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Experimental section

Reagents and materials

All reagents (analytical grade) used in this study were commercially available and 

were employed as received without further purification, unless otherwise specified. N, 

N-Dimethylformamide (DMF), cobalt chloride (CoCl2), nickel chloride (NiCl2), 

methanol (CH3OH), and potassium hydroxide (KOH) were purchased from Shanghai 

Sinopharm Chemical Reagent Co., Ltd. Deionized water, obtained from a Milli-Q 

Ultrapure water system, was used throughout all experiments, including the 

electrochemical measurements.

Material Charaterizations

     The electronic structures of the materials were characterized using X-ray 

photoelectron spectroscopy (XPS) on an ESCALAB 250Xi spectrometer, employing 

Al Kα radiation as the X-ray excitation source. The porosity of the materials was 

determined from adsorption-desorption data, obtained using a Micromeritics ASAP 

2020 M surface area and porosity analyzer, via the Brunauer-Emmett-Teller (BET) 

method. Prior to measurement, the samples were degassed for 12 h at 100 °C under 

vacuum conditions. The morphologies and energy-dispersive spectroscopy (EDS) of 

the products were analyzed using a high-resolution field emission scanning electron 
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microscope (SEM) on a JEOL 2100 microscope. UV-vis absorption spectra were 

recorded with a JASCO V-570 spectrophotometer (Shimadzu) in DMSO. Fourier 

transform infrared (FTIR) spectra were acquired using KBr pellets on a MB154S 

infrared spectrometer, over the range of 400-4000 cm-1 with a resolution of 4 cm-1. The 

solid-state 13C NMR spectra were measured on a Bruker Avance III 400 spectrometer.

Electrochemical characterizations

All electrochemical characterizations were conducted using a CHI614E 

electrochemical workstation in a standard three-electrode setup. In this system, Ni foam 

(NF) served as the working electrode, a platinum tablet as the counter electrode, and 

the Hg/HgO (1.0 M KOH) as the reference electrode. To prepare the working electrode, 

2 mg of the catalyst was dispersed in 0.55 mL of a 93:7 ethanol/nafion (5 wt%) solution, 

and 80 μL of the well-mixed suspension was drop-cast onto NF paper. The HER activity 

of the prepared samples was evaluated by recording linear sweep voltammetry (LSV) 

polarization curves in the voltage range of -0.8 to -1.6 V using 1.0 M KOH, and all 

HER potentials were referenced against the reversible hydrogen electrode (RHE) using 

the appropriate Nernst equation. The effective surface area of the samples immersed in 

the electrolyte was 1.0 × 1.0 cm². To assess the catalytic active sites and electrochemical 

active surface area (ECSA) of the materials, electrochemical double-layer capacitance 

(Cdl) was measured at the electrode-electrolyte interface by cyclic voltammetry (CV) at 

various scan rates in 1.0 M KOH. For the solution resistance, electrochemical 

impedance spectroscopy (EIS) was performed over a frequency range of 10-2 to 106 Hz 

with a potential of -1.1 V during the water splitting process. Rct values are 

experimentally determined through EIS, modeled via equivalent circuits, and extracted 

from Nyquist plot fittings. The long-term stability of Bpy-CoTNPP in an alkaline 

solution was evaluated over 10 h, with hydrogen generation monitored by gas 

chromatography to calculate Faradaic efficiency.

Preparation of catalysts
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The synthesis process for the electrocatalysts Bpy-CoTNPP, Bpy-NiTNPP, and 

Bpy-(Co-Ni)TNPP is depicted in Scheme 1. Typically, a 100 mL round-bottom flask 

was equipped with Bpy (7.8 mg), TNPP (100 mg), KOH (100 mg), and dry DMF (50 

mL). The mixture was subjected to ultrasonication for 1 h to ensure uniform dispersion, 

followed by heating at 115 °C for 72 h. After the reaction, the mixture was allowed to 

cool to room temperature. The solvent was then removed under vacuum using a rotary 

evaporator. The resulting solid was filtered, washed several times with deionized water, 

and dried at 60 °C under vacuum for 12 h, yielding Bpy-TNPP as a black powder 

precursor. To synthesize Bpy-CoTNPP, Bpy-TNPP (50 mg), CoCl2 (188 mg), methanol 

(30 mL), and tetrahydrofuran (THF, 30 mL) were added to a 100 mL flask. The mixture 

was dispersed uniformly using ultrasonic treatment and then heated at 80 °C for 24 h. 

Upon completion of the reaction, the resulting black reaction mixture was filtered and 

washed several times with deionized water to remove any unreacted monomers and 

CoCl2 until the filtrate was colorless. The remaining black powder was dried at room 

temperature for 12 h under vacuum to obtain the final product, Bpy-CoTNPP. The 

synthesis of Bpy-NiTNPP and Bpy-(Co-Ni)TNPP followed the same procedure as for 

Bpy-CoTNPP, except that CoCl2 was replaced with NiCl2 for Bpy-NiTNPP, and a 

mixture of CoCl2 and NiCl2 was used for Bpy-(Co-Ni)TNPP.
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  Figure S1. SEM image (a, the scale bar is 200 μm), elemental mapping images (b-e) 

and EDS image (f) of Bpy-CoTNPP.
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Figure S2. SEM spectrum (a), elemental mapping images (b-e) and EDS image (f) of Bpy-
CoTNPP after stability test. 

Figure S3. UV-vis absorption spectra of Bpy-CoTNPP before and after stability test.
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Figure S4. Cyclic voltammetry curves of the samples scanned at different rates from 20 to 100 
mV s-1 in 1.0 M KOH: (a) Bpy-CoTNPP, (b) Bpy-(Co-Ni)TNPP, (c) Bpy-NiTNPP, and (d) Bpy-

TNPP.

Figure S5. Pore size distribution of Bpy-CoTNPP and Bpy-TNPP.
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Table S1. Comparison of HER performance of Bpy-CoTNPP with some other reported 
electrocatalysts at 10 mA cm-2

Electrocatalysts Overpotential (mV @ 10 mA 
cm-2)

Refs.

MOF-Derived NiCo2O4/CeO2 HNPs 290 (1.0 M KOH) [1]

V(Ⅲ)-NiCo2O4 344 (1.0 M KOH) [2]
0.5FeNiCo2O4@CC 258 (1.0 M KOH) [3]

1% P-NiCo2O4 370 (1.0 M KOH) [4]
MOF-Derived CuCoO2 364.7 (1.0 M KOH) [5]

MOF-Derived CeO2/C nanorod 297 (1.0 M KOH) [6]
MOF-Derived Ni3S2/MoS2 hollow 

spheres
303 (1.0 M KOH) [7]

CoZnCdCuMnS@CF 173 (1.0 M KOH) [8]
MOF-Derived CoNiO@NCNT 315 (1.0 M KOH) [9]

MOF-Derived Co(Zn)S2/CC 248 (1.0 M KOH) [10]
MOF-Derived CoFeP/NF 253 (1.0 M KOH) [11]

MOF-Derived MnCo2O4/CeO2 276 (1.0 M KOH) [12]
FeCoMo-P 273 (1.0 M KOH) [13]

Cu-NiSe@CC 270 (1.0 M KOH) [14]
CoPS@NPS-C 191 (1.0 M KOH) [15]
Bpy-CoTNPP 130 (1.0 M KOH) This work
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