# Supporting Information

#### A strong H-bond between a cysteine and the catalytic center of a [NiFe]-hydrogenase

Chara Karafoulidi-Retsou;<sup>a</sup> Sagie Katz;<sup>a</sup> Stefan Frielingsdorf;<sup>a</sup> Oliver Lenz;<sup>a</sup> Ingo Zebger<sup>a\*</sup> and Giorgio Caserta<sup>a\*</sup>

<sup>a</sup>Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

E-mails: ingo.zebger@tu-berlin.de, giorgio.caserta@tu-berlin.de

#### **Table of Contents**

**Experimental procedures** 

Protein purification p.1

Hydrogenase activity measurements p.1

IR Spectroscopy p.1

Figure S1: IR absorbance spectrum of the as-isolated (oxidized) native CnMBH at 298 K. p.2

Figure S2: IR absorbance spectrum of the H<sub>2</sub>-reduced native CnMBH at 298 K. . p.3

Figure S3: IR difference spectrum of H<sub>2</sub>-reduced regulatory [NiFe]-hydrogenase from *C. necator* (*Cn*RH) at 95 K. p.4

Figure S4: Sequence alignment of the large subunits from *Cn*MBH, *Ec*Hyd1, *Cn*RH, *Pf*SH1 and *Dv*MF hydrogenase. p.6

Figure S5: Sequence logo for the large subunit region around Cys81 of *Cn*MBH derived from the multiple sequence alignment of [NiFe]-hydrogenases belonging to subgroup *1d*. p.7

Figure S6: IR spectroscopic characterization of the CnMBH<sup>Cys81Ser</sup> variant. p.8

Figure S7: Comparison of the IR difference spectra of native CnMBH and the CnMBH<sup>Cys81Ser</sup> variant. p.9

Supplementary discussion p.10

Supplementary references p.10

## **Experimental Procedures**

## Protein purification

Recombinant *C. necator* (*Cn*) strains HF649 <sup>1</sup> and HF677<sup>2</sup>, carrying plasmids for overproduction of native *Cn*MBH and the *Cn*MBH<sup>Cys81Ser</sup> variant, were cultivated as previously described in a basic mineral medium containing fructose and glycerol as carbon and energy sources.<sup>3</sup> When the bacterial cultures reached an optical density at 436 nm of 11-13, the cells were harvested by centrifugation (11,500 x *g*, 4 °C, 15 min), and the cell pellet was flash frozen in liquid nitrogen and stored at -80 °C until further use. Both *Cn*MBH versions were purified by affinity chromatography as described previously.<sup>3</sup> The purified enzymes were flash-frozen and stored in liquid nitrogen. The protein concentration was determined using a Pierce BCA Protein Assay kit (Thermo Scientific) using bovine serum albumin (BSA) as standard.

#### Hydrogenase activity measurements

H<sub>2</sub>-oxidation activity was measured spectrophotometrically using a Cary50 UV-vis spectrophotometer (Varian, Agilent, Santa Clara, California) as described previously.<sup>3</sup>

## **IR Spectroscopy**

For IR measurements, the MBH variants at a concentration of approx. 1 mM resided in 50 mM K<sub>i</sub>PO<sub>4</sub> buffer, pH 5.5, containing 150 mM NaCl and 50 % glycerol. The addition of glycerol ensured the formation of a transparent glass at temperatures below 220 K. The pH of the buffer was adjusted after the addition of glycerol. The samples were reduced by exposure to 100 % humidified H<sub>2</sub> gas for at least 30 min at 10 °C. After reduction, the protein samples were transferred into an airtight sandwich cell for IR spectroscopy, consisting of two CaF<sub>2</sub> windows separated by a 20  $\mu$ m Teflon (PTFE) spacer. Subsequently, the cell was transferred into a homemade liquid-nitrogen cooled bath cryostat. IR spectra were recorded with a resolution of 2 cm<sup>-1</sup> using a Bruker Tensor 27 FT-IR spectrometer, equipped with a liquid-nitrogen cooled mercury cadmium telluride (MCT) detector. The sample compartment of the spectrometer was continuously purged with dry N<sub>2</sub> gas during the measurements. The Bruker OPUS software, version 7.8, was used for data analysis. IR single channel spectra were obtained by averaging 200 scans. Absorbance spectra were calculated from averaged single channel spectra (at least 7 reference spectra) of the sample using a buffer spectrum as reference. Illumination experiments were performed using a homemade LED ring system with an emission maximum at 460 nm (power density 1-10 mW/cm<sup>2</sup>). Light-*minus*-dark spectra were calculated using the corresponding dark single spectra as reference.



**Figure S1. IR absorbance spectrum of the as-isolated (oxidized) native** *Cn***MBH at 298 K.** The spectrum of the as-isolated sample (ca. 1 mM MBH in 50 mM K<sub>i</sub>PO<sub>4</sub>, pH 5.5, 150 mM NaCl, 50 % glycerol) is dominated by absorptions attributed to the Ni<sub>r</sub>-B state with a v<sub>co</sub> stretching vibration at 1948 cm<sup>-1</sup> and v<sub>cN</sub> absorptions at 2081 and 2098 cm<sup>-1</sup>.



**Figure S2. IR absorbance spectrum of the H<sub>2</sub>-reduced native** *Cn***MBH at 298 K.** The solution IR spectrum (ca. 1 mM *Cn*MBH in 50 mM K<sub>i</sub>PO<sub>4</sub>, pH 5.5, 150 mM NaCl, 50 % glycerol) shows predominant signals of the Ni<sub>a</sub>-C ( $v_{CO}$  at 1957 cm<sup>-1</sup> and  $v_{CN}$  at 2075 and 2097 cm<sup>-1</sup>) and the Ni<sub>a</sub>-SR' ( $v_{CO}$  at 1925 cm<sup>-1</sup> and  $v_{CN}$  at 2049 and 2071 cm<sup>-1</sup>) states of the catalytic center. Ni<sub>a</sub>-SR' is reduced by one e<sup>-</sup> more than Ni<sub>a</sub>-C. The signal marked by a black asterisk is attributed to remnants of Ni<sub>a/r</sub>-S species (1936 cm<sup>-1</sup>). The signals marked with two orange asterisks are attributed to sub-stoichiometric Ni<sub>a</sub>-L species.<sup>5</sup>



Figure S3. IR difference spectrum of H<sub>2</sub>-reduced regulatory [NiFe]-hydrogenase from *C. necator* (*Cn*RH) at 95 K. Light-*minus*-dark IR difference spectra of H<sub>2</sub>-reduced *Cn*RH (ca. 1.2 mM in 50 mM Tris, pH 8.0, 150 mM NaCl, 25% glycerol) displaying negative absorption bands for the Ni<sub>a</sub>-C state and positive signals for Ni<sub>a</sub>-L1 and Ni<sub>a</sub>-L2 states. The spectral region comprises the frequencies associated with the v<sub>CO</sub> and v<sub>CN</sub> stretching vibrations of the diatomic ligands as well as those originating from the v<sub>SH</sub>. The latter are enlarged in the top left of the figure to make them clearly visible. Remarkably, the v<sub>SH</sub> stretchings of native *Cn*MBH (Fig. 3a) are visible without enlargement of the spectrum, suggesting that the detected protonated cysteine thiolate (Cys81, see main text) participates in a strong H–bond that polarizes the S–H bond. The figure was generated using data reported in <u>https://doi.org/10.1021/jacs.3c01625</u>.<sup>6</sup>

| CoMBH                                             |                                 | _                                                                   | β1                                                                         | β2                                                                                                 | β3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β4                                                                                                            | β5                                                                                                                         |
|---------------------------------------------------|---------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 1<br>1<br>1<br>1                | MSGCRAC                                                             | VATQGFN<br>2YETQGYT<br>2NAPGGIP<br>10 1                                    | LDDRG<br>INNAG<br>MKNLY<br>VTPKSSYS<br>5 20                                                        | SRR IVVDPVTRISGI<br>SRLVVDPITISGI<br>MERLVVGPFNIVIG<br>(LPITIDHIAVEG<br>SGPIVVDPVTISGI<br>25 30 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HRCEVNVDANN<br>HRCEVNIDON<br>DLEVNLEVASGR<br>KGGVEIIIGDDG<br>HLRIEVEVENG.<br>40 45                            | IRNAVSTGTMW<br>ITNAVSCGTMF<br>CSARVNATMY<br>KEVKLNIIEGP<br>VKNAYSSTLF<br>50 55 60                                          |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 54<br>55<br>39<br>44<br>60      | αl<br>GLEVILF<br>GLEIILC<br>GLEIILC<br>GLEIILF<br>GLEIILF<br>65     | ηl<br>GRDPRDA<br>GRDPRDA<br>HRHPLDA<br>GKKLEEA<br>GKKLEEA<br>70 7          | α2<br>WAFVERIC<br>WAFVERIC<br>LVYAPRVC<br>LAIYPFIC<br>OHFTORTC<br>5 80                             | CIC TO CONTRACTOR CONT | AVENALDIRIPRI<br>AVENALDIRIPRI<br>AIEDAIGIRVPDA<br>ALADLAGVTVPA<br>AAEKAVGVHIPR<br>200 AVGVHIPR<br>100 105 2  | 04<br>TAHLIREIMÄKTL<br>NATIRNIMLATL<br>GMLAMNLMLATE<br>IQALREVLYIGA<br>NATYIRNLVLGAQ<br>10 115 120                         |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 114<br>115<br>99<br>104<br>120  | QVHDHA<br>WCHDHLV<br>NLADHLI<br>MIESHAI<br>YLHDHIV<br>125           | TFYHLHA<br>TFYQLAG<br>TFYLFFM<br>HFYLFFM<br>HLYLLVL<br>TFYHLHA<br>130 13   | η2<br>α<br>LDWVDVMS<br>MDWIDVLI<br>PDFTREIY<br>PDYRGYSS<br>LDFVDVTF<br>5<br>140                    | CONTRACTOR  | 200 *0<br>2LVSPAHPLSSA<br>2SLS.SPRSSPO<br>ARPSPTH<br>SSISPRKTTAJ<br>160 165 1                                 | α7<br>SYFRDIQNRLKRF<br>SYFFDVQNRLKKF<br>DDLKAVQDKLKTF<br>70 175 180                                                        |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 174<br>174<br>138<br>139<br>178 | VESGQLG<br>VESGQLG<br>VESGQLG<br>VESGQLG<br>185                     | η3<br><b>PFMNGYW</b><br><b>IFRNGYW</b><br><b>SPFTNAYF</b><br>190 199       | T TT<br>GSKAYV<br>GHPQYP<br><br>LGGHPAYY<br>5 200                                                  | ULPPEANLMAVTHYJ<br>LLPPEANLMAVTHYJ<br>LLPPEANLMGFAHYJ<br>GKHHJ<br>LLDPETNLIATAHYJ<br>205 210 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LE LIARQUE 220<br>220 225 2                                                                                   | 09<br>HTIFGGKNPHPN<br>HAVFGGKNPHPN<br>MGTLGGKWPHTE<br>MDTLGSRAIDQE<br>MAVFGAKNPHTQ<br>30 235 240                           |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 232<br>232<br>167<br>163<br>238 | TT<br>YL.VGGV<br>WI.VGGS<br>SVQPGGS<br>NAVLCCF<br>FTVVGGV<br>245    | 7PCAINLD<br>APCAINID<br>SRAIDAA<br>GKLPEKS<br>7TCYDAL.<br>250 25           | η4<br><u> <u> </u> </u>    | CONTRACTOR  | DEITEFNKNVYVI<br>TRTADFINNVMI<br>SQTL. XAAPU<br>REALPLA EYT<br>KETKAFVDEVYI<br>280 285 2                      | all<br>DVLAIGTLYKQA<br>DALAIGQFNKPW<br>DVVALDSEVALW<br>ELFAKLEQYSEV<br>DLLVVAAAYKDW<br>90 295 300                          |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 291<br>290<br>219<br>209<br>288 | GWLY<br>.SEI<br>RWHAQAE<br><br>TQY<br>305                           | QAGDLRC)<br>.EGPIT.<br>310 31                                              | FLTIAQDA                                                                                           | η5 β6<br>ΩΟΟΟ<br>GGGLAATNVI<br>GTGLSDKCVL<br>ALDQMGPGPGTXL<br>HLAVKPRGDAY<br>325 330 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & \\ \hline & & & &$                        | η6 β8 β9<br>ΔΩΩ<br>KSTDQLPGGAIL<br>EKSLLMPGGAVI<br>FA                                                                      |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 328<br>328<br>269<br>237<br>321 | TT TT<br>NGNWDEV<br>NGDFNNV<br>QGVWRSZ<br><br>KRDFKNJ<br>365        | 7.FPVDPR<br>LPVDLV<br>QGRLDAL<br><br>KPF<br>370 37                         | β10<br>DSQQVQE<br>DPQQVQE<br>DLAAISEL<br>EP<br>DKMQIE<br>5 380                                     | TT * TT<br>VSHSWYKYADESV<br>VDHAWYRYBNDQVC<br>NTSAWLV. DQGG<br>PSEKYRDYIKE<br>IVRHSWYEGAE<br>385 390 395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n7<br>SLHPWDGVTEPN<br>SLHPFDGTEPWS<br>ARHPANGTTAPA<br>ARHPWKGQTOPKS<br>400 405 4                              | $TT \xrightarrow{\beta 11} TT \xrightarrow{\gamma 1} TT$ $TUGANTKGTRTR$ $CNPG.DVKGSDTN$ $TT$ $TT$ $TT$ $TT$ $TT$ $TT$ $TT$ |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 387<br>386<br>315<br>251<br>363 | β12<br>IEQIDES<br>IQQLNEQ<br>                                       | SAKYSWIK<br>DERYSWIK<br>/GAYTWIK<br>/VEHSFAK<br>DDR <u>YSWMK</u><br>430 43 | B13<br>TT<br>SPRWRGHA<br>APRWRGNA<br>APRURGNA<br>APRURGNA<br>APRURGNA<br>S<br>APRURGES<br>5<br>440 | al2<br>OCOOOD<br>MEV PISRYIIAY<br>MEV PIARTLIAY<br>MEV PIARTLIAY<br>MET PIAQVLIAY<br>445 450 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n8<br>0000 00000<br>AHARSGNKYAERI<br>HKGDAATVE<br>2PLVRD<br>2PLVRD<br>2PLVRD<br>2PLVRD<br>2PLVRD<br>460 465 6 | α13<br><b>KEQLEYSAQMIN</b><br><b>SVDRMM</b><br><b>N</b><br><b>KDLL</b><br><b>KDLL</b><br><b>KDLL</b>                       |
| CnMBH<br>CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 447<br>436<br>352<br>299<br>407 | α14<br><u>000000</u><br>SAIPKAI<br>SAI<br>.AVA.R.<br>DAVLAKI<br>485 | GLPETQY<br>NLPL<br>                                                        | α15<br><u>0000</u><br><b>TLKQLLPS</b><br><b>SGIQS</b><br><b>A</b><br><b>EALFS</b>                  | TIGRILARAL SQ<br>TIGRILCRAH AQ<br>IVYTRVLARLV LA<br>IPFANNLAQAL IV<br>TIGRIAARGI TA<br>SOS SIO SIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CI6<br>CCEMMHSDWHDI<br>WAAGKLQYFFDKI<br>RVVPLMED<br>FFIERAIDLDE<br>VIAEYGVMLQE<br>520 525                     | VANIRAGDTATA<br>MTNIKNGNLATA<br>ILQSLEI<br>KDNIAKGDNV                                                                      |

|                                          |                                 | η9                                                                                                        | β14                                                                                | β15                                                                                        | β16                                                                      | α17                                                                |
|------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|
| CnMBH                                    |                                 | TT. 222                                                                                                   | >ı                                                                                 | T7                                                                                         | т <b></b> т                                                              | LLLLL * . T                                                        |
| CnMBH<br>EcHydl<br>CnRH<br>PfSH1<br>DvMF | 507<br>486<br>388<br>328<br>459 | NVDKWDPATWPL<br>STEKWEPATWPL<br>GAPYMASAHPD<br>ALAKWPIKPRDEVEIK<br>ICAPWEMPK<br>545 550 555               | QAKGVGTVAA<br>ECRGVGFTEA<br>QGAGVGLTEA<br>DGFGVSTTEA<br>QAEGVGFVNA<br>560 565      | RGALGHWIRIKI<br>RGALGHWAAIRI<br>RGSLGHWVSVRI<br>RGILVYALKVEN<br>RGGLSHWIRIEI<br>570 575 58 | RIENYQCVV<br>KIDLYQCVV<br>RIDNYQIVA<br>RVSYADII<br>KIGNFQLVV<br>0 585 55 | TTWNGSPRDY<br>TTWNASPRDP<br>TSWNFSPRDI<br>TAFNLAMMEE<br>STWTLGPRCD |
| CnMBH                                    |                                 | α18<br><b>τ</b> <u>20200</u>                                                                              | 0<br>.TT 2222                                                                      | α19 α2<br>ΙΩΩΩΩΩ ΩΩΩ                                                                       | 0<br>200                                                                 |                                                                    |
| CnMBH<br>EcHyd1<br>CnRH<br>PfSH1<br>DvMF | 563<br>542<br>444<br>388<br>512 | KGQIGAFEASLMNTPM<br>KGQIGAYEAALMNTKM<br>AGQFGAYEAALGAPV<br>HVRMMAEKHYN<br>KNKLSPVEASLIGTPV<br>605 610 615 | VNPE.QPVEII<br>AIPE.QPLEII<br>LQGETTPVAVQ<br>DDPERLKILAP<br>ADAK.RPVEII<br>620 625 | RTLHSFDPCLAC<br>RTLHSFDPCLAC<br>HIVRSFDPCNVC<br>MVVRAYDPCISC<br>RTVHSFDPCIAC<br>630 635 64 | STH<br>STH<br>SVH<br>GVH                                                 |                                                                    |

**Figure S4. Sequence alignment of the large subunits from** *Cn***MBH,** *Ec***Hyd1,** *Cn***RH,** *Pf***SH1 and** *Dv***MF hydrogenase.** The four cysteine residues coordinating the NiFe(CN)<sub>2</sub>CO cofactor (Cys 75, 78, 597 and 600 in *Cn*MBH) are highlighted in yellow, conserved residues are highlighted in red, similar residues are framed in blue boxes, secondary structural elements (derived from <u>PDB:3RGW</u>)<sup>7</sup> are shown on top of the alignment. The additional Cys81 of *Cn*MBH is also highlighted in yellow. The figure was generated using ESPript 3.0.<sup>8</sup>



Figure S5. Sequence logo for the large subunit region around Cys81 of CnMBH derived from the multiple sequence alignment of [NiFe]-hydrogenases belonging to subgroup 1d. The multiple sequence alignment additional supporting material) was generated using (provided as Clustal Omega (https://www.ebi.ac.uk/jdispatcher/msa/clustalo)<sup>9</sup> and comprise 216 protein sequences retrieved using the web database HydDB for hydrogenase classification.<sup>10</sup> The figure was generated with the WebLogo3 online too (version 3.7.12, https://weblogo.threeplusone.com/create.cgi).<sup>11</sup> The size of letters is directly related to the abundance of the respective amino acid residue in all hydrogenase sequences from subgroup 1d. Two of the four cysteines coordinating the NiFe site are part of the fully conserved CGVC motif (ruler positions 103/106). The yellow square indicates that cysteine (ruler position 109) is the 2<sup>nd</sup> more frequent amino acid found at position 81 of CnMBH. Note that the residue numbering on x axis differs from that of CnMBH. About 70% of all sequences of hydrogenases belonging to subgroup 1d contain a polar residue (Cys, Thr and Ser), and all others contain small apolar amino acids whose function might be rescued by H<sub>2</sub>O molecules.



**Figure S6:** IR spectroscopic characterization of the *Cn*MBH<sup>Cys81Ser</sup> variant. (a) IR spectra at 298 K of the asisolated (oxidized) *Cn*MBH<sup>Cys81Ser</sup> (ca. 1 mM in 50 mM K<sub>i</sub>PO<sub>4</sub>, pH 5.5, 150 mM NaCl, 50 % glycerol (trace *a*) and the corresponding reduced samples after incubation with 100 % H<sub>2</sub> either for 55 min (trace *b*) or 80 min (trace *c*). The as-isolated MBH<sup>Cys81Ser</sup> resides in a mixture of Ni<sub>r</sub>-B and Ni<sub>u</sub>-S species. After 55 min of reduction, Ni<sub>a</sub>-C and Ni<sub>a/r</sub>-S states were detected together with residual Ni<sub>u</sub>-S species. After prolonged incubation (80 min) with H<sub>2</sub> the IR spectra of *Cn*MBH<sup>Cys81Ser</sup> show predominant Ni<sub>a</sub>-SR' signals, similarly to native *Cn*MBH (**Fig. S2**). (b) IR spectra of H<sub>2</sub>-reduced *Cn*MBH<sup>Cys81Ser</sup> at 90 K before and after LED light irradiation at 460 nm show predominantly Ni<sub>a</sub>-SR' (v<sub>co</sub> band at 1934 cm<sup>-1</sup>), accompanied by the formation of sub-stoichiometric amounts of Ni<sub>a</sub>-C. For the Ni<sub>a</sub>-C $\rightarrow$ Ni<sub>a</sub>-L phototransformation, the partially reduced sample (trace *b* in **Fig. S6a**) was used because it contained the highest proportion of the Ni<sub>a</sub>-C state. Illumination of the MBH<sup>Cys81Ser</sup> sample with LED at 460 nm (90 K) resulted in the production of two distinct Ni<sub>a</sub>-L species (v<sub>co</sub> bands at 1916 and 1903 cm<sup>-1</sup>). (c) IR difference spectrum (Reox-*minus*-Red) of the *Cn*MBH<sup>Cys81Ser</sup> variant at 298 K, showing that the enrichment of reduced active site species is reversible as the reduced sample incubated with air returned to the original Ni<sub>r</sub>-B (v<sub>co</sub> at 1956 cm<sup>-1</sup>) and Ni<sub>u</sub>-S (v<sub>co</sub> at 1941 cm<sup>-1</sup>) states. Bands assignment follows those described in Saggu et *al.*.<sup>4</sup>



**Fig. S7.** Comparison of the IR difference spectra of native *Cn*MBH and the *Cn*MBH<sup>Cys81Ser</sup> variant. Difference spectra (light-*minus*-dark, Ni<sub>a</sub>-L-*minus*-Ni<sub>a</sub>-C) of native *Cn*MBH (red trace) and the *Cn*MBH<sup>Cys81Ser</sup> variant (black trace) (both at ca. 1 mM in 50 mM K<sub>i</sub>PO<sub>4</sub>, pH 5.5, 150 mM NaCl, 50 % glycerol) were recorded at 95 K, displaying the characteristic Ni<sub>a</sub>-L and Ni<sub>a</sub>-C absorptions as positive and negative bands, respectively. The inset in the upper left shows an enlargement of the SH spectral range. The IR data for *Cn*MBH<sup>Cys81Ser</sup> show a lower signal-to-noise ratio compared to those of native *Cn*MBH, which is attributed to a lower Ni<sub>a</sub>-C enrichment in the MBH variant (**Fig. S6a**, trace b vs **Fig. S2**). The exchange of Cys81 induces a splitting of the original v<sub>CO</sub> bands in native MBH at 1960 (Ni<sub>a</sub>-C) and 1910 cm<sup>-1</sup> (Ni<sub>a</sub>-L), which now appear as two negative v<sub>CO</sub> absorptions at 1954 cm<sup>-1</sup> and 1967 cm<sup>-1</sup> (Ni<sub>a</sub>-C) photoconverting to species with v<sub>CO</sub> at 1903 and 1916 cm<sup>-1</sup> (see Supplementary Discussion). The exchange of Cys81 with Ser additionally results in the disappearance of the observed v<sub>SH</sub> bands, which aided their assignment to the protonated side chain of Cys81. Data of native *Cn*MBH were normalized to those of the *Cn*MBH<sup>Cys81Ser</sup> variant (scaling factor 0.4) for better visualization.

#### Supplementary Discussion

The replacement of Cys81 by Ser resulted in the splitting of the  $v_{CO}$  band of both the Ni<sub>a</sub>-C and Ni<sub>a</sub>-L states. In fact, the MBH variant exhibits two negative  $v_{co}$  absorptions at 1954 cm<sup>-1</sup> and 1967 cm<sup>-1</sup>, which are photoconverted to bands at 1903 and 1916 cm<sup>-1</sup>. In contrast, the corresponding  $v_{CN}$  bands remain essentially unaffected (Fig. S7). The O-H bond length (ca 1.0 Å) of serine is shorter than the S-H bond (ca 1.4 Å) of cysteine, which might prevent the formation of a H-bond between serine and the thiolate of Cys78 and/or the CO ligand. This, in turn, possibly led to the observed splitting of the CO band. We assigned the minor Ni<sub>a</sub>-C and Ni<sub>a</sub>-L species with  $v_{CO}$  bands at higher energies (1967 and 1916 cm<sup>-1</sup>) to active site arrangements in which serine adopts an identical conformation as Cys81 (Ni<sub>a</sub>-C: 1960 cm<sup>-1</sup>, Ni<sub>a</sub>-L1/2: 1910 cm<sup>-1</sup>, Fig. 3c) and thus forms an H-bond. Regarding the upshift of the  $v_{CO}$  bands, this is related to the higher polarity of serine which weakens the back-bonding from the iron and strengthens the CO bond compared to that of native MBH. This assignment is in line with previous investigations on other active site species of the MBH<sup>Cys81Ser</sup> variant.<sup>12</sup> Conversely, we attributed the more abundant species with lower energy (v<sub>co</sub> bands at 1954 and 1903 cm<sup>-1</sup>) to Ni<sub>a</sub>-C and Ni<sub>a</sub>-L active site states without H–bonds, which are characterized by a higher electron density at the NiFe site that weakens the CO bonds. Importantly, temperature appears to influence the relative abundance of the two active site populations. Room temperature IR data predominantly show the high-energy species for the MBH variant (Fig. S6),<sup>4</sup> while data collected at lower temperatures (Fig. S7) favor the low-energy species.

#### **Supplementary references**

1T. Schubert, O. Lenz, E. Krause, R. Volkmer and B. Friedrich, *Molecular Microbiology*, 2007, **66**, 453–467.

- 2 M. Ludwig, J. A. Cracknell, K. A. Vincent, F. A. Armstrong and O. Lenz, *J. Biol. Chem.*, 2009, **284**, 465–477. 3 O. Lenz, L. Lauterbach and S. Frielingsdorf, in *Methods in Enzymology*, Elsevier, 2018, vol. 613, pp. 117–
- 151.
- 4 M. Saggu, M. Ludwig, B. Friedrich, P. Hildebrandt, R. Bittl, F. Lendzian, O. Lenz and I. Zebger, *ChemPhysChem*, 2010, **11**, 1215–1224.
- 5 M. Saggu, I. Zebger, M. Ludwig, O. Lenz, B. Friedrich, P. Hildebrandt and F. Lendzian, J. Biol. Chem., 2009, 284, 16264–16276.
- 6 A. F. T. Waffo, C. Lorent, S. Katz, J. Schoknecht, O. Lenz, I. Zebger and G. Caserta, *J. Am. Chem. Soc.*, 2023, **145**, 13674–13685.
- 7 J. Fritsch, P. Scheerer, S. Frielingsdorf, S. Kroschinsky, B. Friedrich, O. Lenz and C. M. T. Spahn, *Nature*, 2011, **479**, 249–252.
- 8X. Robert and P. Gouet, Nucleic Acids Research, 2014, 42, W320–W324.
- 9 F. Madeira, N. Madhusoodanan, J. Lee, A. Eusebi, A. Niewielska, A. R. N. Tivey, R. Lopez and S. Butcher, *Nucleic Acids Research*, 2024, **52**, W521–W525.
- 10 D. Søndergaard, C. N. S. Pedersen and C. Greening, Sci Rep, 2016, 6, 34212.
- 11 T. D. Schneider and R. M. Stephens, *Nucl Acids Res*, 1990, **18**, 6097–6100.
- 12 Y. Rippers, T. Utesch, P. Hildebrandt, I. Zebger and M. A. Mroginski, *Phys. Chem. Chem. Phys.*, 2011, **13**, 16146.