, 51.2, 41.4, 38.1, 26.8, 26.4. HRMS (ESI): m/z calcd for $C_{27}H_{22}CIN_2O$ ([M+H]⁺): 364.1463; found: 364.1456.

5.NMR data

¹H NMR spectra (400 MHz, CDCl₃) of **3b**

¹³C NMR spectra (101 MHz, CDCl₃) of **3b**

¹H NMR spectra (400 MHz, CDCl₃) of **3c**

¹³C NMR spectra (101 MHz, CDCl₃) of 3c

¹H NMR spectra (400 MHz, CDCl₃) of 3d

¹³C NMR spectra (101 MHz, CDCl₃) of **3d**

 ^{19}F NMR spectra (376 MHz, CDCl₃) of 3d

¹³C NMR spectra (101 MHz, CDCl₃) of **3f**

¹⁹F NMR spectra (376 MHz, CDCl₃) of **3g**

¹H NMR spectra (400 MHz, CDCl₃) of **3h**

¹³C NMR spectra (101 MHz, CDCl₃) of **3h**

¹H NMR spectra (400 MHz, CDCl₃) of **3i**

¹³C NMR spectra (101 MHz, CDCl₃) of **3i**

¹H NMR spectra (400 MHz, CDCl₃) of **3j**

¹³C NMR spectra (101 MHz, CDCl₃) of **3**j

¹H NMR spectra (400 MHz, CDCl₃) of **3k**

¹³C NMR spectra (101 MHz, CDCl₃) of 3k

¹H NMR spectra (400 MHz, CDCl₃) of **3l**

¹³C NMR spectra (101 MHz, CDCl₃) of **31**

¹H NMR spectra (400 MHz, CDCl₃) of **3m**

¹³C NMR spectra (101 MHz, CDCl₃) of **3m**

¹H NMR spectra (400 MHz, CDCl₃) of 3n

¹³C NMR spectra (101 MHz, CDCl₃) of **3n**

¹⁹F NMR spectra (376 MHz, CDCl₃) of **3n**

¹³C NMR spectra (101 MHz, CDCl₃) of **30**

¹³C NMR spectra (101 MHz, CDCl₃) of **3p**

¹³C NMR spectra (101 MHz, CDCl₃) of **3q**

¹H NMR spectra (400 MHz, CDCl₃) of **3r**

¹³C NMR spectra (101 MHz, CDCl₃) of **3s**

¹H NMR spectra (400 MHz, CDCl₃) of **3t**

 13 C NMR spectra (101 MHz, CDCl₃) of **3t**

¹³C NMR spectra (101 MHz, CDCl₃) of **3u**

¹⁹F NMR spectra (376 MHz, CDCl₃) of **3u**

¹H NMR spectra (400 MHz, CDCl₃) of **3v**

¹³C NMR spectra (101 MHz, CDCl₃) of **3v**

¹H NMR spectra (400 MHz, CDCl₃) of 3w

¹³C NMR spectra (101 MHz, CDCl₃) of **3w**

¹H NMR spectra (400 MHz, CDCl₃) of **3**x

¹³C NMR spectra (101 MHz, CDCl₃) of **3**x

¹H NMR spectra (400 MHz, CDCl₃) of **3**y

¹³C NMR spectra (101 MHz, CDCl₃) of **3y**

¹H NMR spectra (400 MHz, CDCl₃) of **3z**

¹³C NMR spectra (101 MHz, CDCl₃) of 3z

¹H NMR spectra (400 MHz, CDCl₃) of **3aa**

¹³C NMR spectra (101 MHz, CDCl₃) of 3aa

¹H NMR spectra (400 MHz, CDCl₃) of **3ab**

¹³C NMR spectra (101 MHz, CDCl₃) of **3ab**

¹³C NMR spectra (101 MHz, CDCl₃) of 5

¹H NMR spectra (400 MHz, CDCl₃) of 6

¹³C NMR spectra (101 MHz, CDCl₃) of 6

6.X-ray crystallography data

Figure S1. ORTEP diagram of 3j (CCDC: 2371644). Thermal ellipsoids are shown at the 50% probability level.

Method of crystallization: A solution of 3j in n-hexane/CH₂Cl₂ (2:1) was added to a 10 mL vial. The vial was closed with parafilm and poked a few of holes with a needle on the parafilm to slowly evaporation of solvent.

The X-ray intensity data was measured on a Rigaku 007 Saturn 70 single crystal diffractometer.

Identification code	3ј			
Empirical formula	C ₂₆ H ₂₆ CINO ₂			
Formula weight	419.93			
Temperature/K	100.00(10)			
Crystal system	monoclinic			
Space group	$P2_1/c$			
a/Å	18.6824(8)			
b/Å	6.6263(2)			
c/Å	19.1143(9)			
α/°	90			
β/°	116.330(5)			
$\gamma/^{\circ}$	90			
Volume/Å ³	2120.77(17)			

Table S1.	Crystal	data	and	structure	refinement	for	3j	•
-----------	---------	------	-----	-----------	------------	-----	----	---

Ζ	4		
pcalcg/cm ³	1.315		
µ/mm-1	0.203		
F(000)	888.0		
Crystal size/mm ³	$0.25\times0.23\times0.1$		
Radiation	Mo K α ($\lambda = 0.71073$)		
2Θ range for data collection/°	4.274 to 58.098		
Index ranges	$-22 \le h \le 17, -8 \le k \le 5, -24 \le l \le 23$		
Reflections collected	12291		
Independent reflections	4548 [$R_{int} = 0.0245, R_{sigma} = 0.0319$]		
Data/restraints/parameters	4548/0/275		
Goodness-of-fit on F ²	1.026		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0360, \mathrm{wR}_2 = 0.0855$		
Final R indexes [all data]	$R_1 = 0.0467, wR_2 = 0.0923$		
Largest diff. peak/hole / e Å ⁻³	0.35/-0.27		

_