Supplementary Information (SI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Photoredox Cobalt-Catalyzed Hydroaminomethylation of Alkynes with Aminals

Yang Wu, Chen Chen, Wen-Kai Liu, Xing-Yu Ren, Ji-Bao Xia

State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding Author: jibaoxia@licp.cas.cn

Table of Contents

I.	General Information	2
II.	Optimization of the Reaction Conditions	3
III.	Investigated Substrates of Alkynes and Aminals	8
IV.	Preparation of Starting Materials	9
V.	General Procedure and Characterization Data	13
VI.	Synthetic Applications	33
VII.	Control Experiments and Mechanistic Studies	36
VIII.	. References	45
IX.	NMR Spectra	46

I. General Information

All of the reactions were carried out in oven-dried Schlenk tube and under nitrogen atmosphere if otherwise noted. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 30-60 °C). The High Resolution MS analyses were performed on Thermo Fisher Scientific LTQ FT Ultra with DART Positive Mode or Agilent 6530 Accurate-Mass Q-TOF LC/MS with ESI mode. NMR spectra were recorded on a 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR, using tetramethylsilane as an internal reference and CDCl3 as solvent. Chemical shift values for protons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to residual proton of CDCl₃ (δ 7.26). Multiplicity is indicated by one or more of the following: s (singlet); d (doublet); t (triplet); m (multiplet); br (broad). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 100 MHz. Chemical shifts for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of CDCl₃ (δ 77.00). The photoreactors used in this research were bought from GeAoChem (Blue LEDs, light intensity = 42 mw/cm^2 , 5 W for every light bulb; every Schlenk tube was irradiated by 1 light bulbs from the side). All alkynes and diaminomethanes were commercially available or synthesized by known methods. These materials were purchased from Tokyo Chemical Industry Co., Aldrich Inc., Alfa Aesar, Adamas, or other commercial suppliers and used as received unless otherwise noted.

II. Optimization of the Reaction Conditions

Table S1. The Effect of the Ligand for Hydroaminomethylation of Alkyne 1 with Aminal 2^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2 eq.), 4CzIPN (2 mol%), CoI₂ (10 mol%), ligand (20 mol% for monodentate ligand, 10 mol% for bidentate ligand), HE (1.0 eq.), THF (2 mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}Isolated yield in the parenthesis.

Discussion: Various ligands have been investigated. The results is shown here. Most of the ligands do not work or just produce a trace amount of the desired product **3**. The reaction's optimal ligand is tri(3,5-dimethylphenyl)phosphine (**L1**).

	Dh	Me、	N ^{Me}	2 mol% 4CzIPN 10 mol% Co Catalyst 20 mol% L1			
		We +	Me Me TH	1 eq. HE IF, blue LED, N ₂ , 16 h		I I Me	
	1		2		3 , >19:1 rr,	>19:1 <i>E/Z</i>	
	Entry	Co catalyst	Yield (%)	Entry	Co catalyst	Yield (%)	
	1	CoI ₂	36 (25) ^b	7	Co(NO ₃) ₂ ·6H ₂ O	N.R.	
	2	CoBr ₂	25	8	Co(OTf) ₂	trace	
	3	CoCl ₂	18	9	$Co(CO_3)_2$	N.R.	
	4	CoF ₂	trace	10	$Co_3(PO_4)_2$	N.R.	
	5	$Co(acac)_2$	N.R.	11	CoI ₂ ·MeCN	10	
	6	Co(OAc) ₂	N.R.	12	No Co Catalyst	N.R.	

Table S2. The Effect of Cobalt Catalyst^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2 eq.), 4CzIPN (2 mol%), Co catalyst (10 mol%), **L1** (20 mol%), HE (1.0 eq.), THF (2 mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}Isolated yield in the parenthesis.

Table S3. The Effect of Additive^{*a*}

-	25	Me	Me	2 mol% 4CzIPN 10 mol% Col ₂ 20 mol% L1		Me	
1		, T I I I I I I I I I I I I I I I I I I		1 eq. HE 1 eq. additive , blue LED, N ₂ ,	16 h 3 , >19:1 rr, 3	3 , >19:1 rr, >19:1 <i>E/Z</i>	
I	Entry	Additive	Yield (%)	Entry	Additive	Yield(%)	
	1	none	36	12	ZnI_2	64	
	2	NaBF ₄	26	13	Zn(OTf) ₂	68	
	3	$KBARF^b$	26	14	$Zn(OTf)_2^e$	50	
	4	NaBARF ^c	24	15	Zn(CN) ₂	15	
	5	KBPhF ₃	16	16	Zn(OAc) ₂	20	
	6	NaHCO ₃	20	17	Zinc pivalate	10	
	7	CsF	10	18	Zinc propionate	15	
	8	LiCl	15	19	Mg(OTf) ₂	32	
	9	LiOTf	18^d	20	$Cu(OTf)_{2^{f}}$	N.R.	
	10	$ZnCl_2$	54	21	Sc(OTf) ₂	10	
	11	ZnBr ₂	60	22	TFA	56	

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2 eq.), 4CzIPN (2 mol%), CoI₂ (10 mol%), **L1** (20 mol%), HE (1.0 eq.), additive (1 eq.), THF (2 mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}NaBARF: Sodium

tetrakis(pentafluorophenyl)borate. ^{*c*}KBARF: Potassium tetrakis(perfluorophenyl)borate. ^{*d*}The E/Z of **3** is 1.3:1. ^{*e*}With Zn(OTf)₂ (0.5 eq.). ^{*f*}Or With Fe(OTf)₃.

Table S4. The Effect of Photocatalyst^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2 eq.), photocatalyst (2 mol%), CoI_2 (10 mol%), **L1** (20 mol%), HE (1.0 eq.), Zn(OTf)₂ (1 eq.), THF (2 mL), 5 W blue LED, r.t., 16 h. Yield, rr and *E*/*Z* of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard.

Ph Me +	Me N Me Me Me	2 mol% 4CzIPN 10 mol% Col ₂ 20 mol% L1 1 eq. HE 1 eq. Zn(OTf) ₂	Ph N Me Me Me
1	2	solvent, blue LED, N_2 , 16 n	3 , >19:1 rr, >19:1 <i>E/Z</i>
Entry		Solvent	Yield (%)
1		THF	68
2		1,4-dioxane	66
3		MeCN	10
4		DME	68
5		DCE	46
6		2-MeTHF	60

Table S5. The Effect of Solvent^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2 eq.), 4CzIPN (2 mol%), CoI₂ (10 mol%), **L1** (20 mol%), HE (1 eq.), Zn(OTf)₂ (1 eq.), solvent (2 mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard.

Table S	S6 .	The	Effect	of Hy	drogen	Source ^{<i>a</i>}
---------	-------------	-----	--------	-------	--------	-----------------------------------

BhMa	Me, N, Me	2 mol% 4CzIPN 10 mol% Col ₂ 20 mol% L1	Dh Me	
	Me Me	x eq. hydrogen source 1 eq. Zn(OTf) ₂	Me Me	
1	2	THF, blue LED, N ₂ , 16 h	3 , >19:1 rr, >19:1 <i>E/Z</i>	
Entry	Hydro	ogen Source (x eq.)	Yield (%)	
1		HE (1)	68	
2		H ₂ O (3)	0	
3		MeOH (3)	34	
4		$MeOH^b$	32	
5		$EtOH^b$	14	
6		MeOH ^c	18	

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (2 eq.), 4CzIPN (2 mol%), CoI₂ (10 mol%), **L1** (20 mol%), hydrogen source (x eq.), Zn(OTf)₂ (1 eq.), THF (2 mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}As solvent. ^{*c*}With THF as mixed solvent (v:v=1:1).

		Me	x mol x m Me x n	% 4CzIPN ol% Col ₂ nol% L1		∕,Me	
Ph Me		+ N N I I Me Me	, 1 , 1 eq.	1 eq. HE 1 eq. Zn(OTf) ₂		Ph ^r Y N Me Me	
	1	2 (x eq.)	blue LE	F (X mL) ED, N ₂ , 16 h	3 , >19:1 rr,	>19:1 <i>E/Z</i>	
Entry	2	4CzIPN	CoI ₂	L1	THF	Yield (%) ^b	
	(x eq.)	(x mol%)	(x mol%)	(x mol%)	(x mL)		
1	2	2	10	20	2	68	
2	2.5	2	10	20	2	86	
3	2.5	1	5	10	2	82	
4	2.5	1	5	10	1	97 (85) ^b	

Table S7. The Effect of the Amount of 2, Photocatalyst, CoI2, L1 and Solvent^a

^{*a*}Reaction conditions: **1** (0.2 mmol), **2** (x eq.), 4CzIPN (x mol%), CoI₂ (x mol%), **L1** (x mol%), HE (1 eq.), Zn(OTf)₂ (1 eq.), THF (x mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}Isolated yield in the parenthesis.

Table S8. Control Experiments^a

Dh	Me Ne Ne		1 mol% 4CzIPN 5 mol% Col ₂ 10 mol% L1		Dh Me	
1		Me Me 1 eq. F 1 eq. Zn(i 2 THF, blue LEC		HE Me Me h(OTf) ₂ ED, N ₂ , 16 h 3		N Me
			"standard c	onditions"		
Entry	Changes fr	com "standard c	onditions"	Yield (%)	rr	E/Z
1		none		97 (85) ^b	>19:1	>19:1
2	without CoI ₂			N.R.	-	-
3	without L1			16	>19:1	>19:1
4	,	without 4CzIPN		N.R.	-	-
4 5		without 4CzIPN without light		N.R. N.R.	-	-

^{*a*}Standard conditions: **1** (0.2 mmol), **2** (2.5 eq.), 4CzIPN (1 mol%), CoI₂ (5 mol%), **L1** (10 mol%), HE (1.0 eq.), Zn(OTf)₂ (1.0 eq.), THF (1 mL), 5 W blue LED, r.t., 16 h. Yield, rr and E/Z of **3** was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*}Isolated yield in the parenthesis.

III. Investigated Substrates of Alkynes and Aminals

Figure S1. Investigated Substrates in the Photoredox Cobalt-catalyzed Hydroaminomethylation of Alkynes with Aminals.

IV. Preparation of Starting Materials

Known alkyne S4-5¹, S6², S7³, S8-13¹, S15¹, S18-S19¹, S14⁴, S16⁴ and aminal S30⁵, S31⁶, S32⁷, S35⁸, S36⁸, S41⁸ were prepared according to the reported methods. The other substrates are commercially available and used as received from vendors.

General method A for the synthesis of aminals

$$(CH_2O)_n$$
 + R^1R^2NH $\xrightarrow{MgSO_4}$ R^1_N $N^{\prime}R^1_R$
neat, 55 °C, 3-12 h R^2_N R^2_R

To a round-bottom flask charged with paraformaldehyde (5.0 mmol, 150.0 mg) and MgSO₄ (0.4 mmol, 50 mg), free secondary amine (10.0 mmol) was added. The mixture was vigorously stirred for 3–12 h at 55 $\$ C. The mixture was extracted with dichloromethane (30 mL) and the organic phase was washed with saturated sodium bicarbonate aqueous solution, dried over anhydrous sodium sulfate. After filtration and concentration under reduced pressure, the resulting aminal was obtained in sufficient purity for further use.

General method B for the synthesis of aminals

$$\begin{array}{c} CH_2O \quad + \quad R^1R^2NH HCI \quad \underbrace{K_2CO_3 (2.1 \text{ eq.})}_{H_2O, \text{ r.t., 12 h}} \quad R^1 \underset{R^2}{\overset{N}{\xrightarrow{}}} \underset{R^2}{\overset{N}{\xrightarrow{}}} R^1$$

To a round-bottom flask was added the corresponding amine hydrochloride (10.0 mmol), K_2CO_3 (21.0 mmol, 2.9 g) and water (5 mL). The mixture was stirred at room temperature for 0.5 h. Then, the mixture was cooled to 0 °C. Aqueous solution of formaldehyde (37% aq., 405.4 mg, 5.0 mmol) was added dropwise and the resulting biphasic mixture was stirred vigorously at room temperature for 12 h. The mixture was extracted with dichloromethane (30 mL) and the organic phase was washed with saturated sodium bicarbonate aqueous solution, dried over anhydrous sodium sulfate. After filtration and concentration under reduced pressure, the resulting title compound in sufficient purity for further use.

N,*N*'-Dibenzyl-*N*,*N*'-dimethylmethanediamine (S32)

According to the general method A, **S32** was synthesized from *N*-methyl-1-phenylmethanamine (10 mmol, 1.21 g) for 12 h. The title compound was isolated as a colorless oil (391.2 mg, 77% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 8H), 7.24 – 7.19 (m, 2H), 3.62 (s, 4H), 3.03 (s, 2H), 2.22 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 139.8, 129.0, 128.3, 126.8, 79.9, 59.6, 40.6.

HRMS (ESI) calculated for $C_{17}H_{22}N_2Na (M+Na)^+ 277.1675$, found 277.1677.

N,*N*'-Bis(4-methoxybenzyl)-*N*,*N*'-dimethylmethanediamine (S33)

According to the general method A, **S33** was synthesized from 1-(4-methoxyphenyl)-*N*-methylmethanamine (10 mmol, 1.51 g) for 12 h. The title compound was isolated as a colorless oil (1.35 g, 86% yield).

¹**H NMR** (400 MHz, CDCl₃) 7.23 (d, *J* = 8.4 Hz, 4H), 6.84 (d, *J* = 8.8 Hz, 4H), 3.79 (s, 6H), 3.55 (s, 4H), 2.99 (s, 2H), 2.20 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 158.6, 131.7, 130.1, 113.6, 79.5, 58.9, 55.4, 40.5.

HRMS (ESI) calculated for $C_{19}H_{26}N_2O_2Na (M+Na)^+ 337.1886$, found 337.1881.

Di(azetidin-1-yl)methane (S34)

According to the general method B, **S34** was synthesized from azetidine hydrochloride (10 mmol, 930 mg). The title compound was isolated as a colorless oil (410.0 mg, 65% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 3.22 (t, *J* = 7.2 Hz, 8H), 3.03 (s, 2H), 2.08 (p, *J* = 7.2 Hz, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 83.0, 53.7, 17.8.

HRMS (ESI) calculated for C₇H₁₄N₂Na (M+Na)⁺ 149.1049, found 149.1055.

Bis(4-phenylpiperidin-1-yl)methane (S37)

According to the general method A, **S37** was synthesized from 4-phenylpiperidine (10 mmol, 1.61 g) for 12 h. The title compound was isolated as a white solid (1.47 g, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.28 (m, 4H), 7.26 – 7.23 (m, 4H), 7.21 – 7.17 (m, 2H), 3.18 – 3.13 (m, 4H), 3.00 (s, 2H), 2.55 – 2.47 (m, 2H), 2.09 (td, *J* = 11.6, 2.8 Hz, 4H), 1.86 – 1.72 (m, 8H).

¹³C NMR (100 MHz, CDCl₃) δ 146.9, 128.5, 127.0, 126.2, 82.1, 53.0, 43.4, 33.7.

HRMS (ESI) calculated for $C_{23}H_{30}N_2Na (M+Na)^+ 357.2301$, found 357.2301.

Di(6-azaspiro[2.5]octan-6-yl)methane (S38)

According to the general method A, **S38** was synthesized from 6-azaspiro[2.5]octane (10 mmol, 1.11 g) for 3 h. The title compound was isolated as a colorless oil (1.47 g, 88% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 2.96 (s, 2H), 2.51 (t, *J* = 11.2 Hz, 8H), 1.37 (t, *J* = 11.2 Hz, 8H), 0.25 (s, 8H).

¹³C NMR (100 MHz, CDCl₃) δ 82.2, 51.9, 35.3, 18.1, 11.6.

HRMS (ESI) calculated for $C_{15}H_{26}N_2Na (M+H)^+ 235.2169$, found 235.2163.

Bis((*S*)-2-(methoxymethyl)pyrrolidin-1-yl)methane (S39)

According to the general method A, **S39** was synthesized from (S)-2-(methoxymethyl)-pyrrolidine (10 mmol, 1.15 g) for 12 h. The title compound

was isolated as a colorless oil (1.93 g, 80% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 3.50 (s, 2H), 3.44 – 3.39 (m, 2H), 3.35 (s, 6H), 3.26 – 3.21 (m, 2H), 3.19 – 3.13 (m, 2H), 2.78 – 2.71 (m, 2H), 2.41 – 2.34 (m, 2H), 1.94 – 1.84 (m, 2H), 1.76 – 1.68 (m, 4H), 1.65 – 1.56 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 76.8, 76.2, 61.0, 59.1, 54.4, 28.9, 23.5.

HRMS (ESI) calculated for $C_{13}H_{27}N_2O_2$ (M+H)⁺ 243.2067, found 243.2062.

Di(2-oxa-6-azaspiro[3.3]heptan-6-yl)methane (S40)

According to the general method B, **S40** was synthesized from 2-oxa-6-azaspiro[3.3]heptane hydrochloride (10 mmol, 1.35g). The title compound was isolated as a colorless oil (787.5 mg, 75% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 4.71 (s, 8H), 3.35 (s, 8H), 2.97 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 81.8, 81.5, 62.5, 39.5.

HRMS (ESI) calculated for $C_{11}H_{18}N_2O_2Na (M+Na)^+ 233.1260$, found 233.1267.

(Methylenebis(piperazine-4,1-diyl))bis(cyclopropylmethanone) (S42)

According to the general method A, **S42** was synthesized from cyclopropyl(piperazin-1-yl)methanone (10 mmol, 1.54 g) for 12 h. The title compound was isolated as a white solid (1.25 g, 78% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 3.67 – 3.62 (m, 8H), 2.95 (s, 2H), 2.55 – 2.47 (m, 8H), 1.77 – 1.70 (m, 2H), 1.00 – 0.95 (m, 4H), 0.78 – 0.73 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 172.0, 80.7, 51.9, 51.3, 45.6, 42.2, 11.1, 7.4.

HRMS (ESI) calculated for $C_{17}H_{28}N_4O_2Na (M+Na)^+ 343.2104$, found 343.2101.

V. General Procedure and Characterization Data

General procedure for photoredox cobalt-catalyzed hydroaminomethylation of alkynes with aminals: In a nitrogen-filled glovebox, a 25 mL Schlenk tube was charged with 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl) phosphine (L1, 0.02 mmol, 6.9 mg), Hantzsch ester (HE, 0.2 mmol, 50.6 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), dry THF(1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, alkyne (0.2 mmol) and aminal (0.5 mmol) was sequentially added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. Then the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, CH₂Cl₂ / MeOH) to afford the desired product.

(E)-N,N,2-Trimethyl-3-phenylprop-2-en-1-amine (3)

3 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (29.8 mg, 85% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.36 (m, 2H), 7.32 – 7.27 (m, 3H), 6.70 (s, 1H), 3.76 (s, 2H), 2.93 (s, 6H), 2.05 (d, *J* = 1.2 Hz, 3H). Spectral data are identical to those in the reported literature.⁹

(E)-3-(4-Methoxyphenyl)-N,N,2-trimethylprop-2-en-1-amine (4)

4 was synthesized from 1-methoxy-4-(prop-1-yn-1-yl)benzene (0.2 mmol, 29.2 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (34.5 mg, 84% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 6.35 (s, 1H), 3.81 (s, 3H), 2.96 (s, 2H), 2.26 (s, 6H), 1.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.2, 134.5, 130.6, 130.2, 127.5, 113.7, 69.8, 55.4, 45.4, 16.9.

HRMS (ESI) calculated for $C_{13}H_{20}NO (M+H)^+$ 206.1539, found 206.1549.

(E)-3-(4-Fluorophenyl)-N,N,2-trimethylprop-2-en-1-amine (5)

5 was synthesized from 1-fluoro-4-(prop-1-yn-1-yl)benzene (0.2 mmol, 26.8 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (26.0 mg, 67% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.04 – 6.98 (m, 2H), 6.36 (s, 1H),

2.93 (s, 2H), 2.24 (s, 6H), 1.88 (s, 3H).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -78.27 (s).

¹³**C NMR** (100 MHz, CDCl₃) δ 160.5 (d, J = 244.0 Hz), 135.6, 133.2 (d, J = 3.0 Hz),

129.5 (d, *J* = 8.0 Hz), 125.5, 114.1 (d, *J* = 21.0 Hz), 68.6, 44.5, 15.8.

HRMS (ESI) calculated for $C_{12}H_{16}NFK (M+K)^+ 232.0898$, found 232.0899.

(E)-3-(3-Chlorophenyl)-N,N,2-trimethylprop-2-en-1-amine (6)

6 was synthesized from 1-chloro-3-(prop-1-yn-1-yl)benzene (0.2 mmol, 30.0 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (31.0 mg, 74% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.23 (m, 2H), 7.19 – 7.14 (m, 2H), 6.35 (s, 1H), 2.93 (s, 2H), 2.24 (s, 6H), 1.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.0, 138.3, 134.1, 129.4, 128.9, 127.2, 126.4, 126.2, 69.4, 45.6, 16.9.

HRMS (ESI) calculated for $C_{12}H_{16}NCINa (M+Na)^+ 232.0863$, found 232.0871.

(*E*)-3-(3-Bromophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (7)

7 was synthesized from 1-bromo-3-(prop-1-yn-1-yl)benzene (0.2 mmol, 38.8 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (30.4 mg, 60% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1 = 2/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.35 – 7.33 (m, 1H), 7.20 – 7.18 (m, 2H), 6.34 (s, 1H), 2.93 (s, 2H), 2.23 (s, 6H), 1.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 140.3, 138.3, 131.9, 129.7, 129.3, 127.6, 126.0, 122.3, 69.4, 45.6, 16.9.

HRMS (ESI) calculated for C₁₂H₁₇NBr (M+H)⁺ 254.0539, found 254.0538.

Methyl (E)-3-(3-(dimethylamino)-2-methylprop-1-en-1-yl)benzoate (8)

8 was synthesized from methyl 3-(prop-1-yn-1-yl)benzoate (0.2 mmol, 34.8 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (36.8 mg, 79% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.46 (d, *J* = 7.6 Hz, 1H), 7.40 (dd, *J* = 7.6 Hz, 1H), 6.44 (s, 1H), 3.92 (s, 3H), 2.95 (s, 2H), 2.25 (s, 6H), 1.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.3, 138.4, 138.0, 133.4, 130.1, 130.1, 128.3, 127.5, 126.5, 69.5, 52.3, 45.6, 16.8.

HRMS (ESI) calculated for $C_{14}H_{20}NO_2$ (M+H)⁺ 234.1489, found 234.1497.

(E)-N,N,2-Trimethyl-3-(o-tolyl)prop-2-en-1-amine (9)

9 was synthesized from 1-methyl-2-(prop-1-yn-1-yl)benzene (0.2 mmol, 26.0 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (22.0 mg, 58% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.19 – 7.12 (m, 4H), 6.39 (s, 1H), 2.97 (s, 2H), 2.26 (s, 6H), 2.24 (s, 3H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 136.4, 135.3, 134.9, 130.2, 129.0, 128.2, 128.1, 125.8, 67.0, 43.4, 20.0, 16.3.

HRMS (ESI) calculated for C₁₃H₁₉NNa (M+Na)⁺ 212.1410, found 212.1401.

(E)-3-(2,3-Dihydrobenzofuran-5-yl)-N,N,2-trimethylprop-2-en-1-amine (10)

10 was synthesized from 5-(prop-1-yn-1-yl)-2,3-dihydrobenzofuran (0.2 mmol, 31.6mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (34.0 mg, 78% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (s, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.33 (s, 1H), 4.57 (t, *J* = 8.4 Hz, 2H), 3.20 (t, *J* = 8.8 Hz, 2H), 2.92 (s, 2H),

2.23 (s, 6H), 1.90 (d, *J* = 1.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 134.5, 130.7, 129.0, 127.5, 126.9, 125.5, 109.0, 71.4, 69.9, 45.5, 29.9, 16.9.

HRMS (ESI) calculated for $C_{14}H_{20}NO (M+H)^+ 218.1539$, found 218.1549.

(*E*)-3-(4-Methoxy-3,5-dimethylphenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (11)

11 was synthesized from 2-methoxy-1,3-dimethyl-5-(prop-1-yn-1-yl)benzene (0.2 mmol, 34.8 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (40.1 mg, 86% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 6.94 (s, 2H), 6.30 (s, 1H), 3.72 (s, 3H), 2.94 (s, 2H), 2.28 (s, 6H), 2.25 (s, 6H), 1.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 155.6, 133.6, 130.5, 129.5, 127.6, 69.8, 59.9, 45.4, 16.9, 16.3.

HRMS (ESI) calculated for $C_{15}H_{23}NOK (M+K)^+ 272.1411$, found 272.1414.

(E)-N,N,2-Trimethyl-3-(naphthalen-2-yl)prop-2-en-1-amine (12)

12 was synthesized from 2-(prop-1-yn-1-yl)naphthalene (0.2 mmol, 33.2 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (38.7 mg, 86% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1 = 2/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 – 7.77 (m, 3H), 7.72 (s, 1H), 7.48 – 7.41 (m, 3H), 6.56 (s, 1H), 2.99 (s, 2H), 2.27 (s, 6H), 1.99 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 137.2, 135.6, 133.5, 132.1, 128.0, 127.7, 127.6, 127.6, 127.6, 127.6, 126.1, 125.7, 69.8, 45.6, 17.0.

HRMS (ESI) calculated for $C_{16}H_{20}N (M+H)^+ 226.1590$, found 226.1591.

(E)-3-(Benzo[b]thiophen-5-yl)-N,N,2-trimethylprop-2-en-1-amine (13)

13 was synthesized from 5-(prop-1-yn-1-yl)benzo[*b*]thiophene (0.2 mmol, 34.4 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (35.6 mg, 77% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.2 Hz, 1H), 7.72 (s, 1H), 7.42 (d, *J* = 5.6 Hz, 1H), 7.31 (d, *J* = 5.2 Hz, 1H), 7.28 – 7.26 (m, 1H), 6.53 (s, 1H), 2.98 (s, 2H), 2.26 (s, 6H), 1.95 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 139.8, 137.8, 136.5, 134.4, 127.6, 126.7, 125.8, 124.0, 123.7, 122.1, 69.7, 45.6, 17.0.

HRMS (ESI) calculated for C₁₄H₁₈NS (M+H)⁺ 232.1154, found 232.1149.

(E)-N,N,2-Trimethyl-3-(thiophen-3-yl)prop-2-en-1-amine (14)

14 was synthesized from 3-(prop-1-yn-1-yl)thiophene (0.2 mmol, 24.4 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (25.4 mg, 70% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 5.6, 2.4 Hz, 1H), 7.29 (d, *J* = 2.8 Hz, 1H), 7.13 (d, *J* = 5.2 Hz, 1H), 6.63 (s, 1H), 3.66 (s, 2H), 2.83 (s, 6H), 2.08 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 137.0, 129.9, 128.5, 126.4, 125.9, 125.2, 67.9, 43.4, 17.2.

HRMS (ESI) calculated for $C_{10}H_{16}NS (M+H)^+$ 182.0998, found 182.0996.

(E)-N,N,2-Trimethyl-3-(quinolin-6-yl)prop-2-en-1-amine (15)

15 was synthesized from 6-(prop-1-yn-1-yl)quinoline (0.2 mmol, 33.4 mg) and aminal
2 (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (34.0 mg, 75% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹H NMR (400 MHz, CDCl₃) δ 8.87 (dd, J = 4.4, 2.0 Hz, 1H), 8.12 (d, J = 7.6 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.69 (s, 1H), 7.65 (dd, J = 8.8, 2.0 Hz, 1H), 7.38 (dd, J = 8.2, 4.4 Hz, 1H), 6.58 (s, 1H), 3.02 (s, 2H), 2.29 (s, 6H), 2.00 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 147.2, 138.1, 136.4, 136.0, 131.2, 129.1, 128.3, 127.2, 126.9, 121.4, 69.5, 45.5, 17.0.

HRMS (ESI) calculated for $C_{15}H_{19}N_2$ (M+H)⁺ 227.1543, found 227.1551.

(*E*)-3-(6-Methoxypyridin-3-yl)-*N*,*N*,2-trimethylprop-2-en-1-amine (16)

16 was synthesized from 2-methoxy-5-(prop-1-yn-1-yl)pyridine (0.2 mmol, 29.4 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (32.2 mg, 78% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.51 (dd, J = 8.4, 2.4 Hz, 1H), 6.72 (d, J = 8.4 Hz 1H), 6.29 (s, 1H), 3.94 (s, 3H), 2.95 (s, 2H), 2.25 (s, 6H), 1.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 162.6, 147.0, 139.1, 136.9, 127.0, 123.7, 110.3, 69.5, 53.6, 45.5, 16.9.

HRMS (ESI) calculated for $C_{12}H_{19}N_2O (M+H)^+ 207.1492$, found 207.1500.

(E)-2-Benzylidene-N,N-dimethylhexan-1-amine (17)

17 was synthesized from hex-1-yn-1-ylbenzene (0.2 mmol, 31.6 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (36.9 mg, 85% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.25 – 7.18 (m, 3H), 6.41 (s, 1H), 2.93 (s, 2H), 2.31 – 2.26 (m, 2H), 2.24 (s, 6H), 1.51 – 1.41 (m, 2H), 1.37 – 1.26 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 141.2, 138.2, 128.8, 128.2, 127.5, 126.3, 66.8, 45.7, 30.6, 29.4, 23.0, 14.1.

HRMS (ESI) calculated for $C_{15}H_{24}N$ (M+H)⁺ 218.1903, found 218.1894.

(E)-2-Cyclopropyl-N,N-dimethyl-3-phenylprop-2-en-1-amine (18)

18 was synthesized from (cyclopropylethynyl)benzene (0.2 mmol, 28.4 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (32.1 mg, 80% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 2H), 7.32 (dd, *J* = 7.6, 7.6 Hz, 2H), 7.20 (dd, *J* = 7.6, 7.2 Hz, 1H), 6.46 (s, 1H), 2.77 (s, 2H), 2.23 (s, 6H), 1.75 – 1.82 (m, 1H), 0.74 – 0.68 (m, 2H), 0.62 – 0.66 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 139.0, 138.0, 129.3, 128.0, 126.3, 65.2, 45.6, 13.4, 6.8.

HRMS (ESI) calculated for $C_{14}H_{20}N (M+H)^+ 202.1590$, found 202.1595.

(E)-3-((Dimethylamino)methyl)-4-phenylbut-3-en-1-ol (19)

19 was synthesized from trimethyl((4-phenylbut-3-yn-1-yl)oxy)silane (0.2 mmol, 43.6 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. Automatic deprotection of TMS group occurred during purification by flash column chromatography. The title compound was isolated as a colorless oil (38.0 mg, 92% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.24 (dd, *J* = 8.0, 7.6 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 2H), 6.46 (s, 1H), 3.72 (t, *J* = 4.8 Hz, 2H), 2.99 (s, 2H), 2.55 (t, *J* = 4.8 Hz, 2H), 2.32 (s, 6H).

¹³C NMR (100 MHz, CDCl₃)δ 138.5, 137.2, 132.2, 129.0, 128.4, 127.0, 68.9, 62.3, 44.6, 35.9.

HRMS (ESI) calculated for $C_{13}H_{20}NO (M+H)^+$ 206.1539, found 206.1533.

(E)-N,N-Dimethyl-2,3-diphenylprop-2-en-1-amine (20)

20 was synthesized from 1,2-diphenylethyne (0.2 mmol, 35.6 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (47.5 mg, 89% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.25 (m, 3H), 7.23 – 7.21 (m, 2H), 7.11 – 7.08 (m, 3H), 6.98 – 6.96 (m, 2H), 6.60 (s, 1H), 3.27 (s, 2H), 2.28 (d, *J* = 2.4 Hz, 6H). **HRMS** (ESI) calculated for C₁₇H₁₉N (M+H)⁺ 238.1590, found 238.1598. Spectral

data are identical to those in the reported literature.¹⁰

(E)-2,3-Bis(4-methoxyphenyl)-N,N-dimethylprop-2-en-1-amine (21)

21 was synthesized from 1,2-bis(4-methoxyphenyl)ethyne (0.2 mmol, 47.6 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (47.5 mg, 80% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.15 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 6.49 (s, 1H), 3.80 (s, 3H), 3.73 (s, 3H), 3.24 (s, 2H), 2.27 (s, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 158.7, 158.3, 137.2, 132.8, 130.5, 129.9, 129.9, 128.4, 114.2, 113.5, 68.9, 55.3, 55.3, 45.5.

HRMS (ESI) calculated for $C_{19}H_{24}NO_2$ (M+H)⁺ 298.1802, found 298.1811.

(*E*)-1-(2,3-Bis(4-methoxyphenyl)allyl)piperidine (22)

22 was synthesized from 1,2-bis(4-methoxyphenyl)ethyne (0.2 mmol, 47.6 mg) and aminal **S34** (0.5 mmol, 91.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (58.0 mg, 86% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.8 Hz, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 8.8 Hz, 2H), 6.48 (s, 1H), 3.81 (s, 3H), 3.73 (s, 3H), 3.20 (s, 2H), 2.44 (brs, 4H), 1.59 – 1.54 (m, 4H), 1.47 – 1.40 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 157.7, 157.3, 132.4, 129.5, 129.1, 129.0, 113.1, 112.5, 66.9, 54.3, 54.3, 53.6, 25.0, 23.5.

HRMS (ESI) calculated for $C_{22}H_{28}NO_2$ (M+H)⁺ 338.2115, found 338.2120.

(*E*)-1-(2,4-Dimethylpent-2-en-1-yl)piperidine (23)

23 was synthesized from 4-methylpent-2-yne (0.2 mmol, 16.4 mg) and aminal **S34** (0.5 mmol, 91.0 mg) according to the general procedure, the regioselectivity is 7:1, which was detected by crude ¹H NMR. The title compound was isolated as a colorless oil (18.5 mg, 51% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** of **23** (400 MHz, CDCl₃) 5.46 (d, *J* = 9.6 Hz, 1H), 3.54 (s, 2H), 2.91 – 2.54 (m, 5H), 2.00 – 1.90 (m, 6H), 1.84 (d, *J* = 1.6 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 6H).

¹**H NMR** of **23**' (400 MHz, CDCl₃) δ 5.83 (q, *J* = 7.2 Hz, 1H), 1.76 (d, *J* = 7.2 Hz, 3H), 1.07 (d, *J* = 7.2 Hz, 6H).

¹³C NMR of 23 (100 MHz, CDCl₃) δ 146.1, 122.0, 66.0, 53.4, 27.6, 22.6, 22.4, 22.0, 20.5, 15.3.

HRMS (ESI) calculated for $C_{12}H_{24}N$ (M+H)⁺ 182.1903, found 182.1893.

(E)-1-(2-Methyl-3-(tetrahydro-2H-pyran-4-yl)allyl)piperidine (24)

24 was synthesized from 4-(prop-1-yn-1-yl)tetrahydro-2H-pyran (0.2 mmol, 24.8 mg) and aminal S34 (0.5 mmol, 91.0 mg) according to the general procedure, the regioselectivity is 7:1, which was detected by crude ¹H NMR. The title compound

was isolated as a colorless oil (28.5 mg, 64% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H** NMR of 24 (400 MHz, CDCl₃) δ 5.21 (d, J = 8.8 Hz, 1H), 3.97 – 3.92(m, 2H), 3.44 (td, J = 11.6, 2.4 Hz, 2H), 2.98 (s, 2H), 2.53 – 2.43 (m, 5H), 1.73 (d, J = 1.2 Hz, 3H), 1.70 – 1.64 (m, 4H), 1.55 – 1.38 (m, 6H).

¹**H NMR of 24'** (400 MHz, CDCl₃) δ 4.40 (q, J = 7.2 Hz, 1H).

¹³C NMR of 24 (100 MHz, CDCl₃) δ 133.9, 129.2, 66.8, 66.6, 53.4, 33.3, 31.7, 24.2, 23.0, 14.5.

HRMS (ESI) calculated for $C_{14}H_{26}NO (M+H)^+ 224.2009$, found 224.2015.

tert-Butyl

(E)-3-(2-methyl-3-(piperidin-1-yl)prop-1-en-1-yl)azetidine-1-carboxylate (25)

25 was synthesized from *tert*-butyl 3-(prop-1-yn-1-yl)azetidine-1-carboxylate (0.2 mmol, 39.0 mg) and aminal **S34** (0.5 mmol, 91.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (31.8 mg, 54% yield). **R**_f (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 5.85 (d, *J* = 8.4 Hz, 1H), 4.15 (dd, *J* = 8.4, 8.4 Hz, 2H), 3.68 (dd, *J* = 5.6, 6.0 Hz, 2H), 3.47 – 3.41 (m, 1H), 3.40 (s, 2H), 2.90 (brs, 4H), 1.91 – 1.85 (m, 4H), 1.76 (d, *J* = 0.8 Hz, 3H), 1.63 – 1.59 (m, 2H), 1.44 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ 156.5, 135.5, 128.6, 79.4, 67.7, 54.7, 28.6, 27.2, 26.1, 24.7, 15.7.

HRMS (ESI) calculated for $C_{17}H_{31}N_2O_2$ (M+H)⁺ 295.2380, found 295.2388.

(2Z,4E)-N,N,2,3,4-Pentamethylhexa-2,4-dien-1-amine (26)

26 was synthesized from 2-butyne (0.2 mmol, 10.8 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (10.9 mg, 65% yield). The stereochemistry of Z,E-**26** was confirmed by NOE analysis.

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.4.

¹**H** NMR (400 MHz, CDCl₃) δ 5.13 (q, J = 6.4 Hz, 1H), 3.72 (s, 2H), 2.79 (s, 6H), 1.84 (s, 3H), 1.80 (s, 3H), 1.67 (s, 3H), 1.66 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.5, 136.7, 123.3, 117.7, 62.0, 43.3, 19.0, 15.9, 15.7, 13.6.

HRMS (ESI) calculated for $C_{11}H_{21}NNa (M+Na)^+$ 190.1566, found 190.1569.

(2Z,4E)-2,3,4-Triethyl-N,N-dimethylhepta-2,4-dien-1-amine (27)

27 was synthesized from 3-hexyne (0.2 mmol, 16.4 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (12.0 mg, 54% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.4.

¹**H** NMR (400 MHz, CDCl₃) δ 4.94 (t, J = 7.2 Hz, 1H), 3.31 (s, 2H), 2.44 (s, 6H), 2.21 (q, J = 7.6 Hz, 2H), 2.15 – 2.06 (m, 6H), 1.04 (t, J = 7.6 Hz, 3H), 1.00 (t, J = 7.6 Hz, 3H), 0.93 (t, J = 7.6 Hz, 3H), 0.89 (d, J = 7.6 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 151.1, 139.1, 131.6, 125.5, 59.4, 43.6, 24.1, 23.1, 21.1, 21.1, 14.6, 13.3, 13.0, 12.9.

HRMS (ESI) calculated for $C_{15}H_{29}NNa (M+Na)^+ 246.2192$, found 246.2195.

(2Z,4E)-2,3,4-Tributyl-N,N-dimethylnona-2,4-dien-1-amine (28)

28 was synthesized from 5-decyne (0.2 mmol, 27.6 mg) and aminal **2** (0.5 mmol, 51.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (19.1 mg, 57% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.4.

¹**H** NMR (400 MHz, CDCl₃) δ 4.91 (t, J = 7.2 Hz, 1H), 2.92 (s, 2H), 2.17 – 2.11(m, 2H), 2.14 (s, 6H), 2.08 – 2.01(m, 6H), 1.39 – 1.22 (m, 16H), 0.92 (t, J = 7.2 Hz, 6H), 0.89 (t, J = 7.2 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 141.6, 139.4, 132.3, 128.5, 60.6, 45.6, 32.3, 31.2, 30.9, 30.8, 30.5, 30.2, 28.6, 27.6, 23.4, 23.1, 23.0, 22.7, 14.4, 14.2, 14.2.

HRMS (ESI) calculated for C₂₃H₄₅NNa (M+Na)⁺ 358.3444, found 358.3446.

(E)-N,N-Diethyl-2-methyl-3-phenylprop-2-en-1-amine (29)

29 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S29** (0.5 mmol, 79.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (33.0 mg, 81% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 (dd, J = 7.6 Hz, 2H), 7.28 (d, J = 6.8 Hz, 2H), 7.24 – 7.20 (m, 1H), 6.48 (s, 1H), 3.19 (s, 2H), 2.67 (q, J = 7.2 Hz, 4H), 1.95 (s, 3H), 1.11 (t, J = 7.2 Hz, 6H). Spectral data are identical to those in the reported literature.¹¹

(*E*)-*N*,2-Dimethyl-3-phenyl-*N*-propylprop-2-en-1-amine (30)

30 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S30** (0.5 mmol, 79.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (30.5 mg, 75% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.33 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.28 (d, *J* = 6.8 Hz, 2H), 7.23 – 7.19 (m, 1H), 6.44 (s, 1H), 3.07 (s, 2H), 2.39 (t, *J* = 7.2 Hz, 2H), 2.27 (s, 3H), 1.94 (s, 3H), 1.57 (tq, *J* = 7.6, 15.2 Hz, 2H), 0.92 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 138.3, 137.1, 129.0, 128.2, 127.2, 126.3, 67.7, 59.7, 42.5, 20.7, 16.9, 12.1.

HRMS (ESI) calculated for C₁₄H₂₁NNa (M+Na)⁺ 226.1566, found 226.1572.

(E)-N-Isopropyl-N,2-dimethyl-3-phenylprop-2-en-1-amine (31)

31 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S31** (0.5 mmol, 79.0 mg) according to the general procedure. The ratio of E/Z is 5:1, which was determined by crude ¹H NMR. The title compound was isolated as a colorless oil (35.0 mg, 86% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H** NMR of *E* (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 4H), 7.23 – 7.19 (m, 1H), 6.46 (s, 1H), 3.12 (s, 2H), 3.00 (sept, *J* = 6.4 Hz, 1H), 2.26 (s, 3H), 1.95 (s, 3H), 1.10 (d, *J* = 6.8 Hz, 6H).

¹**H NMR** of *Z* (400 MHz, CDCl₃) 6.41 (s, 1H).

¹³C NMR of *E* (100 MHz, CDCl₃) δ 138.4, 137.5, 129.0, 128.2, 126.8, 126.2, 62.7, 52.9, 36.9, 17.8, 16.7.

HRMS (ESI) calculated for C₁₄H₂₁NNa (M+Na)⁺ 226.1566, found 226.1574.

(E)-N-Benzyl-N,2-dimethyl-3-phenylprop-2-en-1-amine(32)

32 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S32** (0.5 mmol, 127.0 mg) according to the general procedure. The title compound was isolated

as a colorless oil (36.1 mg, 72% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.4.

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.29 (m, 7H), 7.27 – 7.24 (m, 2H), 7.23 – 7.28 (m, 1H), 6.47 (s, 1H), 3.51 (s, 2H), 3.04 (s, 2H), 2.19 (s, 3H), 1.94 (d, *J* = 1.2 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ 139.7, 138.2, 137.1, 129.0, 128.3, 128.2, 127.4, 127.0, 126.3, 67.3, 62.0, 42.4, 16.8.

HRMS (ESI) calculated for $C_{18}H_{22}N$ (M+H)⁺ 252.1747, found 252.1742.

(*E*)-*N*-(4-Methoxybenzyl)-*N*,2-dimethyl-3-phenylprop-2-en-1-amine (33)

33 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S33** (0.5 mmol, 170.5 mg) according to the general procedure. The title compound was isolated as a colorless oil (40.0 mg, 71% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.4.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.24 (m, 6H), 7.21 – 7.17 (m, 1H), 6.86 (d, *J* = 8.8 Hz, 2H), 6.45 (s, 1H), 3.79 (s, 3H), 3.45 (s, 2H), 3.01 (s, 2H), 2.17 (s, 3H), 1.93 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 158.7, 138.2, 137.1, 131.7, 130.2, 129.0, 128.2, 127.4, 126.3, 113.7, 67.1, 61.4, 55.4, 42.3, 16.8.

HRMS (ESI) calculated for $C_{19}H_{24}NO (M+H)^+ 282.1582$, found 282.1588.

(*E*)-1-(2-Methyl-3-phenylallyl)azetidine (34)

34 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S34** (0.5 mmol, 63.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (29.2 mg, 78% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.27 – 7.19 (m, 3H), 6.44 (s, 1H), 3.42 (td, *J* = 7.2, 1.6 Hz, 4H), 3.23 (s, 2H), 2.21 (p, *J* = 7.2 Hz, 2H), 1.88 (d, *J* = 1.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 137.7, 133.9, 129.0, 128.2, 128.0, 126.6, 68.0, 55.2, 17.5, 17.0.

HRMS (ESI) calculated for $C_{13}H_{18}N (M+H)^+$ 188.1434, found 188.1439.

(*E*)-1-(2-Methyl-3-phenylallyl)pyrrolidine (35)

35 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S35** (0.5 mmol, 77.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (34.2 mg, 85% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.27 (dd, *J* = 8.8, 1.6 Hz, 2H), 7.24 – 7.20 (m, 1H), 6.49 (s, 1H), 3.28 (s, 2H), 2.73 – 2.70 (m, 4H), 1.97 (s, 3H), 1.91 – 1.87 (m, 4H). Spectral data are identical to those in the reported literature.¹²

(E)-1-(2-Methyl-3-phenylallyl)piperidine (36)

36 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S36** (0.5 mmol, 91.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (38.7 mg, 90% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 7.21 – 7.17 (m, 1H), 6.41 (s, 1H), 2.96 (s, 2H), 2.37 – 2.31 (m, 4H), 1.90 (s, 3H), 1.61 – 1.56 (m, 4H), 1.47 – 1.41(m, 2H). Spectral data are identical to those in the reported literature.¹¹

(E)-1-(2-Methyl-3-phenylallyl)-4-phenylpiperidine (37)

37 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S37** (0.5 mmol, 167.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (39.6 mg, 68% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.28 (m, 6H), 7.25 – 7.23 (m, 2H), 7.22 – 7.17 (m, 2H), 6.45 (s, 1H), 3.05 – 3.01 (m, 4H), 2.55 – 2.47 (m, 1H), 2.04 (td, *J* = 10.8, 4.0 Hz, 2H), 1.94 (d, *J* = 1.2 Hz, 3H), 1.84 – 1.78 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 146.8, 138.2, 136.5, 129.0, 128.5, 128.2, 127.3, 127.1, 126.3, 126.2, 68.5, 54.6, 43.0, 33.7, 17.1.

HRMS (ESI) calculated for $C_{21}H_{26}N (M+H)^+ 292.2060$, found 292.2062.

(E)-6-(2-Methyl-3-phenylallyl)-6-azaspiro[2.5]octane (38)

38 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S38** (0.5 mmol, 117.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (37.1 mg, 77% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 4H), 7.21 – 7.17 (m, 1H), 6.43 (s, 1H), 3.03 (s, 2H), 2.45 – 2.42 (m, 4H), 1.92 (d, *J* = 0.8 Hz, 3H), 1.42 – 1.33 (m, 4H), 0.26 (s, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 138.3, 136.7, 129.0, 128.2, 127.2, 126.3, 68.4, 53.5, 35.4, 17.8, 17.1, 11.6.

HRMS (ESI) calculated for $C_{17}H_{24}N$ (M+H)⁺ 242.1903, found 242.1897.

(*S*,*E*)-2-(Methoxymethyl)-1-(2-methyl-3-phenylallyl)pyrrolidine (39)

39 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S39** (0.5 mmol, 121.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (24.5 mg, 50% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.25 (m, 4H), 7.21 – 7.17 (m, 1H), 6.43 (s, 1H), 3.55 – 3.51 (m, 1H), 3.44 (dd, *J* = 9.2, 4.8 Hz, 1H), 3.36 (s, 3H), 3.28 (dd, *J* = 9.2, 6.8 Hz, 1H), 3.07 – 3.02 (m, 1H), 2.95 – 2.91 (m, 1H), 2.68 – 2.61 (m, 1H), 2.24 – 2.17 (m, 1H), 1.92 (d, *J* = 1.2 Hz, 3H), 1.79 – 1.62 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 138.4, 137.9, 129.0, 128.2, 126.3, 126.2, 76.7, 65.4, 63.5, 59.3, 54.9, 28.9, 23.2, 17.1.

HRMS (ESI) calculated for $C_{16}H_{24}NO (M+H)^+ 246.1852$, found 246.1855.

(E)-6-(2-Methyl-3-phenylallyl)-2-oxa-6-azaspiro[3.3]heptane (40)

40 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S40** (0.5 mmol, 105.0 mg) according to the general procedure. The ratio of E/Z is 5:1 was determined by crude ¹H NMR with 1,1,2,2-tetrachloroethane as an internal standard. The title compound was isolated as a colorless oil (20.2 mg, 44% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.3.

¹**H NMR** of *E* (400 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.25 – 7.13 (m, 3H), 6.36 (s, 1H), 4.76 (s, 4H), 3.38 (s, 4H), 3.04 (s, 2H), 1.83 (d, *J* = 1.6 Hz, 3H).

¹**H NMR** of *Z* (400 MHz, CDCl₃) 6.41 (s, 1H), 4.68 (s, 4H), 3.27 (s, 4H), 3.16 (s, 2H), 1.89 (d, *J* = 1.6 Hz, 3H).

¹³C NMR of *E* (100 MHz, CDCl₃) δ 138.0, 135.3, 129.0, 128.2, 126.7, 126.4, 81.6, 68.5, 64.0, 39.3, 17.0.

¹³**C NMR** of *Z* (100 MHz, CDCl₃) 137.9, 136.1, 129.1, 128.5, 128.1, 81.5, 64.1, 60.1, 39.2, 23.0.

HRMS (ESI) calculated for $C_{15}H_{20}NO (M+H)^+ 230.1539$, found 230.1534.

(E)-1-Methyl-4-(2-methyl-3-phenylallyl)piperazine (41)

41 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S41** (0.5 mmol, 106.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (23.0 mg, 50% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.27 (d, 2H), 7.22 – 7.18 (m, 1H), 6.43 (s, 1H), 3.01 (s, 2H), 2.46 (brs, 8H), 2.30 (s, 3H), 1.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 138.1, 136.0, 129.0, 128.2, 127.6, 126.5, 68.0, 55.4, 53.3, 46.2, 17.0.

HRMS (ESI) calculated for $C_{15}H_{23}N_2$ (M+H)⁺ 231.1856, found 231.1861.

(*E*)-Cyclopropyl(4-(2-methyl-3-phenylallyl)piperazin-1-yl)methanone (42)

42 was synthesized from 1-phenylpropyne (0.2 mmol, 23.2 mg) and aminal **S42** (0.5 mmol, 160.0 mg) according to the general procedure. The title compound was isolated as a colorless oil (36.9 mg, 65% yield).

 $\mathbf{R}_{\mathbf{f}}$ (CH₂Cl₂ / MeOH = 20/1): 0.2.

¹**H** NMR (400 MHz, CDCl₃) δ 7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 2H), 7.23 – 7.19 (m, 1H), 6.43 (s, 1H), 3.72 – 3.64 (m, 4H), 3.03 (d, J = 0.8 Hz, 2H), 2.47 – 2.42 (m,

4H), 1.92 (d, *J* = 1.6 Hz, 3H), 1.77 – 1.70 (m, 1H), 1.00 – 0.97 (m, 2H), 0.78 – 0.73 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.1, 137.9, 135.5, 129.0, 128.3, 128.0, 126.5, 67.9, 53.5, 53.0, 45.7, 42.4, 21.5, 16.9, 11.1, 7.5.

HRMS (ESI) calculated for $C_{18}H_{25}N_2O (M+H)^+ 285.1961$, found 285.1958.

VI. Synthetic Applications

1. Gram scale reaction

$$(CH_2O)_n + \bigcup_{i=1}^{H} \underbrace{\begin{array}{c} 5 \text{ Å MS} \\ 55 \text{ °C}, \text{ N}_2, 12 \text{ h} \end{array}}_{\text{THF, blue LED, N}_2, 36 \text{ h}}^{1-\text{phenyl-1-propyne (5 mmol)}} \underbrace{\begin{array}{c} 1 \text{-phenyl-1-propyne (5 mmol)} \\ 4CzIPN (1 mol\%) \\ Col_2 (5 mol\%), L1 (10 mol\%) \\ \text{HE (1 eq.), Zn(OTf)_2 (1 eq.)} \\ \text{THF, blue LED, N}_2, 36 \text{ h} \end{array}}$$

To an oven-dried 100 mL Schlenk tube containing a stirrer bar was added paraformaldehyde (16 mmol, 480.0 mg), piperidine (32 mmol, 2.7 g), and 5 Å MS (2.3 g) in neat under nitrogen atmosphere. The Schlenk tube was stirred at 55 °C for 12 h. The Schlenk tube was cooled to room temperature and taken into the glovebox. Then, to the Schlenk tube was added 4CzIPN (0.05 mmol, 39.4 mg), CoI₂ (0.25 mmol, 78.2 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.5 mmol, 173.0 mg), Hantzsch ester (HE, 5 mmol, 1.3 g), Zn(OTf)₂ (5 mol, 1.8 g), 1-phenyl-1-propyne (5 mmol, 580.8 mg) and dry THF(25 mL). The Schlenk tube was taken out from glovebox and stirred at room temperature under irradiation with a 5 W blue LED for 36 h. The mixture was concentrated in vacuo and purified by flash column chromatography (CH₂Cl₂ / MeOH = 40:1 – 20:1) to give the desired product **36** as a colorless oil (667 mg, 62% yield).

2. Selective oxidation of the double bond in allyl amine 3

To an oven-dried 10 mL Schlenk tube containing a stirrer bar was added NaIO₄ (0.75

mmol, 160.4 mg), CeCl₃ (0.05 mmol, 12.3 mg) in water (1 mL) and heated until a bright yellow suspension was formed. After cooling to 0 °C, EtOAc (2.5 mL) and MeCN (3 mL) were added and the mixture was stirred for 5 min, RuCl₃·H₂O (0.1 mmol, 22.5 mg) was added slowly and the mixture was stirred for 5 min. A solution of the allyl amine **3** (0.5 mmol, 87.5 mg) in EtOAc (EA, 0.5 mL) was added and the mixture was stirred until all starting material was consumed. The mixture was washed with saturated Na₂SO₃ solution (10 mL), EtOAc (10 mL), and the organic layer was then collected, dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure and purified by flash column chromatography (CH₂Cl₂ / MeOH = 20:1) to give **43** (47.6 mg, 46%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.13 (m, 2H), 7.55 – 7.51 (m, 1H), 7.46 – 7.42 (m, 2H), 3.29 (d, *J* = 12.8 Hz, 1H), 2.24 (s, 6H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 206.0, 135.8, 132.6, 130.1, 128.6, 128.2, 125.0, 78.2, 67.0, 46.8, 27.1. HRMS (ESI) calculated for C₁₄H₂₁N₂ (M+H)⁺ 230.1151, found 230.1160.

3. Selective deprotection of PMB group in allyl amine 33

To a mixture of **33** (0.4 mmol, 112.4 mg) and diisopropylethylamine (0.8 mmol, 103.4 mg) in dichloromethane (4 mL) was added trifluoroacetic anhydride (0.8 mml, 168.0 mg) dropwise over 5 min at -20 °C. After being stirred at the same temperature for 30 min, the reaction mixture was concentrated under the reduced pressure. The crude product was filtered through short-pad silica gel, eluted with ethyl acetate / hexanes = 1 / 15. The filtration was concentrated under reduced pressure. To a solution of the product in THF (3 mL), H₂O (1 mL) and MeOH (1 mL) was added NaOH (0.8 mmol, 32 mg). After being stirred at room temperature for 1 h, a saturated aqueous solution of sodium bicarbonate (3 mL) was added. The layers were separated and the aqueous layer was extracted with dichloromethane (15 mL). The organic mixture was then collected, dried over anhydrous sodium sulfate, filtered,

concentrated under reduced pressure and purified by flash column chromatography (CH₂Cl₂ / MeOH = 20:1) to give **44** (54.1 mg, 84% for 2 steps) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.31 (m, 2H), 7.28 – 7.26 (m, 2H), 7.22 – 7.18 (m, 1H), 6.44 (s, 1H), 3.29 (s, 2H), 2.46 (s, 3H), 1.90 (d, *J* = 1.2 Hz, 3H), 1.62 (s, 1H). Spectral data are identical to those in the reported literature.¹¹

4. Synthesis of the intermediate of drug candidate

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (L1, 0.02 mmol, 6.9 mg), Hantzsch ester (HE, 0.2 mmol, 50.6 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), 1 (0.2 mmol, 23.2 mg), S42 (0.5 mmol, 160.0 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. The tube was stirred at room temperature under irradiation with a 5 W blue LED at room temperature for 16 h. Under nitrogen atmosphere, HCl (12 M, 1 mL) was added in the tube and the reaction was stirred at 100 °C for 12 h. The tube was cooled to room temperature and extracted with dichloromethane (10 mL), saturated sodium hydroxide solution (10 mL, PH >10), dried over anhydrous sodium sulfate. After filtration and concentration under reduced pressure, and purified by flash column chromatography (CH_2Cl_2 / MeOH = 15:1) to give the desired product 45 (19.4 mg, 45%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.28 – 7.26 (m, 2H), 7.22 – 7.17 (m, 1H), 6.42 (s, 1H), 2.99 (d, J = 1.2 Hz, 2H), 2.90 (t, J = 4.8 Hz, 4H), 2.40 (brs, 4H), 1.90 (d, J = 1.6 Hz, 3H), 1.87 (brs, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.2, 135.9, 129.0, 128.2, 127.6, 126.3, 68.7, 54.8, 46.3, 16.9. **HRMS** (ESI) calculated for $C_{14}H_{21}N_2$ (M+H)⁺ 217.1699, found 217.1704.
VII. Control Experiments and Mechanistic Studies

1. Deuterium labeling experiment with d_2 -HE

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (d_2 -HE, >95% D, 0.2 mmol, 51.0 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), alkyne **S21** (0.2 mmol, 47.6 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, aminal **2** (0.5 mmol, 51.0 mg) was added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. Then the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, CH₂Cl₂/ MeOH) to afford *d*-**21** (45.7 mg, 77%). ¹**H NMR** of *d*-**21** showed that a trace amount of deuterium was incorporated into the *d*-**21** olefin site.

Figure S2. The ¹H NMR of d-21 obtained in the control reaction with d_2 -HE

2. Deuterium labeling experiment with d_3 -HE

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (d_3 -HE, >95% D, 0.2 mmol, 51.0 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), alkyne **S21** (0.2 mmol, 47.6 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, aminal **2** (0.5 mmol, 51.0 mg) was added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED at room temperature for 16 h. Then the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, CH₂Cl₂ / MeOH) to afford *d*-**21** (48.7 mg, 82%). ¹H NMR of *d*-**21** showed that a small amount of deuterium was incorporated into the *d*-**21** olefin site.

Figure S3. The ¹H NMR of d-21 obtained in the control reaction with d_3 -HE

3. Deuterium labeling experiment with d_2 -S36

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (HE, 0.2 mmol, 51.0 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), alkyne **S21** (0.2 mmol, 47.6 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, aminal d_2 -**S36** (>99% D, 0.5 mmol, 92.0 mg) was added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. Then the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, CH₂Cl₂ / MeOH) to afford *d*-**22** (57.6 mg, 85%). ¹H NMR of *d*-**22** showed that a small amount of deuterium was incorporated into the *d*-**22** olefin site.

Figure S4. The ¹H NMR of *d*-**22** obtained in the control reaction with d_2 -**S36**

4. Deuterium labeling experiment with d_3 -HE and d_2 -S36

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (d_3 -HE, >95% D) (0.2 mmol, 51.0 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), alkyne **S21** (0.2 mmol, 47.6 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, aminal d_2 -**S36** (>99% D, 0.5 mmol, 92.0 mg) was sequentially added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. Then the reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, CH₂Cl₂ / MeOH) to afford *d*-**22** (55.6 mg, 82%). ¹H NMR of *d*-**22** showed that more deuterium was incorporated into the *d*-**22** olefin site compared to previous experiments.

Figure S5. The ¹H NMR of d-22 obtained in the control reaction with d_3 -HE and d_2 -S36

5. Control reactions with iminium ion 47

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (HE, 0.2 mmol, 50.6 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), **47** (0.2 mmol, 36.8 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, alkyne **1** (0.2 mmol, 23.2 mg) was sequentially added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. The reaction was detected **3** (10% yield) by crude ¹H NMR. Then, in the above reaction was added DIPEA (12 mol%, 3.1 mg or 1 eq., 25.9 mg). After the reaction, we detected **3** (22% yield or 26% yield) by crude ¹H NMR.

6. Crossover experiment with both 47 and S32

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (HE, 0.4 mmol, 101.2 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), **47** (0.25 mmol, 46.2 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, alkyne **1** (0.2 mmol, 23.2 mg), aminal **S32** (0.25 mmol, 63.5 mg) was sequentially added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. After the reaction, we detected **3** (20% yield) and **32** (44% yield) by crude ¹H NMR.

7. Radical inhibiting experiment

To an oven-dried 25 mL Schlenk tube containing a stirrer bar was added 4CzIPN (0.002 mmol, 1.6 mg), CoI₂ (0.01 mmol, 3.1 mg), tri(3,5-dimethylphenyl)phosphine (**L1**, 0.02 mmol, 6.9 mg), Hantzsch ester (HE, 0.2 mmol, 50.6 mg), Zn(OTf)₂ (0.2 mol, 72.7 mg), DMPO (0.6 mmol, 67.8 mg) and dry THF (1 mL). Then, the Schlenk tube was removed from glovebox. Under nitrogen atmosphere, alkyne **1** (0.2 mmol, 23.2 mg), aminal **S32** (0.5 mmol, 127.0 mg) was sequentially added into the tube. The tube was stirred at room temperature under irradiation with a 5 W blue LED for 16 h. After the reaction, we didn't detected **32** by TLC or GCMS. However, we detected the α -amino radical addition product with DMPO by HRMS (Cacl. 247.1810; found: 247.1818).

Figure S6. The proposed radical adducts

8. Stern-Volmer Fluorescence Quenching Experiments

Fluorescence spectra were collected on Lengguang Tech.F97 Pro Fluorescence Spectrophotometer. All 4CzIPN solutions were excitedat 287 nm and the emission intensity was collected at 519 nm. In the glove box, photocatalyst 4CzIPN (7.9 mg, 0.01 mmol) was dissolved in THF (100 mL) to set the concentration is 1*10⁻⁴ M. 1-Phenyl-1-propyne **1** (0.1 mmol, 11.6 mg) was dissolved in THF (25 mL) to set the

concentration is $4*10^{-3}$ M. *N*,*N*,*N'*,*N'*-tetramethylmethanediamine (20.4 mg, 0.2 mmol) was dissolved in THF (100 mL) to set the concentration is $2*10^{-3}$ M. CoI₂ (15.6 mg, 0.05 mmol) and tri(3,5-dimethylphenyl)phosphine (**L1**, 34.7 mg, 0.1 mmol) was dissolved in THF (25 mL) to set the concentration is $2*10^{-3}$ M. In the glove box, a screw-top quartz cuvette was charged with 3 mL 4CzIPNsolution ($1*10^{-4}$ M). 0 µL,50.0 µL, 75.0 µL,100.0 µL, 200.0 µL, 250.0 µL of 1-phenyl-1-propyne; 0 µL,25.0 µL,50.0 µL, 100.0 µL, 200.0 µL, 250.0 µL of CoI₂/**L1** was added to cuvetteand uniformly stirred. The emission spectra of the samples werecollected, respectively. Follow this method and makechanges to the amount to obtain the Stern–Volmer relationship in turn.

According to previous report of our group, 4CzIPN was not quenched by 1-phenyl-1-propyne, but it was quenched by Hantzsch ester (HE) in THF.⁴

(a) 4CzIPN quenched by 1-phenyl-1-propyne (1) in THF.

(b) 4CzIPN quenched by $CoI_2/L1$ in THF.

The emission intensity of the catalyst 4CzIPN solution strongly affected by the gragual increase of the amount of $CoI_2/L1$

(c) 4CzIPN quenched by N, N, N', N'-tetramethylmethanediamine (2) in THF.

The emission intensity of the catalyst 4CzIPN solution slightly affected by the gradual increase of the amount of N, N, N', N'-tetramethylmethanediamine.

(d) Stern–Volmer luminescence quenching (SV) study.

The emission intensity of the catalyst 4CzIPN solution was mainly affected by the gradual increase of the amount of $CoI_2/L1$ and HE.

VIII. References

- 1 K. Cui, Y.-L. Li, G. Li, J.-B. Xia, J. Am. Chem. Soc. 2022, 144, 23001-23009.
- 2 F. A. Cruz, V. M. Dong, J. Am. Chem. Soc. 2017, 139, 1029-1032.
- 3 L. Pfeifer, V. Gouverneur, Org. Lett. 2018, 20, 1576-1579.
- 4 Y.-L. Li, S.-Q. Zhang, J. Chen, J.-B. Xia, J. Am. Chem. Soc. 2021, 143, 7306-7313.
- 5 I. Seiichi, I. Shinichiro, F. Terunori, JP Pat. 2021151993 A 2021.
- 6 H. H. Karsch, K. A. Schreiber, M. Herker, *Chem. Ber.* 1997, **130**, 1777-1785.
- 7 A. Padwa, W. Dent, J. Org. Chem. 1987, **52**, 235-244.
- 8 Y. Xie, J. Hu, Y. Wang, C. Xia, H. Huang, J. Am. Chem. Soc. 2012, **134**, 20613-20616.
- 9 D. Geik, A. Büker, F. Fornfeist, M. Schmidtmann, S. Doye, *Synlett* 2023, **35**, 957-962.
- 10 Y. Nakao, H. Idei, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2009, 131, 5070-5071.
- V. G. Landge, A. J. Grant, Y. Fu, A. M. Rabon, J. L. Payton, M. C. Young, J. Am. Chem. Soc. 2021, 143, 10352-10360.
- V. G. Landge, A. Mishra, W. Thotamune, A. L. Bonds, I. Alahakoon, A. Karunarathne, M. C. Young, *Chem Catalysis* 2023, 3, 100809.

IX. NMR Spectra

¹ H NMR spectrum (400 M	, CDCl ₃) of <i>N</i> , <i>N</i> ′-Dibenz	yl-N,N'-dimeth	ylmethanediamine (S32))
------------------------------------	---	----------------	------------------------	---

7.337 7.337 7.327 7.317 7.328 7.312 7.312 7.301 7.218 7.228 7.2219 7.2219 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212 7.212	3.623	3.026	2.222
	1	1	1

----0.000

¹³C NMR spectrum (100 M, CDCl₃) of *N*,*N*'-Dibenzyl-*N*,*N*'-dimethylmethanediamine (S32)

139.79	128.99 128.26 126.82	79.85 77.48 77.16 76.84 59.61	40.60
	$\leq l < l$		

¹H NMR spectrum (400 M, CDCl₃) of *N*,*N*'-Bis(4-methoxybenzyl)-*N*,*N*'-dimethylmethanediamine (S33)

v	• / /	v			,	
.238 .217 .852 .830		.790	.987	.199		000.0
~ ~ 9 9			2	\sim		Ŷ
\checkmark \checkmark						1

¹³C NMR spectrum (100 M, CDCl₃) of *N*,*N'*-Bis(4-methoxybenzyl)-*N*,*N'*-dimethylmethanediamine (S33)

¹H NMR spectrum (400 M, CDCl₃) of Di(azetidin-1-yl)methane (S34)

316	232 215 029 029 083 065 048
Ň	και το

---0.000

¹³C NMR spectrum (100 M, CDCl₃) of Di(azetidin-1-yl)methane (S34)

33.04	77.48 77.16 76.84	33.72	17.84
ω		L)	
	\leq		

¹³C NMR spectrum (100 M, CDCl₃) of Bis(4-phenylpiperidin-1-yl)methane (S37

œ	- 4 M				
ΩÕ	- O Q	N 8 9 4	e	\sim	2
	6. 7	0 4 - 8	0.	ς.	ف
4	0 0 0	0 1 1 10	ς Ω	ς,	c)
~		0 N N N	Ω	4	e
	\leq			1	1

¹³ C NMR spectrum (100 M	, CDCl3) of Di(6-azaspiro[2.5]octan-6-yl)methane (S38)
-------------------------------------	--

17 16 84 84	06	30	08	61
82. 77. 76.	51.	35.	18.	÷.
$\langle \cdot \rangle$				

-------125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 fl (ppm)

¹³C NMR spectrum (100 M, CDCl₃) of Bis((S)-2-(methoxymethyl)pyrrolidin-1-yl)methane (S39)

	-		
. 16 . 79 . 79 . 24	04 14 40	.86 50	
77 76 76 76	61 54	23, 28, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23	
	$\langle \rangle$		

40 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 f1 (ppm)

¹³C NMR spectrum (100 M, CDCl₃) of Di(2-oxa-6-azaspiro[3.3]heptan-6-yl)methane (S40)

78 48 84 84	45	48
81. 81. 77. 77. 76.	62.	39.

			1
ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	, have a second the second	y When i approxisized for her interconcentration in the service	

135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

¹H NMR spectrum (400 M, CDCl₃) of (Methylenebis(piperazine-4,1-diyl))bis(cyclopropylmethanone) (S42)

172.04	80.72 77.48 77.16	51.87 51.26 45.60 42.23	11.06 7.44
		5212	1 1

¹H NMR spectrum (400 M, CDCl₃) of (E)-*N*,*N*,2-Trimethyl-3-phenylprop-2-en-1-amine (3)

		•				
7 N Q Q - 7 - 7	0		0	9	6	9
007 - 00	ß		~	LO LO	ß	~
	ñ		m	õ	õ	0
	· · ·		w.	<u> </u>		<u> </u>
N N N 0 0	0		e	N	\sim	~
	-					
יו יור			1			1

000.0 —

63

¹³ C NMR spectrum (100 M,	CDCl ₃) of	(E)-3-(4-Meth	noxyphenyl)- <i>N,N</i> ,2	-trimethylpr	ор-2-е	n-1-amine (4)	
	- 158.17	 134.52 130.59 130.16 127.49 	- 113.66	77.48 77.16 76.84 76.97	- 55.39	- 45.39	- 16.91

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-3-(4-Fluorophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (5)

7.262 7.256 7.255 7.236 7.228 7.228 7.016 7.015 7.015 6.984 6.988 6.988 6.382 6.382 6.382	2.929

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-3-(4-Fluorophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (5)

161.71 159.27	135.60 133.19 133.16 129.56 129.48 114.18 113.97	76.48 76.16 75.84 68.55	44.54	15.78
5.7	V H V	~ /		

¹⁹F NMR spectrum (376 M, CDCl₃) of (*E*)-3-(4-Fluorophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (5)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-3-(3-Chlorophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (6)

39.95 38.255 34.06 29.43 28.94 27.17 26.15 26.15	7.48 7.16 5.84 9.44	5.57	5.88 0.88
	222	44	4

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-3-(3-Bromophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (7)

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-3-(3-Bromophenyl)-*N*,*N*,2-trimethylprop-2-en-1-amine (7)

140.26 138.33 131.86 129.73 129.23 122.33 122.33	77.48 77.16 76.84 69.42	45.57	16.85

0.000 `Ņ^{-Me} MeO₂C Me Me 1.02 3.00= 2.00 6.12= 3.08-0.94 1.01 020 6.0 5.5 5.0 4.5 f1 (ppm) 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

¹³ C NMR spectrum (100 M, CDCl ₃)	of Methyl (E)-3-(3-(dimet	hylamino)-2-methylprop	-1-en-1	-yl)benzoate (8)
- 167.33	138.38 138.01 133.40 130.13 130.10 128.28 126.50	77.48 77.16 76.84 76.947	52.26 45.58	- 16.81

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-*N*,*N*,2-Trimethyl-3-(o-tolyl)prop-2-en-1-amine (9)

	v	• • •	1		· ·	
260 1187 1187 1187 1187 1165 1165 1151 1151 1128 1128 1128 3333				.968	.259 .241	.740
ファット・ファット				\sim	2 2	~
					\searrow	

- 0.000

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*,*N*,2-Trimethyl-3-(o-tolyl)prop-2-en-1-amine (9)

36.43 35.34 34.89 34.89 36.23 28.29 28.14 25.82 25.82 25.82	7.48 7.16 6.84 6.99	3.44	9.98 6.34
$ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \end{array} \\ \end{array} $	マイン の	4	÷ ÷

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-3-(2,3-Dihydrobenzofuran-5-yl)-*N*,*N*,2-trimethylprop-2-en-1-amine (10)

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-3-(2,3-Dihydrobenzofuran-5-yl)-*N*,*N*,2-trimethylprop-2-en-1-amine (10)

¹ H NMR spectrum ((400 M (f (E)-N N 2	-Trimethyl.	.3.(nanhthaler	1-2-vDnroi	1-2-en-	1-amine	(12)
	TUU IVIA	⊥ \ <i>L⊿ ⁻⊥</i> \ ₀⊥ \ ₀⊿	/- IIIIICUII VI-	-J - (mapminant)	1-2-11/0101	<i>J-</i> <u>2</u> -CII	1-ammic '	

	- / (, , ,	v	1	 1		
812 806 795 778 774 772 772 471	458 453 448 441	434 430 427 424 410	405 555 555		991	273 994	000
ファット・			N N9		Ň		o'
					I		

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*,*N*,2-Trimethyl-3-(naphthalen-2-yl)prop-2-en-1-amine (12)

137.19 135.63 135.63 132.13 127.69 127.63 127.55 127.55 127.55 127.55 127.55 125.70	77.48 77.16 76.84 69.76	45.61	17.04

7.827 7.826 7.430 7.416 7.312 7.299 7.299 7.255 6.527 6.527 6.527	2.975	2.262	1.954	

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-3-(Benzo[b]thiophen-5-yl)-*N*,*N*,2-trimethylprop-2-en-1-amine (13)

139.82 137.81 136.47 136.75 127.57 126.72 125.78 122.10 122.10	77.48 77.16 76.84 69.73	45.57	16.96
SSIC SIG			

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-*N*,*N*,2-Trimethyl-3-(thiophen-3-yl)prop-2-en-1-amine (14)

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*,*N*,2-Trimethyl-3-(thiophen-3-yl)prop-2-en-1-amine (14)

137.01 129.86 128.47 126.43 125.20 125.20	77.48 77.16 76.84 67.88	43.41	17.20

|--|

	-			
- 10389 - 302507	- 0 0 0	020	2	၈ ၀
<pre>N > 0 0 0 0 0 4 0 0 0 4 4 0</pre>	n ∞ r o	~ ~ ~	<u>_</u>	8 0
∞ ∞ ∞ ∞ $ \infty$ ∞ ∞ ∞ ∞	m m m m	200	0	0 0
8.8.8.8.8.8.7.7.7.7.7.7.7.7.7.7.7.7.7.7	イファフ	- N 0	ς. Έ	N N
			1	I I
יור אר היו אר היו אר אין אין אין אין אין אר אין אר אין אר אין			1	1 1

- 0.000

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*,*N*,2-Trimethyl-3-(quinolin-6-yl)prop-2-en-1-amine (15)

Йe

	- 150.15 - 147.16 - 147.16 - 138.09 - 138.37 - 136.37 - 136.37 - 136.37 - 136.39 - 136.25 - 129.11 - 129.25 - 127.16 - 121.35	77.48 77.16 76.84 69.50	- 45.54	- 17.01
∖_N ^{Me} Me			I	I

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-2-Benzylidene-*N*,*N*-dimethylhexan-1-amine (17)

.335 .316 .316 .255 .255 .255 .255 .255 .255 .255 .25	.932 .314 .314 .304 .304 .277 .285 .285 .277 .285 .285 .285 .495 .487 .487 .465 .465 .465	
ファット・ファット	~~~~~~~~~~~~~~~~~	

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-2-Benzylidene-*N*,*N*-dimethylhexan-1-amine (17)

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-2-Cyclopropyl-*N*,*N*-dimethyl-3-phenylprop-2-en-1-amine (18)

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-3-((Dimethylamino)methyl)-4-phenylbut-3-en-1-ol (19)

353 353 316 262 262 199 458 458	730 718 705 990 558 533 318	
アアアアアア	ର୍ମ୍ମ୍ ମ୍ମ୍ମ୍ମ୍	

----0.000

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-3-((Dimethylamino)methyl)-4-phenylbut-3-en-1-ol (19)

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-*N*,*N*-Dimethyl-2,3-diphenylprop-2-en-1-amine (20)

000077700007700000707000	\sim	90	
- 0 0 0 0 × 9 0 4 0 0 + 7 0 0 0 0 0 × 9 0 0 0 0	9	ω ω	
0000000 7 700000000000000000	N	2 2	
	m	oi oi	
		\sim	

0 U U O V O V O O O O O O O O O O O O O O	0 0	6	œ	
0 0 4 0 - 4 0 0 4 0	00	ŝ	Ö	
N T T O O O O O O O O O O O O O O O O O	トト	\sim	N	
~ ~ ~	ર સંસ્ટ	ς.	N N	
	57			

----0.000

97

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-2,3-Bis(4-methoxyphenyl)-*N*,*N*-dimethylprop-2-en-1-amine (21)

74 29	42 51 42 85 42	19 47	8940	စစ	ω
58.	37. 32. 29. 28.	14. 13.	4.7 7.4 8.9	5.2	5.4
		$\overline{}$	トトト 9	2 2	4
\searrow		\leq		\sim	

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-1-(2,3-Bis(4-methoxyphenyl)allyl)piperidine (22)

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-1-(2,3-Bis(4-methoxyphenyl)allyl)piperidine (22)

32	51 10 04	06 51	∞o4 ∞ 0,000	ထက္
57.	29. 29. 22 29. 29. 29. 29. 29. 29. 29. 29. 29. 29.	13.	0.02 0.12 0.12 0.12 0.12 0.12 0.12 0.12	4.0 7.0
5		5		N N V

	.400	ວທ	$\circ \sim$	<u> </u>	ωr	- 0	ກຕ	00	7		LO I	чоr	~ C	4 M		LC)	0	LC)	0	4 1	$\sim c$	υц	ົ່	(\sim	c)	or	$\sim \tau$	- 0	$\overline{\mathbf{A}}$	ω	ന	ω		5 C	~	\sim	\sim	~ 7	- 0	4	\circ
e S	000	ρю	4 ω	З	\sim	NO	οœ) 4	· ε		0	r c	ກ ອ	ົ	œ	~	~	ω	S	ŝ	4 (NC	v 0;	sω	9	S	° ¬	4 ~	N t		0	0	റെ	ກເ	NΩ	- 0	ŝ	4	4 c	1 -		0
~	1 ~ ~ ~ ~	ກດ	റ്റ	6	റെ	ר ת	4 4	- 4	. 4	4	4	ດ ¬	4 4	14	4	4	4	4	4	4.	41	~~	~ 0	9	9	9	ωı	Ωц	റഗ	S	S	S	4.	4 -	4 4	4	4	4	4 4	1 4	4	0
														•																					•				•			
	. <u>ഗ</u> രം	ဂက	ოო	e	ς α	ກເ	ກຕ	ი ი	n	Э	\mathcal{O}	$\sim \sim$	1 C	10	\sim	\sim	\sim	\sim	\sim	2	N 7	- T		· ~		<u></u>	~ 7					~	<u> </u>	- T	- T	- - -		<u> </u>	~ ~			0
L			- I- I-			1						_	1	L	. I.				_		_		L						L L		L		J									_

¹³ C NMR spectrum (100 M, CDC	Cl3) of Tert-l	outyl (E)-3-(2-meth	yl-3-(piperidin-1-yl)p	rop-1-en-1-y	yl)azetidine-1-carboxylate (25)
- 156.47	- 135.50	- 128.63	79.39 77.48 77.16 76.84 - 67.69	- 54.72	28.56 27.17 26.14 24.65 - 15.66

7.47	6.72	3.28	7.70	. 16 . 16 . 16	04	.26	.95 .86 .72
14.	13	12	÷	22 22 22	62	43	15 13 13 13 13 13 13 13 13 13 13 13 13 13
		1					$\searrow \checkmark$

NOE of (2Z,4E)-N,N,2,3,4-Pentamethylhexa-2,4-dien-1-amine (26)

HMBC of (2Z,4E)-N,N,2,3,4-Pentamethylhexa-2,4-dien-1-amine (26)

HSQC of (2Z,4E)-N,N,2,3,4-Pentamethylhexa-2,4-dien-1-amine (26)

¹H NMR spectrum (400 M, CDCl₃) of (2Z,4E)-2,3,4-Triethyl-*N*,*N*-dimethylhepta-2,4-dien-1-amine (27) - 7.263 1.038 1.024 1.020 1.006 0.987 0.933 0.913 0.913 0.913 0.892 0.892 0.892 .057 Me , N Me Et Et Et 6.06 2.52 6.04[∄] 3.07 3.04 2.89 3.69 1.00 1.96 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 fl (ppm) 1.5 1.0 0.5 0.0 -0.5

¹H NMR spectrum (400 M, CDCl₃) of (2Z,4*E*)-2,3,4-Tributyl-N,N-dimethylnona-2,4-dien-1-amine (28)

¹³C NMR spectrum (100 M, CDCl₃) of (2Z,4*E*)-2,3,4-Tributyl-N,N-dimethylnona-2,4-dien-1-amine (28)

141.61 139.40	132.26 128.47	77.48 77.16	60.58	45.58 32.30 33.2.59 30.15 30.15 30.16 22.55 22.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.355 23.3555 23.355 23.355 23.3555 23.3555 23.3555 23.3555 23.3555 23.3555 23.3555 23.3555 23.35555 23.35555 23.3555555 23.35555555555
57			1	

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-*N*,*N*-Diethyl-2-methyl-3-phenylprop-2-en-1-amine (29)

Ph'

Ме

			· ·		•				```	,	
356 337	318 290 273 260	238 235 231	221 217	211 198				195 701 684 666 648	948	132 114 096	000
~~`_	ススズ	ブブブ	~ ~ / /					m nininin	i (
		10	mí								

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*,2-Dimethyl-3-phenyl-*N*-propylprop-2-en-1-amine (30)

¹ H NMR spectrum (400 M, CDCl ₃) of (<i>E</i>)- <i>N</i> -Isopropyl- <i>N</i> ,2-dimeth	nyl-3-phenylprop-2-en-1-amine (31)
7.2248 7.2296 7.2296 7.2224 7.2224 7.2224 6.407 6.407 6.407	3.117 3.050 3.055 3.034 3.001 2.984 2.984 2.255 2.255 1.950 1.950	1.105 1.088
		\checkmark

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*-Isopropyl-*N*,2-dimethyl-3-phenylprop-2-en-1-amine (31)

138.41 137.51 129.00 128.18 126.79 126.19	77.48 77.16 76.84	62.71	52.93	36.91	17.83 16.73
\vee	\searrow				トイ

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-*N*-Benzyl-*N*,2-dimethyl-3-phenylprop-2-en-1-amine (32)

	2241 2241 2228 2241 2197 197 197 197 197 197 197 197 197 197	.040	.192 .945 .942
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·	n n	\sim
			$\langle \vee \rangle$

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*-Benzyl-*N*,2-dimethyl-3-phenylprop-2-en-1-amine (32)

139.71 138.21 137.08 129.02 128.33 128.33 128.31 126.98 126.31	77.48 77.16 76.84	67.27	61.97	42.43	16.80

Ph N Bn Me Me

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-*N*-(4-Methoxybenzyl)-*N*,2-dimethyl-3-phenylprop-2-en-1-amine (33)

N N	4 ຕ ທ ຕ – ດ ທ ທ	5				
<u> </u>	$d \leftarrow 0 \leftarrow 0 \leftarrow 0 d$	<u> </u>	34 I 6 18	8 2 8	ω α	2
χ	8 2 7 0 6 8 2 9	Э	$\nabla \leftarrow \omega$	0,0,0		
<u>ר</u>		Σ	9	2 2 2	Ň	Q
<u> </u>		<u>.</u>			4	<u> </u>
				$\langle \rangle$		

.PMB Ph Ме Ме

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)azetidine (34)

7.243 7.340 7.335 7.335 7.335 7.255 7.255 7.255 7.255 7.225 7.2557 7.2557 7.2557 7.25577 7.255777 7.2557777777777	3.445 3.445 3.445 3.440 3.340 2.225 2.225 1.883 1.883 1.883	0.000

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)azetidine (34)

137.663 133.861 129.028 128.232 128.016 126.601	77.478 77.160 76.842 68.014	55.228	17.536 17.029
			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)pyrrolidine (35)

7.352 7.352 7.314 7.285 7.285 7.285 7.285 7.235 7.235 7.235 7.235 7.235 7.235 7.235 7.235 7.218	3.281 2.732 2.732 2.732 2.706 1.905 1.898 1.872 1.872

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)piperidine (36)

/		v 1	 /1 1	· /	
ファク	0 U L U U L V U A O	0 N 00 00			4020077200000
0 - 0	တစ်ဝင် က စစ်စစ်စ	N N 9 0			0004-0-0000000
<u>ო</u> ო ო	N N N N N N N N N	4			00000000000044
アブ	ィブブブブブブブ	アブブロ			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.422 .413 .000

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)-4-phenylpiperidine (37)

- 146.79	138.21 138.21 129.03 128.51 128.20 128.20 127.05 126.30 126.30	77.48 77.16 77.16 76.84	- 68.47	- 54.59	- 42.99	- 33.74	- 17.06
1				I	1	1	1

¹³C NMR spectrum (100 M, CDCl₃) of (*S*,*E*)-2-(Methoxymethyl)-1-(2-methyl-3-phenylallyl)pyrrolidine (39)

138.37 137.90 128.99 128.17 128.17 126.20 126.20	77.48 77.16 76.68	65.41 63.52 59.25 54.90	28.85 23.15 17.06
\checkmark		1211	\sim 1 \sim

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-6-(2-Methyl-3-phenylallyl)-2-oxa-6-azaspiro[3.3]heptane (40)

137.98 137.91 136.08 128.13 128.13 126.38 126.38	81.58 81.58 77.48 77.16 76.84 68.53 66.14 66.03 60.12 60.12	39.34 39.23	22.98 16.96
		\sim	

Ε

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-1-Methyl-4-(2-methyl-3-phenylallyl)piperazine (41)

77.48 77.16 76.84 67.97	55.42 53.29	46.23	16.95
	57		
	77.48 77.16 76.84 – 67.97	<pre>77.48 77.46 77.16 76.84 -67.97 553.29 <53.29</pre>	 77.48 77.16 77.16 76.84 67.97 55.42 53.29 46.23

¹³ C NMR spectrum (100 M	, CDCl3) of (E)-Cyclopropyl(4-(2	-methyl-3-phenylallyl)pip	oerazin-1-y	d)methanone (42)
- 172.06	137.87 135.49 128.28 127.97 126.49	77.48 77.16 76.84 – 67.88	53.45 52.99 45.70 42.41	× 21.46 ~ 16.89 ~ 11.08

¹H NMR spectrum (400 M, CDCl₃) of 3-(Dimethylamino)-2-hydroxy-2-methyl-1-phenylpropan-1-one (43)

8.152 8.149 8.145 8.145 8.127 8.127 8.127 7.550 7.554 7.550 7.551 7.551 7.551 7.573 7.440 7.440 7.436 7.436 7.436 7.436 7.436 7.263	3.303 3.271	2.470 2.437 2.239	1.496	000.0-
	\leq	≤ 2		

,Me HO Me Me

¹³C NMR spectrum (100 M, CDCl₃) of 3-(Dimethylamino)-2-hydroxy-2-methyl-1-phenylpropan-1-one (43)

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-*N*,2-Dimethyl-3-phenylprop-2-en-1-amine (44)

7.344 7.339 7.325 7.331 7.276 7.276 7.215 7.215 7.215 7.187 7.187 7.187 7.183 7.179 5.439 5.439	3.291	2.463	1.899 1.896 1.618	000.0
	Î	Ì	$\langle \cdot \rangle$	

¹H NMR spectrum (400 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)piperazine (45)

7.339 7.335 7.335 7.335 7.321 7.327 7.257 7.257 7.261 7.272 7.261 7.272 7.261 7.272 7.261 7.272 7.261 7.272 7.261 7.272	2.992 2.989 2.988 2.884 2.884 1.906 1.902 1.871

- 0.000

¹³C NMR spectrum (100 M, CDCl₃) of (*E*)-1-(2-Methyl-3-phenylallyl)piperazine (45)

138.17 135.94 129.01 128.20 127.62 126.34 126.34	77.48 77.16 76.84	68.65 54.76	46.32	16.93 1

