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Experimental Procedures

Protein purification

Recombinant C. necator (Cn) strains HF649 1 and HF6772, carrying plasmids for overproduction of native
CnMBH and the CnMBH®81%¢" yariant, were cultivated as previously described in a basic mineral medium
containing fructose and glycerol as carbon and energy sources.®> When the bacterial cultures reached an
optical density at 436 nm of 11-13, the cells were harvested by centrifugation (11,500 x g, 4 °C, 15 min),
and the cell pellet was flash frozen in liquid nitrogen and stored at —80 °C until further use. Both CnMBH
versions were purified by affinity chromatography as described previously.® The purified enzymes were
flash-frozen and stored in liquid nitrogen. The protein concentration was determined using a Pierce BCA
Protein Assay kit (Thermo Scientific) using bovine serum albumin (BSA) as standard.

Hydrogenase activity measurements
H,-oxidation activity was measured spectrophotometrically using a Cary50 UV-vis spectrophotometer
(Varian, Agilent, Santa Clara, California) as described previously.?

IR Spectroscopy

For IR measurements, the MBH variants at a concentration of approx. 1 mM resided in 50 mM KiPO4
buffer, pH 5.5, containing 150 mM NaCl and 50 % glycerol. The addition of glycerol ensured the formation
of a transparent glass at temperatures below 220 K. The pH of the buffer was adjusted after the addition
of glycerol. The samples were reduced by exposure to 100 % humidified H, gas for at least 30 min at 10 °C.
After reduction, the protein samples were transferred into an airtight sandwich cell for IR spectroscopy,
consisting of two CaF, windows separated by a 20 um Teflon (PTFE) spacer. Subsequently, the cell was
transferred into a homemade liquid-nitrogen cooled bath cryostat. IR spectra were recorded with a
resolution of 2 cm™ using a Bruker Tensor 27 FT-IR spectrometer, equipped with a liquid-nitrogen cooled
mercury cadmium telluride (MCT) detector. The sample compartment of the spectrometer was
continuously purged with dry N, gas during the measurements. The Bruker OPUS software, version 7.8,
was used for data analysis. IR single channel spectra were obtained by averaging 200 scans. Absorbance
spectra were calculated from averaged single channel spectra (at least 7 reference spectra) of the sample
using a buffer spectrum as reference. lllumination experiments were performed using a homemade LED
ring system with an emission maximum at 460 nm (power density 1-10 mW/cm?). Light-minus-dark
spectra were calculated using the corresponding dark single spectra as reference.
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Figure S1. IR absorbance spectrum of the as-isolated (oxidized) native CnMBH at 298 K. The spectrum of
the as-isolated sample (ca. 1 mM MBH in 50 mM KiPO4, pH 5.5, 150 mM NacCl, 50 % glycerol) is dominated
by absorptions attributed to the Ni,-B state with a vco stretching vibration at 1948 cm™ and vey absorptions
at 2081 and 2098 cm™.
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Figure S2. IR absorbance spectrum of the H,-reduced native CnMBH at 298 K. The solution IR spectrum
(ca. 1 mM CnMBH in 50 mM KiPOa, pH 5.5, 150 mM NacCl, 50 % glycerol) shows predominant signals of the
Nia-C (vco at 1957 cm™ and vey at 2075 and 2097 cm™) and the Ni,-SR™ (vco at 1925 em™ and vey at 2049
and 2071 cm™) states of the catalytic center. Ni,-SR’ is reduced by one e~ more than Ni,-C. The signal
marked by a black asterisk is attributed to remnants of Nia/-S species (1936 cm™). The signals marked with
two orange asterisks are attributed to sub-stoichiometric Ni.-L species.®
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Figure S3. IR difference spectrum of H-reduced regulatory [NiFe]-hydrogenase from C. necator (CnRH)
at 95 K. Light-minus-dark IR difference spectra of H,-reduced CnRH (ca. 1.2 mM in 50 mM Tris, pH 8.0, 150
mM NaCl, 25% glycerol) displaying negative absorption bands for the Ni,-C state and positive signals for
Ni.-L1 and Ni,-L2 states. The spectral region comprises the frequencies associated with the vco and ven
stretching vibrations of the diatomic ligands as well as those originating from the vsy. The latter are
enlarged in the top left of the figure to make them clearly visible. Remarkably, the vs stretchings of native
CnMBH (Fig. 3a) are visible without enlargement of the spectrum, suggesting that the detected
protonated cysteine thiolate (Cys81, see main text) participates in a strong H-bond that polarizes the S-H
bond. The figure was generated using data reported in https://doi.org/10.1021/jacs.3c01625.°
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Figure S4. Sequence alignment of the large subunits from CnMBH, EcHyd1, CnRH, PfSH1 and DvMF
hydrogenase. The four cysteine residues coordinating the NiFe(CN),CO cofactor (Cys 75, 78, 597 and 600
in CnMBH) are highlighted in yellow, conserved residues are highlighted in red, similar residues are framed
in blue boxes, secondary structural elements (derived from PDB:3RGW)’ are shown on top of the
alignment. The additional Cys81 of CnMBH is also highlighted in yellow. The figure was generated using
ESPript 3.0.%
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Figure S5. Sequence logo for the large subunit region around Cys81 of CnMBH derived from the multiple
sequence alignment of [NiFe]-hydrogenases belonging to subgroup 1d. The multiple sequence alignment
(provided as additional supporting material) was generated using Clustal Omega
(https://www.ebi.ac.uk/jdispatcher/msa/clustalo)® and comprise 216 protein sequences retrieved using
the web database HydDB for hydrogenase classification.® The figure was generated with the WebLogo3
online too (version 3.7.12, https://weblogo.threeplusone.com/create.cgi).!! The size of letters is directly
related to the abundance of the respective amino acid residue in all hydrogenase sequences from
subgroup 1d. Two of the four cysteines coordinating the NiFe site are part of the fully conserved CGVC
motif (ruler positions 103/106). The yellow square indicates that cysteine (ruler position 109) is the 2™
more frequent amino acid found at position 81 of CnMBH. Note that the residue numbering on x axis
differs from that of CnMBH. About 70% of all sequences of hydrogenases belonging to subgroup 1d
contain a polar residue (Cys, Thr and Ser), and all others contain small apolar amino acids whose function
might be rescued by H,O molecules.
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Figure S6: IR spectroscopic characterization of the CnMBH®*81%¢" variant. (a) IR spectra at 298 K of the as-
isolated (oxidized) CnMBH®*8%%¢" (ca. 1 mM in 50 mM K;PO,, pH 5.5, 150 mM NaCl, 50 % glycerol (trace a)
and the corresponding reduced samples after incubation with 100 % H; either for 55 min (trace b) or
80 min (trace c). The as-isolated MBH®81%¢ resides in a mixture of Ni-B and Ni,-S species. After 55 min of
reduction, Ni,-C and Ni,;-S states were detected together with residual Ni,-S species. After prolonged
incubation (80 min) with H, the IR spectra of CnMBHY81%¢" show predominant Ni.-SR’ signals, similarly to
native CnMBH (Fig. S2). (b) IR spectra of H,-reduced CnMBH®8%¢" at 90 K before and after LED light
irradiation at 460 nm show predominantly Nis,-SR’ (vco band at 1934 cm™), accompanied by the formation
of sub-stoichiometric amounts of Ni,-C. For the Ni,-C=>Ni,-L phototransformation, the partially reduced
sample (trace b in Fig. S6a) was used because it contained the highest proportion of the Ni,-C state.
lllumination of the MBH®81%¢" sample with LED at 460 nm (90 K) resulted in the production of two distinct
Ni,-L species (vco bands at 1916 and 1903 cm™). (c) IR difference spectrum (Reox-minus-Red) of the
CnMBHY®8%¢" yariant at 298 K, showing that the enrichment of reduced active site species is reversible as
the reduced sample incubated with air returned to the original Ni-B (vco at 1956 cm™) and Niy-S (vco at
1941 cm™) states. Bands assignment follows those described in Saggu et al..*
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Fig. S7. Comparison of the IR difference spectra of native CnMBH and the CnMBH®!%" variant.
Difference spectra (light-minus-dark, Nia-L-minus-Ni,-C) of native CnMBH (red trace) and the CnMBH®s815er
variant (black trace) (both at ca. 1 mM in 50 mM KiPOg, pH 5.5, 150 mM NaCl, 50 % glycerol) were recorded
at 95 K, displaying the characteristic Ni,-L and Ni,-C absorptions as positive and negative bands,
respectively. The inset in the upper left shows an enlargement of the SH spectral range. The IR data for
CnMBH®81¢" show a lower sighal-to-noise ratio compared to those of native CnMBH, which is attributed
to a lower Ni,-C enrichment in the MBH variant (Fig. S6a, trace b vs Fig. S2). The exchange of Cys81 induces
a splitting of the original vco bands in native MBH at 1960 (Ni.-C) and 1910 cm™ (Nia-L), which now appear
as two negative vco absorptions at 1954 cm™ and 1967 cm™ (Ni,-C) photoconverting to species with vco at
1903 and 1916 cm™ (see Supplementary Discussion). The exchange of Cys81 with Ser additionally results
in the disappearance of the observed vsy bands, which aided their assignment to the protonated side chain
of Cys81. Data of native CnMBH were normalized to those of the CnMIBHY*81*¢" variant (scaling factor 0.4)
for better visualization.



Supplementary Discussion

The replacement of Cys81 by Ser resulted in the splitting of the vco band of both the Ni,-C and Ni,-L states.
In fact, the MBH variant exhibits two negative vco absorptions at 1954 cm™ and 1967 cm™, which are
photoconverted to bands at 1903 and 1916 cm™. In contrast, the corresponding ven bands remain
essentially unaffected (Fig. $7). The O-H bond length (ca 1.0 A) of serine is shorter than the S-H bond (ca
1.4 A) of cysteine, which might prevent the formation of a H-bond between serine and the thiolate of
Cys78 and/or the CO ligand. This, in turn, possibly led to the observed splitting of the CO band. We
assigned the minor Ni,-C and Ni,-L species with vco bands at higher energies (1967 and 1916 cm™) to active
site arrangements in which serine adopts an identical conformation as Cys81 (Ni,-C: 1960 cm™, Ni,-L1/2:
1910 cm™, Fig. 3¢) and thus forms an H-bond. Regarding the upshift of the vco bands, this is related to
the higher polarity of serine which weakens the back-bonding from the iron and strengthens the CO bond
compared to that of native MBH. This assignment is in line with previous investigations on other active
site species of the MBH®*8%%¢" yariant.1? Conversely, we attributed the more abundant species with lower
energy (Vco bands at 1954 and 1903 cm™) to Ni,-C and Ni.-L active site states without H-bonds, which are
characterized by a higher electron density at the NiFe site that weakens the CO bonds. Importantly,
temperature appears to influence the relative abundance of the two active site populations. Room
temperature IR data predominantly show the high-energy species for the MBH variant (Fig. $6),* while
data collected at lower temperatures (Fig. S7) favor the low-energy species.
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