A dual-radical process for tri/difluoromethylarylation of alkenes enabled by indirect electroreduction

Zhening Jin,^a Yuan Shi,^a Zhangchi Zheng,^a Yuxin Ding,^a Weike Su,^a Changjun Zhang,^{* a} YuanYuan Xie^{*a,b,c}

- ^a College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China E-mail: xyycz@zjut.edu.cn; zhangchangjun@zjut.edu.cn
- ^b Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,
 Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- ^c Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, 310014 People's Republic of China

Table for Contents

General experimental information	S2
Mechanistic studies	S8
Charcterization of the products	S13
¹ H, ¹³ C, ¹⁹ F NMR spectra of all products	S27

General experimental information

All reactions were carried out in dried sealed Schlenk tubes with magnetic stirring under a nitrogen atmosphere. The instrument for electrolysis is DC POWER SUPPLY (DP3005B)(made in China). Unless otherwise noted, all chemicals and solvents used in the experiments were obtained from commercial sources and used directly without further treatment. All products were isolated by short chromatography on a silica gel (300-400 mesh) column using hexane and ethyl acetate. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Bruker Advance 400 spectrometer at ambient temperature with CDCl₃ or DMSO-d₆ as solvent and tetramethylsilane (TMS) as the internal standard. The frequencies for ¹H, ¹³C and ¹⁹F NMR test are 400 MHz, 100 MHz and 376 MHz respectively. Analytic 1111 and 19 F NMR test are 400 MHz, 100 MHz and 376 MHz respectively.

General procedures for preparing alkenes

1am, 1ao, 1aq¹ An oven-dried round bottom flask equipped with a stir bar, MePPh₃Br (5.71 g, 16 mmol, 1.6 equiv.), potassium tert-butoxide (1.79 g, 16 mmol, 1.6 equiv.) were placed in the flask. And then the flask was flushed with nitrogen before dry THF (20 mL) was added. After stirring for 30 mins, aldehydes (2.08 g, 10 mmol, 1.0 equiv.) were added. The reaction was allowed to stir at room temperature overnight before being diluted with hexane (30 mL) and filtered through celite. The crude was purified with hexane and obtained as a white solid (1.50 g, 73%).

1aw, 1ax, 1ay² Carboxylic acid compound (1.0 mmol), a hydroxyl compound (1.02 mmol), 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (287.6 mg, 1.5 mmol), and DMAP (2.5 mg, 0.02 mmol) were dissolved in CH_2Cl_2 (20.0 mL) was stirred at room temperature for 2.5 h. The reaction mixture was added to H_2O and extracted with CH_2Cl_2 . The organic layers were washed with brine, dried over MgSO₄, filtered, concentrated in vacuo, and flash chromatographed to afford the product.

$$\begin{array}{c} \overset{H}{\rightarrow} \overset{H}{\rightarrow} \overset{H}{\rightarrow} \overset{OH}{\rightarrow} \overset{Tf_{2}O, Et_{3}N}{0 \ ^{\circ}C, \ 3h} \qquad \qquad \overset{H}{\rightarrow} \overset{H}{\rightarrow} \overset{H}{\rightarrow} \overset{H}{\rightarrow} \overset{OTf}{\rightarrow} \overset{OTf}{} \overset{Pd(OAc)_{2}, SPhos}{K_{3}SPO_{4}, THF/H_{2}O} \qquad \qquad \overset{H}{\rightarrow} \overset{H}{\rightarrow}$$

1az¹ An oven dried Schlenk flask equipped with a magnetic stir bar, (+)-Estrone (2.70 g, 10.0 mmol, 1.0 equiv.), triethylamine (2.8 mL, 20.0 mmol, 2.0 equiv.) were dissolved in dry dichloromethane (30 mL) were added via syringe under argon. The mixture was cooled to 0 °C and triflic anhydride (1.9 mL, 11.0 mmol, 1.1 equiv.) was added dropwise via syringe. The reaction mixture was stirred for 2 h at 0 °C before it was poured into an aqueous saturated solution of NaHCO₃. The biphasic mixture was extracted with dichloromethane (3 x 15 mL). The combined organic phases were dried over MgSO₄ and the solvent was removed *in vacuo*. The crude material was purified by column chromatography (cyclohexane: ethyl acetate = 4:1) to afford 3-(trifluoromethanesulfonyl)estrone (1.94 g, 5.0 mmol, 1.0 equiv.), SPhos (240 mg, 0.56 mmol, 0.1 equiv.), K₃PO₄ (3.19 g, 15.0 mmol, 3.0 equiv.), 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (1.7 mL, 10.0 mmol, 2.0 equiv.), 1,4-dioxane (30

mL) and water (5 mL). The reaction vessel was sealed with a septum, evacuated and refilled with argon (cycle 3 times). Pd(OAc)₂ (56 mg, 0.24 mmol, 5 mol%) was added under a flow of argon and the reaction mixture was heated to 80 °C and stirred for 24 h. The reaction mixture was allowed to cool to ambient temperature and was subsequently diluted with ethyl acetate (3 x 10 mL). The mixture was filtered through a plug of silica. The organic phase was washed with brine (20 mL), dried over MgSO₄ and the solvent was removed *in vacuo*. The residue was purified by column chromatography (cyclohexane: ethyl acetate = 15:1) and the product (1.24 g, 4.6 mmol, 94%) was obtained as a white solid.

61 An oven-dried two-necked round flask equipped with a magnetic stir bar, sodium hydride (0.40 g, 60% in mineral oil, 10 mmol, 1.0 equiv.) was placed in flask. Then dry DMSO and trimethylsulfoxonium iodide (2.64 g, 12 mmol, 1.2 equiv.) were added to the flask at room temperature under an N2 atmosphere. After hydrogen evolution ceased, the reaction mixture was stirred for an additional 15 mins, during which time the solution became clear. Chalcone (2.08 g, 10 mmol, 1.0 equiv.) was then added in one portion to the clear solution. The reaction solution was stirred at room temperature for 5 h. After completion of the reaction (TLC), the reaction was quenched with ice-cold water and the mixture was diluted with ethyl acetate. The combined organic layer was washed with brine, dried over Na2SO4. The product was purified by flash silica gel column chromatography using (petroleum ether/ethyl acetate) as eluent to afford the cyclopropyl ketone product. Then, to an oven dried flask, methyl triphenylphosphonium bromide (4.28 g, 12.0 mmol, 1.2 equiv.) and THF (30 mL) were added. The suspension was cooled to 0 °C, t-BuOK (1.34 g, 12.0 mmol, 1.2 equiv.) was added and the resulting yellow suspension was stirred at 0 °C for 1 hour. To this suspension, the solution of the corresponding ketone (2.22 g, 10.0 mmol, 1.0 equiv.) in THF (10 mL) was added slowly and the resulting mixture was warmed gradually to room temperature and stirred at room temperature for 18 hours. The reaction mixture was concentrated under reduced pressure and filtered over celite. The filtrate was concentrated under reduced pressure and purified by column chromatography to afford the desired product.

General procedures for preparing cyanoarenes

2bd, 2be³ In an oven dried Schlenk flask equipped with a magnetic stir bar, the 4-cyanobenzoyl chloride (827.9 mg, 5.0 mmol, 1.0 equiv.) and 4-Dimethylaminopyridine (122.2 mg, 1.0 mmol, 0.1 equiv.) were dissolved in anhydrous CH_2Cl_2 (10 mL) under nitrogen atmosphere and the resulting mixture was cooled to 0 °C (ice-water bath). Then, the ROH (6.0 mmol, 1.2 equiv.) dissolved in CH_2Cl_2 (5 mL) was added dropwise followed by the slow addition of triethylamine (607.1 mg, 6.0 mmol, 1.2 equiv.). After completion of the addition, the ice bath was removed and the reaction was stirred for 5 hours. The solution was transferred into a separatory funnel and sequentially washed with H_2O , 1 M NaOH and saturated brine solution. The organic phase was dried over Na_2SO_4 , concentrated under reduced pressure. The crude product was purified by chromatography (petroleum ether/ethyl acetate = 10:1) to give the compound as a white solid.

General procedure for the synthesis of 4 or 5 or 7

Prepare a 1×2.5 cm carbon cloth and a 1×2.5 cm zinc sheet to fabricate the electrode. A mixture of alkenes (1.5 mmol, 5.0 equiv.), cyanoarenes (0.3 mmol, 1.0 equiv.), fluoroalkyl sulfones (0.6 mmol, 2.0 equiv.), phenanthrene (5 mol%), "Bu₄NBF₄ (0.15 mmol, 0.5 equiv.) in 5 mL dry DMAc was added to an Schlenk tubes (50 mL). The solution was electrolyzed at ambient temperature under a constant current (8 mA) in an N₂-protected environment for 7 h. After the completion of the reaction, the solvent was removed. The residue was subjected to silica gel column chromatography to obtain pure products by using mixed petroleum ether and ethyl acetate (PE: EA = 50: 1) as an eluent.

Scale-up experiment and further derivatization.

Prepare a 2×5 cm carbon cloth and a 2×5 cm zinc sheet to fabricate the electrode. A mixture of **1aa** (30mmol, 5.0 equiv.), **2aa** (6 mmol, 1.0 equiv.), **3aa** (12 mmol, 2.0 equiv.), phenanthrene (5 mol%), ^{*n*}Bu₄NBF₄ (2.1 mmol, 0.35 equiv.) in 100 mL dry DMAc was added to a two-neck flask (250 mL) with a magnetic stir bar. The solution was electrolyzed under nitrogen atmosphere at room temperature, applying a constant current of 24 mA for 22 hours. After the completion of the reaction,

the solvent was removed. The residue was subjected to silica gel column chromatography to obtain pure products by using mixed petroleum ether and ethyl acetate (PE: EA = 50: 1) as an eluent. Then a two-neck flask with a magnetic stir bar was charged with 4aa (4 mmol, 1.0 equiv.) and KO'Bu (12 mmol, 3.0 equiv.), and dry tert-butyl alcohol (25 mL) was added. The reaction mixture was stirred at 30 °C for 12 h under nitrogen atmosphere, and the progress of the reaction was monitored by TLC. Upon completion, the crude residue was purified by flash column chromatography (PE: EA).

Optimized reaction conditions^a:

	1aa	2aa		3aa		4aa	
Entry	electrode	electricity	solvent	3 aa	Electrolyte	additives	Yield ^b (%)
1	C(+)/C(-)	8 mA	MeCN (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	N.D.
2	C(+)/C(-)	8 mA	DMSO (5 mL)	Togni's reagent II	ⁿ Bu ₄ NBF ₄	None	N.D.
3	C(+)/C(-)	8 mA	DMF (5 mL)	Togni's reagent II	ⁿ Bu ₄ NBF ₄	None	N.D.
4	C(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	ⁿ Bu ₄ NBF ₄	None	N.D.
5	C(+)/C(-)	8 mA	DMAc (5 mL)	CF ₃ SO ₂ Na	"Bu ₄ NBF ₄	None	N.D.
6	C(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	N.D.
7	C(+)/Ni(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	13
8	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	21
9	Fe(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	13
10	Mg(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	12
11	Al(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	13
12	Zn(+)/C(-)	6 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	16
13	Zn(+)/C(-)	10 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	20
14	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	None	27
15	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	TBAB	None	19
16	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	TBAI	None	16
17	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	TBACl	None	15
18	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	LiClO ₄	None	trace

	19	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NOAc	None	13
	20	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	Et ₄ NClO ₄	None	15
	21	Zn(+)/C(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	None	43
	22	Zn(+)/C(-)	8 mA	DMAc (5 mL)	CF ₃ I	ⁿ Bu ₄ NBF ₄	None	26
	23	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	None	56
	24	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	5 mol% phenanthrene	53
	25	Zn(+)/C(-)	8 mA	DMAc (5 mL)	Togni's reagent II	"Bu ₄ NBF ₄	5 mol% phenanthrene	43
_	27	Zn(+)/C(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	5 mol% phenanthrene	73
	27	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% phenanthrene	88
	28	Zn(+)/CC(-)	8 mA	DMAc (6 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	5 mol% phenanthrene	85
	29	Zn(+)/CC(-)	10 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% phenanthrene	86
	30	Zn(+)/CC(-)	6 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% phenanthrene	63
	31	Zn(+)/CC(-)	8 mA	DMAc (3 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	5 mol% phenanthrene	80
	32	Zn(+)/CC(-)	8 mA	DMAc (7 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% phenanthrene	85
	31	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% dimethylterephthalate	59
	32	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% 9,10- dicyanoanthracen	53
	33	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	5 mol% anthraquinone	55
	34	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	5 mol% anthracene	72
	35	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	1 mol% phenanthrene	72
	36	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	"Bu ₄ NBF ₄	10 mol% phenanthrene	89
	37	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	10 mol% phenanthrene	78
	38	C(+)/Ni(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	10 mol% phenanthrene	35
	39	Zn(+)/CC(-)	0 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	10 mol% phenanthrene	N.D.
	40°	Zn(+)/CC(-)	8 mA	DMAc (5 mL)	PhSO ₂ CF ₃	ⁿ Bu ₄ NBF ₄	5 mol% phenanthrene	trace

^{a)}Reaction conditions: **1aa** (1.5 mmol), **2aa** (0.3 mmol), **3aa** (0.6 mmol), electrolyte (0.15 mmol), solvent, additives, N₂, constant current, 25 °C, undivided cell, 7 h, 6.9 F/mol of starting material **2aa**. ^{b)} The isolated yield is based on **2aa**. ^{c)} Under atmosphere.

Mechanistic stduies

To gain insight into the reaction mechanism, a series of experiments were conducted.

(a) Radical trapping experiments

First, products **4aa** and **7aa** were not obtained when the reaction was carried out in the presence of 1,1-diphenylethylene. Additionally, the difluoromethyl radical was captured and detected by HRMS; however, neither the aryl radical nor the trifluoromethyl radical was observed.

Scheme S1. Radical trapping experiments.

Figure S2. HRMS for radical trapping experiments

(b) Radical clock experiments

The radical clock experiments formed products **10** and **11**, which underwent a ring-opening process with 56 % and 43% yields, respectively.

Scheme S2. Radical clock experiments.

(c) Cyclic voltammetry (CV) experiments

The cyclic voltammetry (CV) experiments were conducted in a Schlenk tube containing the electrolyte (0.06 M ⁿBu₄NBF₄ in DMAc, 2.5 mL) under a nitrogen atmosphere at room temperature. A three-electrode system was used, consisting of a glassy carbon working electrode (polished with $0.05 \mu \text{m}$ Al₂O₃ powder before measurements), a platinum wire counter electrode, and an Ag/Ag⁺ reference electrode (stored in silver nitrate solution and activated before measurements). The relevant parameters were controlled by an electrochemical workstation CHI600E.

Figure S3. Cyclic voltammograms of reaction substrates. Test conditions: CV of 0.06 M "Bu₄NBF₄ solution in DMAc (2.5 mL) at room temperature under a nitrogen atmosphere: **black line**: 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); red line: **1aa** (0. 06 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); blue line: **2aa** (0.06 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0.06 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **6aa** (0. 06 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0.06 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc). The voltammogram was obtained at a scan rate of 100 mV s⁻¹ with glass carbon as the working electrode and a Pt wire and Ag/ Ag⁺ as the counter and reference electrodes.

Figure S4. Cyclic voltammograms of 2aa and 3aa. Test conditions: CV of 0.06 M ${}^{n}Bu_{4}NBF_{4}$ solution in DMAc (2.5 mL) at room temperature under a nitrogen atmosphere: black line: 2.5 mL ${}^{n}Bu_{4}NBF_{4}$ (0.06 M) solution (in DMAc); red line: 2aa (0. 06 M), 2.5 mL ${}^{n}Bu_{4}NBF_{4}$ (0.06 M) solution (in DMAc); blue line: 2aa (0. 06 M), 3aa (0.06 M), 2.5 mL ${}^{n}Bu_{4}NBF_{4}$ (0.06 M) solution (in DMAc); green line: 2aa (0. 06 M), 2.5 mL ${}^{n}Bu_{4}NBF_{4}$ (0.06 M) solution (in DMAc); green line: 2aa (0. 06 M), 2.5 mL ${}^{n}Bu_{4}NBF_{4}$ (0.06 M) solution (in DMAc). The voltammogram was obtained at a scan rate of 100 mV s⁻¹ with glass carbon as the working electrode and a Pt wire and Ag/ Ag⁺ as the counter and reference electrodes.

Figure S5. Cyclic voltammograms of 2aa and 3aa and Med-1. Test conditions: CV of 0.06 M "Bu₄NBF₄ solution in DMAc (2.5 mL) at room temperature under a nitrogen atmosphere: black line: 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); red line: 2aa (0. 06 M), 3aa (0.12 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc); blue line: 2aa (0. 06 M), 3aa (0.12 M), Med-1 (0. 06 M), 2.5 mL "Bu₄NBF₄ (0.06 M) solution (in DMAc). The voltammogram was obtained at a scan rate of 100 mV s⁻¹ with glass carbon as the working electrode and a Pt wire and Ag/ Ag⁺ as the counter and reference electrodes.

Figure S6. Cyclic voltammograms of **2aa** and **Med-1**. Test conditions: CV of 0.06 M ^{*n*}Bu₄NBF₄ solution in DMAc (2.5 mL) at room temperature under a nitrogen atmosphere: **black line**: 2.5 mL ^{*n*}Bu₄NBF₄ (0.06 M) solution (in DMAc); **red line**: **2aa** (0. 06 M), 2.5 mL ^{*n*}Bu₄NBF₄ (0.06 M) solution (in DMAc); **blue line**: **2aa** (0. 06 M), **Med-1** (0. 06 M), 2.5 mL ^{*n*}Bu₄NBF₄ (0.06 M) solution (in DMAc). The voltammogram was obtained at a scan rate of 100 mV s⁻¹ with glass carbon as the working electrode and a Pt wire and Ag/ Ag⁺ as the counter and reference electrodes.

Figure S7. Cyclic voltammograms of **Med-1** and **3aa**. Test conditions: CV of 0.06 M ⁿBu₄NBF₄ solution in DMAc (2.5 mL) at room temperature under a nitrogen atmosphere: **black line**: 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); red line: **Med-1** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); blue line: **Med-1** (0. 06 M), 3aa (0.03 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); green line: **Med-1** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); green line: **Med-1** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0. 06 M), 3aa (0.12 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0. 06 M), 3aa (0.12 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0. 06 M), 3aa (0.12 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0. 06 M), 3aa (0.12 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-1** (0. 06 M), 3aa (0.12 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc). The voltammogram was obtained at a scan rate of 100 mV s⁻¹ with glass carbon as the working electrode and a Pt wire and Ag/ Ag⁺ as the counter and reference electrodes.

Figure S8. Cyclic voltammograms of mediators. Test conditions: CV of 0.06 M ⁿBu₄NBF₄ solution in DMAc (2.5 mL) at room temperature under a nitrogen atmosphere: **black line**: 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); red line: **Med-1** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); blue line: **Med-2** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); green line: **Med-3** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); purple line: **Med-4** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc); brown line: **Med-5** (0. 06 M), 2.5 mL ⁿBu₄NBF₄ (0.06 M) solution (in DMAc). The voltammogram was obtained at a scan rate of 100 mV s⁻¹ with glass carbon as the working electrode and a Pt wire and Ag/ Ag⁺ as the counter and reference electrodes.

Characterization of the products

4-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)benzonitrile (4aa).

Yellow oil in 88 % yield (88 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.40 – 7.35 (m, 2H), 7.36 – 7.31 (m, 2H), 7.15 – 7.10 (m, 2H), 4.35 (t, *J* = 7.4 Hz, 1H), 2.90 (m, 2H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.38, 148.17, 138.25, 132.57, 128.46, 126.91, 126.61 (q, *J*_{C-F} = 276.0 Hz), 125.97, 118.68, 110.81, 44.713 (q, *J*_{C-F} = 2.6), 39.24 (q, *J*_{C-F} = 27.7), 34.47, 31.27. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.69. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₀F₃N: 331.3822; found: 331.3826.

4-(3,3,3-trifluoro-1-(4-methoxyphenyl)propyl)benzonitrile (4ab).

Yellow oil in 78 % yield (72 mg). 1H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.37 – 7.33 (m, 2H), 7.14 – 7.09 (m, 2H), 6.87 – 6.83 (m, 2H), 4.33 (t, J = 7.4 Hz, 1H), 3.78 (s, 3H), 2.87 (qd, J = 10.2, 7.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.79, 148.38, 133.32, 132.57, 128.38, 128.31, 126.11 (q, J_{C-F} = 276.0 Hz), 118.64, 114.42, 110.80, 55.28, 44.35 (q, J_{C-F} = 2.7 Hz), 39.30 (q, J_{C-F} = 27.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.60. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₄F₃NO: 305.1027; found: 305.1031.

4-(1-([1,1'-biphenyl]-4-yl)-3,3,3-trifluoropropyl)benzonitrile (4ac).

Yellow oil in 72 % yield (76 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 2H), 7.58 – 7.53 (m, 4H), 7.43 (m, 4H), 7.38 – 7.33 (m, 1H), 7.30 – 7.26 (m, 2H), 4.43 (t, J = 7.4 Hz, 1H), 2.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.89, 140.43, 140.28, 140.23, 132.67, 128.85, 128.44,

127.77, 127.76, 127.54, 127.03, 126.10 (q, $J_{C-F} = 276.1$ Hz), 118.60, 111.03, 44.85 (q, $J_{C-F} = 2.7$ Hz), 39.18 (q, $J_{C-F} = 27.7$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.58. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₂H₁₆F₃N: 351.1235; found: 351.1239.

4-(3,3,3-trifluoro-1-(p-tolyl)propyl)benzonitrile (4ad).

Yellow oil in 85 % yield (74 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.38 – 7.33 (m, 2H), 7.11 (q, *J* = 8.2 Hz, 4H), 4.34 (t, *J* = 7.4 Hz, 1H), 2.89 (m, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.26, 138.30, 137.19, 132.58, 129.74, 128.35, 127.19,127.12 (q, *J*_{C-F} = 276.0 Hz), 118.63, 110.84, 44.77 (q, *J*_{C-F} = 27 Hz), 39.20 (q, *J*_{C-F} = 27 Hz), 20.98. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.66. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₄F₃N: 289.1078; found: 289.1075.

4-(3,3,3-trifluoro-1-(4-fluorophenyl)propyl)benzonitrile (4ae).

Yellow oil in 80 % yield (70 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 2H), 7.38 – 7.32 (m, 2H), 7.22 – 7.15 (m, 2H), 7.06 – 6.98 (m, 2H), 4.38 (t, J = 7.4 Hz, 1H), 2.93 – 2.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.43 (d, $J_{C-F} = 245.3$ Hz), 147.70, 137.00 (d, $J_{C-F} = 3.3$ Hz), 132.68, 128.97 (d, $J_{C-F} = 8.1$ Hz), 128.30, 125.97 (q, $J_{C-F} = 275.9$ Hz), 118.50, 115.99 (d, $J_{C-F} = 21.3$ Hz), 111.12, 44.40 (q, $J_{C-F} = 2.7$ Hz), 39.25 (q, $J_{C-F} = 27.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.62, -114.77. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₆H₁₁F₄N: 343.0796; found: 343.0795.

4-(1-(4-chlorophenyl)-3,3,3-trifluoropropyl)benzonitrile (4af).

Yellow oil in 71 % yield (66 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.57 (m, 2H), 7.37 – 7.26 (m, 4H), 7.18 – 7.11 (m, 2H), 4.36 (t, *J* = 7.4 Hz, 1H), 2.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.39, 139.66, 133.41, 132.72, 129.26, 128.75, 128.31, 125.92 (q, *J*_{C-F} = 275.9 Hz), 118.48,

111.21, 44.53 (q, $J_{C-F} = 2.9$ Hz), 39.05 (q, $J_{C-F} = 27.9$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.60. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₆H₁₁ClF₃N: 309.0532; found: 309.0530.

4-(1-(4-bromophenyl)-3,3,3-trifluoropropyl)benzonitrile (4ag).

Yellow oil in 57 % yield (61 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.59 (m, 2H), 7.48 – 7.43 (m, 2H), 7.36 – 7.31 (m, 2H), 7.11 – 7.07 (m, 2H), 4.34 (t, *J* = 7.4 Hz, 1H), 2.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.29, 140.17, 132.73, 132.22, 129.10, 128.31, 125.91 (q, *J*_{C-F} = 275.9 Hz), 118.46, 111.23, 44.60 (q, *J*_{C-F} = 2.9 Hz), 38.99 (q, *J*_{C-F} = 72.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.59. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₆H₁₁BrF₃N: 353.0027; found: 353.0029.

4-(3,3,3-trifluoro-1-phenylpropyl)benzonitrile (4ah).

Yellow oil in 53 % yield (52 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.40 – 7.35 (m, 2H), 7.33 (dd, *J* = 8.1, 6.6 Hz, 2H), 7.28 – 7.24 (m, 1H), 7.24 – 7.19 (m, 2H), 4.38 (t, *J* = 7.4 Hz, 1H), 2.91 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.95, 141.26, 132.61, 129.09, 128.41, 127.47, 127.35, 126.09 (q, *J*_{C-F} = 276.3 Hz), 118.61, 110.93, 45.14 (q, *J*_{C-F} = 2.8 Hz), 39.14 (q, *J*_{C-F} = 27.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.65. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₆H₁₂F₃N: 275.0922; found: 275.0920.

4-(3,3,3-trifluoro-1-(m-tolyl)propyl)benzonitrile (4ai).

Yellow oil in 81 % yield (71 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.55 (m, 2H), 7.41 – 7.33 (m, 2H), 7.22 (t, *J* = 7.9 Hz, 1H), 7.09 – 7.04 (m, 1H), 7.03 – 6.98 (m, 2H), 4.34 (t, *J* = 7.4 Hz, 1H), 2.97 – 2.84 (m, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.10, 141.25, 138.82, 132.59, 128.95, 128.41, 128.21, 128.14, 126.13 (q, *J*_{C-F} = 276.0 Hz), 124.27, 118.67, 110.85, 45.1 (q, *J*_{C-F} = 2.1 Hz), 39.130 (q, *J*_{C-F} = 27.8 Hz), 21.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.67. HRMS (ESI) m/z:

[M+H]⁺ Calculated for C₁₇H₁₄F₃N: 289.1078; found: 289.1076.

4-(3,3,3-trifluoro-1-(3-methoxyphenyl)propyl)benzonitrile (4aj).

Yellow oil in 74 % yield (68 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.58 (m, 2H), 7.40 – 7.35 (m, 2H), 7.25 (t, J = 8.0 Hz, 1H), 6.79 (m, 2H), 6.73 (t, J = 2.2 Hz, 1H), 4.34 (t, J = 7.4 Hz, 1H), 3.78 (s, 3H), 2.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.99, 147.82, 142.84, 132.60, 130.13, 128.39, 126.08 (q, J_{C-F} = 276.0 Hz), 119.57, 118.63, 113.90, 112.02, 110.94, 55.25, 45.090 (q, J_{C-F} = 2.7 Hz), 39.06 (q, J_{C-F} = 27.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.67. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₄F₃NO: 305.1027; found: 305.1025.

4-(3,3,3-trifluoro-1-(3-fluorophenyl)propyl)benzonitrile (4ak).

Yellow oil in 65 % yield (57 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 2H), 7.36 (d, J = 8.3 Hz, 2H), 7.30 (m, 1H), 7.01 (m, 1H), 6.98 – 6.93 (m, 1H), 6.91 (m, 1H), 4.37 (t, J = 7.4 Hz, 1H), 2.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.01 (d, $J_{C-F} = 246.0$ Hz), 147.18, 143.64 (d, $J_{C-F} = 3.5$ Hz), 132.73, 130.67 (d, $J_{C-F} = 4.2$ Hz), 128.36, 125.91 (q, $J_{C-F} = 275.9$ Hz), 123.09 (d, $J_{C-F} = 3.0$ Hz), 118.48, 114.60, 114.39 (d, $J_{C-F} = 0.7$ Hz), 111.26, 44.82 (q, $J_{C-F} = 2.4$ Hz), 39.00 (q, $J_{C-F} = 27.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.65, -111.68. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₆H₁₁F₄N: 293.0828; found: 293.0820.

4-(1-(3-chlorophenyl)-3,3,3-trifluoropropyl)benzonitrile (4al).

Yellow oil in 50 % yield (46 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.60 (m, 2H), 7.38 – 7.33 (m, 2H), 7.30 – 7.22 (m, 2H), 7.19 (t, *J* = 1.9 Hz, 1H), 7.10 (m, 1H), 4.35 (t, *J* = 7.4 Hz, 1H), 2.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.07, 143.17, 134.92, 132.76, 130.37, 128.36, 127.74, 127.60,125.89 (q, *J*_{C-F} = 276.0 Hz), 125.61, 118.47, 111.29, 44.803 (q, *J*_{C-F} = 2.7 Hz), 38.957 (q, *J*_{C-F} = 27.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.62. HRMS (ESI) m/z: [M+H]⁺ Calculated for

4-(3,3,3-trifluoro-1-(2-methoxyphenyl)propyl)benzonitrile (4am).

Yellow oil in 73 % yield (67 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.54 (m, 2H), 7.39 (d, J = 8.1 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.15 (dd, J = 7.6, 1.7 Hz, 1H), 6.94 (m, 1H), 6.86 (d, J = 8.2 Hz, 1H), 4.74 (t, J = 7.4 Hz, 1H), 3.79 (s, 3H), 2.90 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.49, 147.83, 132.19, 129.69, 128.75, 128.66, 127.60, 125.37 (q, J_{C-F} = 275.9 Hz), 120.84, 118.87, 111.12, 110.43, 55.39, 38.99 (q, J_{C-F} = 2.9 Hz), 37.93 (q, J_{C-F} = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 63.91. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₄F₃NO: 305.1027; found: 305.1030.

4-(3,3,3-trifluoro-1-(o-tolyl)propyl)benzonitrile (4an).

Yellow oil in 73 % yield (63 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.56 (m, 2H), 7.36 – 7.33 (m, 2H), 7.25 – 7.20 (m, 2H), 7.19 – 7.15 (m, 2H), 4.60 (t, J = 7.2 Hz, 1H), 2.88 (m, 2H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 147.48, 139.34, 135.80, 132.46, 131.23, 128.85, 127.40, 126.62, 126.19, 126.18 (q, $J_{C-F} = 275.9$ Hz), 118.63, 110.80, 40.66 (q, $J_{C-F} = 2.7$ Hz) 39.48 (q, $J_{C-F} = 27.6$ Hz), 19.74. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.71. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₄F₃N: 289.1078; found: 289.1073.

4-(3,3,3-trifluoro-1-(2-fluorophenyl)propyl)benzonitrile (4ao).

Yellow oil in 50 % yield (44 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.58 (m, 2H), 7.43 – 7.38 (m, 2H), 7.29 – 7.25 (m, 1H), 7.23 (dd, *J* = 7.2, 1.9 Hz, 1H), 7.14 (m, 1H), 7.04 (m, 1H), 4.64 (t, *J* = 7.4 Hz, 1H), 2.95 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 160.27 (d, *J*_{C-F}= 245.7 Hz), 146.65, 132.59, 129.368 (d, *J*_{C-F} = 8.5 Hz), 128.45, 128.40, 128.38 (d, *J*_{C-F} = 13.7 Hz), 126.01 (q, *J*_{C-F} = 276.0 Hz), 124.69 (d, *J*_{C-F} = 3.5 Hz), 118.56, 116.212 (d, *J*_{C-F} = 11.1 Hz), 111.12, 35.06 (q, *J*_{C-F} = 5.4 Hz), 37.971 (q, *J*_{C-F} = 26.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -64.04, -116.51. HRMS (ESI)

m/z: [M+H]⁺ Calculated for C₁₆H₁₁F₄N: 293.0828; found: 293.0821.

4-(1-(2,5-dimethylphenyl)-3,3,3-trifluoropropyl)benzonitrile (4ap).

Yellow oil in 78 % yield (71 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.57 (m, 2H), 7.37 – 7.33 (m, 2H), 7.05 (d, J = 7.9 Hz, 1H), 6.99 (d, J = 6.8 Hz, 2H), 4.56 (dd, J = 8.3, 6.2 Hz, 1H), 2.98 – 2.77 (m, 2H), 2.33 (s, 3H), 2.25 (s, 3H) ¹³C NMR (100 MHz, CDCl₃) δ 147.60, 139.23, 136.08, 132.58, 132.44, 131.09, 128.84, 128.07, 126.89, 126.25 (q, J_{C-F} = 276.0 Hz), 118.69, 110.72, 40.60 (q, J_{C-F} = 2.8 Hz), 39.47 (q, J_{C-F} = 27.5 Hz), 21.23, 19.27. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.71. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₈H₁₆F₃N: 303.1235; found: 303.1229.

4-(1-(3,5-dimethoxyphenyl)-3,3,3-trifluoropropyl)benzonitrile (4aq).

Yellow oil in 55 % yield (55 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.57 (m, 2H), 7.41 – 7.35 (m, 2H), 6.34 (s, 3H), 4.28 (t, *J* = 7.4 Hz, 1H), 3.76 (s, 6H), 2.87 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.20, 147.67, 143.58, 132.58, 128.36, 126.06 (q, *J*_{C-F} = 275.9 Hz), 118.63, 110.96, 105.87, 98.43, 55.35, 45.23 (q, *J*_{C-F} = 2.5 Hz), 39.00 (q, *J*_{C-F} = 27.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.69. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₈H₁₆F₃NO₂: 335.1133; found: 335.1126.

4-(2-(trifluoromethyl)-1,2,3,4-tetrahydronaphthalen-1-yl)benzonitrile (4ar).

Yellow oil in 49 % yield (44 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.24 – 7.20 (m, 2H), 7.19 – 7.13 (m, 2H), 7.06 (m, 1H), 6.70 (d, *J* = 7.8 Hz, 1H), 4.35 (d, *J* = 8.0 Hz, 1H), 3.00 – 2.94 (m, 2H), 2.77 – 2.63 (m, 1H), 2.22 (m, 1H), 1.91 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 150.97, 136.05, 135.98, 132.45, 130.23, 129.77, 128.84, 127.48 (q, *J*_{C-F} = 278.8 Hz), 126.81, 126.70, 118.75, 110.70, 46.74 (q, *J*_{C-F} = 25.1 Hz), 44.88 (q, *J*_{C-F} = 2.1 Hz), 27.69, 21.41 (q, *J*_{C-F} = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.63. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₈H₁₄F₃N:

4-(2-(trifluoromethyl)-2,3-dihydro-1H-inden-1-yl)benzonitrile (4as).

Yellow oil in 47 % yield (40 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.61 (m, 2H), 7.34 – 7.27 (m, 4H), 7.26 (s, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 4.61 (d, *J* = 8.0 Hz, 1H), 3.40 – 3.20 (m, 2H), 3.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 148.71, 143.08, 140.40, 132.63, 129.27, 128.06, 127.66, 127.53 (q, *J*_{C-F}= 276.5 Hz), 125.01, 124.60, 118.70, 111.21, 52.28 (q, *J*_{C-F} = 26.6 Hz, 51.94 (q, *J*_{C-F} = 2.6 Hz), 33.36 (q, *J*_{C-F} = 2.6 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -70.07. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₂F₃N: 287.0922; found: 287.0917.

4-(4,4,4-trifluoro-2-phenylbutan-2-yl)benzonitrile (4at).

Yellow oil in 40 % yield (35 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.31 (dd, J = 8.2, 6.5 Hz, 4H), 7.26 – 7.22 (m, 1H), 7.15 – 7.10 (m, 2H), 3.03 (q, J = 10.7 Hz, 2H), 1.85 (d, J = 1.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 152.85, 146.58, 132.08, 128.59, 127.95, 126.93, 126.64, 126,19 (q, $J_{C-F} = 277.3$ Hz), 118.69, 110.45, 44.32 (q, $J_{C-F} = 26.4$ Hz), 44.25 (q, $J_{C-F} = 1.6$ Hz), 27.34 (q, $J_{C-F} = 1.7$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.31. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₄F₃N: 289.1078; found: 289.1083.

4-(3,3,3-trifluoro-1-(naphthalen-2-yl)propyl)benzonitrile (4au).

Yellow oil in 75 % yield (73 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.81 (m, 3H), 7.69 (d, J = 1.9 Hz, 1H), 7.63 – 7.58 (m, 2H), 7.54 – 7.45 (m, 2H), 7.44 – 7.40 (m, 2H), 7.29 – 7.26 (m, 1H), 4.55 (t, J = 7.4 Hz, 1H), 3.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.81, 138.57, 133.41, 132.62, 132.50, 129.01, 128.56, 127.80, 127.70, 126.66, 126.146 (q, $J_{C-F}=$ 276.0 Hz), 126.32, 125.81, 125.52, 118.58, 111.02, 45.187 (q, $J_{C-F}=$ 2.9 Hz), 39.04 (q, $J_{C-F}=$ 27.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.50. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₁₄F₃N: 325.1078; found: 325.1085.

4-(3,3,3-trifluoro-1-(thiophen-2-yl)propyl)benzonitrile (4av).

Yellow oil in 52 % yield (44 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.43 – 7.38 (m, 2H), 7.22 (dd, J = 5.1, 1.2 Hz, 1H), 6.95 (dd, J = 5.1, 3.6 Hz, 1H), 6.87 (dt, J = 3.6, 1.1 Hz, 1H), 4.62 (dd, J = 8.9, 5.9 Hz, 1H), 3.06 – 2.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 147.34, 144.80, 132.71, 128.37, 125.68 (q, J_{C-F} = 276.5 Hz), 125.06, 124.71, 118.54, 111.41, 40.63 (q, J_{C-F} = 27.9 Hz), 40.88 (q, J_{C-F} = 2.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.72. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₄H₁₀F₃NS: 281.0486; found: 281.0493.

4-(1-(4-cyanophenyl)-3,3,3-trifluoropropyl)phenyl 2-(4-isobutylphenyl)propanoate (4aw).

Yellow oil in 61 % yield (88 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.57 (m, 2H), 7.37 – 7.33 (m, 2H), 7.31 – 7.27 (m, 2H), 7.21 – 7.13 (m, 4H), 7.02 – 6.97 (m, 2H), 4.38 (t, *J* = 7.4 Hz, 1H), 3.94 (q, *J* = 7.1 Hz, 1H), 2.89 (m, 2H), 2.49 (d, *J* = 7.2 Hz, 2H), 1.88 (m, 1H), 1.61 (d, *J* = 7.1 Hz, 4H), 0.93 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.16, 150.03, 147.58, 140.94, 138.60, 137.05, 132.64, 129.55, 128.38, 128.28, 127.19, 125.97 (q, *J*_{C-F} = 276.5 Hz), 122.04, 118.54, 111.04, 45.24, 45.04, 44.54 (q, *J*_{C-F} = 2.8 Hz), 39.18 (q, *J*_{C-F} = 27.8 Hz), 30.21, 22.40, 18.45. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.62. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₉H₂₈F₃NO₂: 479.2072; found: 479.2065.

4-(1-(4-cyanophenyl)-3,3,3-trifluoropropyl)phenyl 2-(6-methoxynaphthalen-2-yl)propanoate (4ax).

Yellow oil in 56 % yield (85 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.70 (m, 3H), 7.60 – 7.55 (m, 2H), 7.47 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.19 – 7.12 (m, 4H), 6.97 – 6.92 (m, 2H), 4.34 (t, *J* = 7.4 Hz, 1H), 4.08 (q, *J* = 7.1 Hz, 1H), 3.92 (s, 3H), 2.93 – 2.79 (m, 2H), 1.67 (d, *J*

= 7.1 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.10, 157.81, 150.00, 147.54, 138.64, 134.94, 133.85, 132.63, 129.32, 128.98, 128.37, 128.29, 127.42, 126.16, 126.06, 125.96 (q, J_{C-F} = 275.8 Hz), 122.02, 119.19, 118.54, 111.03, 105.61, 55.35, 45.56, 44.53 (q, J_{C-F} = 3.0 Hz), 39.17 (q, J_{C-F} = 27.7 Hz), 18.45. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.62. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₃₀H₂₄F₃NO₃: 503.1708; found: 503.1700.

4-(1-(4-cyanophenyl)-3,3,3-trifluoropropyl)phenyl (3r,5r,7r)-adamantane-1-carboxylate (4ay).

Yellow oil in 56 % yield (84 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.37 – 7.33 (m, 2H), 7.22 – 7.17 (m, 2H), 7.05 – 6.98 (m, 2H), 4.38 (t, J = 7.4 Hz, 1H), 2.89 (m, 2H), 2.07 (p, J = 2.9 Hz, 3H), 2.02 (d, J = 2.9 Hz, 6H), 1.82 – 1.71 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.09, 150.27, 147.65, 138.38, 132.64, 128.41, 128.29, 122.20, 126.00 (q, $J_{C-F} = 276.1$ Hz), 111.03, 44.56 (q, $J_{C-F} = 2.7$ Hz), 41.04, 39.22 (q, $J_{C-F} = 27.7$ Hz), 38.72, 36.41, 27.87. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.61. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₇H₂₆F₃NO₂: 453.1916; found: 453.1923.

4-(3,3,3-trifluoro-1-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)propyl)benzonitrile (4az).

Yellow oil in 51 % yield (69 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.59 (m, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.1 Hz, 1H), 7.01 (dd, J = 8.1, 2.1 Hz, 1H), 6.94 (d, J = 1.9 Hz, 1H), 4.33 (t, J = 7.4 Hz, 1H), 2.97 – 2.85 (m, 4H), 2.52 (dd, J = 18.8, 8.6 Hz, 1H), 2.41 (m, 1H), 2.28 (m, 1H), 2.21 – 2.13 (m, 1H), 2.10 (dd, J = 10.5, 5.3 Hz, 1H), 2.03 (m, 1H), 1.97 (m, 1H), 1.70 – 1.52 (m, 4H), 1.51 – 1.40 (m, 2H), 0.92 (d, J = 1.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 220.80, 148.17, 139.03, 138.78, 137.29, 132.60, 128.40, 127.90, 126.07, 126.13 (q, $J_{C-F} = 275.9$ Hz), 124.52, 118.67, 110.81, 50.47, 47.96, 44.77 (q, $J_{C-F} = 2.1$ Hz), 44.23, 39.17 (q, $J_{C-F} = 26.9$ Hz), 38.00, 35.84, 31.55, 29.43, 26.39, 25.61, 21.57, 13.83. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.67. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₈H₂₈F₃NO: 451.2123; found: 451.2129.

ethyl 4-(3,3,3-trifluoropropyl)benzoate (4ba)

Yellow oil in 73% yield (54 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 – 7.97 (m, 2H), 7.27 (d, *J* = 8.4 Hz, 2H), 4.37 (q, *J* = 7.1 Hz, 2H), 2.96 – 2.89 (m, 2H), 2.47 – 2.34 (m, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.39, 144.11, 130.02, 129.07, 128.24, 126.54 (q, *J*_{C-F} = 275.1 Hz), 60.97, 35.21 (q, *J*_{C-F} = 28.4 Hz), 28.22 (q, *J*_{C-F} = 28 Hz), 14.32. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.60. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₂H₁₃F₃O₂: 246.0868; found: 246.0865.

methyl 4-(3,3,3-trifluoropropyl)benzoate (4bb)

Yellow oil in 63% yield (43.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.96 (m, 2H), 7.29 – 7.25 (m, 2H), 3.91 (s, 3H), 2.96 – 2.90 (m, 2H), 2.48 – 2.34 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.87, 144.24, 130.06, 128.72, 128.30, 126,52 (q, $J_{C-F} = 275.1$ Hz), 52.11, 35.19 (q, $J_{C-F} = 28.4$), 28.23 (q, $J_{C-F} = 3.3$). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.61. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₁H₁₁F₃O₂: 232.2022; found: 232.2026.

ethyl 4-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)benzoate (5aa).

Yellow oil in 49 % yield (56 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.36 – 7.29 (m, 4H), 7.17 – 7.12 (m, 2H), 4.35 (q, *J* = 7.1 Hz, 3H), 3.02 – 2.82 (m, 2H), 1.37 (t, *J* = 7.1 Hz, 3H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.33, 149.98, 147.88, 138.98, 130.01, 129.09, 127.60, 126.96, 126.31 (q, *J*_{C-F} = 275.9 Hz), 125.78, 60.93, 44.63 (q, *J*_{C-F} = 2.6 Hz), 39.38 (q, *J*_{C-F} = 27.5 Hz), 34.42, 31.29, 14.34. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.71. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₂H₂₆F₃O₂: 378.1807; found: 378.1813.

methyl 4-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)benzoate (5ab).

Yellow oil in 53 % yield (58 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.95 (m, 2H), 7.36 – 7.29 (m, 4H), 7.18 – 7.12 (m, 2H), 4.35 (t, *J* = 7.4 Hz, 1H), 3.89 (s, 3H), 2.91 (m, 2H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 166.82, 150.00, 148.00, 138.93,130.26 (q, *J*_{C-F} = 274.0 Hz), 130.06, 128.74, 126.97, 125.79, 52.10, 44.64 (q, *J*_{C-F} = 2.9 Hz), 39.39 (q, *J*_{C-F} = 27.5 Hz), 34.43, 31.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.72. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₁H₂₃F₃O₂: 364.1650; found: 364.1653.

4-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)-2,5-dimethylbenzonitrile (5ac).

Yellow oil in 67 % yield (72 mg). 1H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.33 – 7.29 (m, 2H), 7.19 (s, 1H), 7.12 – 7.08 (m, 2H), 4.53 (t, J = 7.2 Hz, 1H), 2.86 (m, 2H), 2.51 (s, 3H), 2.33 (s, 3H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.12, 146.09, 139.60, 137.88, 134.46, 134.28, 128.46, 127.22, 126.26 (q, *J*_{C-F} = 276.0 Hz), 125.82, 118.15, 110.93, 39.89 (q, *J*_{C-F} = 2.5 Hz), 39.40 (q, *J*_{C-F} = 27.4 Hz), 34.44, 31.27, 20.29, 19.17. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.89. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₂H₂₄F₃N: 359.1861; found: 359.1863.

(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl 4-(1-(4-(tert-butyl)phenyl)-3,3,3-

trifluoropropyl)benzoate (5ad).

Yellow oil in 53 % yield (78 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.96 (m, 2H), 7.36 – 7.29 (m, 4H), 7.18 – 7.12 (m, 2H), 4.90 (m, 1H), 4.35 (t, *J* = 7.4 Hz, 1H), 3.02 – 2.82 (m, 2H), 2.09 (m, 1H), 1.93 (m, 1H), 1.77 – 1.68 (m, 2H), 1.58 – 1.49 (m, 2H), 1.28 (s, 9H), 1.08 (m, 2H), 0.91 (t, *J* = 6.4 Hz, 7H), 0.77 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.79, 149.97, 147.79, 139.04, 130.04, 129.44, 127.56, 126.94, 126.32 (q, *J*_{C-F} = 275.9 Hz), 125.79, 74.79, 47.27, 44.64 (q, *J*_{C-F} = 2.7 Hz), 40.96, 39.35 (q, *J*_{C-F} = 28.2 Hz), 34.32, 31.44, 31.29, 26.45, 23.58, 22.05, 20.79, 16.44. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.71. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₃₀H₃₉F₃O: 488.2902; found: 488.2895.

((3aS,5R,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methyl 4-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)benzoate (5ae).

Yellow oil in 43 % yield (76 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.99 (m, 2H), 7.36 – 7.30 (m, 4H), 7.17 – 7.12 (m, 2H), 4.67 – 4.61 (m, 2H), 4.44 (t, *J* = 2.4 Hz, 1H), 4.38 – 4.33 (m, 1H), 4.33 – 4.29 (m, 1H), 4.25 (dd, *J* = 7.9, 1.7 Hz, 1H), 3.95 (dd, *J* = 13.0, 1.9 Hz, 1H), 3.79 (dd, *J* = 12.9, 0.7 Hz, 1H), 2.90 (m, 2H), 1.54 (s, 3H), 1.44 (s, 3H), 1.38 (s, 3H), 1.33 (s, 3H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 165.69, 150.03, 148.20, 138.85, 130.24, 128.48, 127.71, 126.98, 126.28 (q, *J*_{C-F} = 276.1 Hz), 125.79, 109.18, 108.83, 101.67, 70.79, 70.55, 70.10, 65.41, 61.35, 44.64 (q, *J*_{C-F} = 2.6 Hz), 39.40 (q, *J*_{C-F} = 27.6 Hz), 34.43, 31.28, 26.53, 25.85, 25.57, 24.02. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.71. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₃₅H₄₅F₃O₄: 586.3270 ; found: 586.3261.

4-(1-(4-(tert-butyl)phenyl)-3,3-difluoropropyl)benzonitrile (7aa).

Yellow oil in 78 % yield (73 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.39 – 7.32 (m, 4H), 7.15 – 7.11 (m, 2H), 5.59 (dd, *J* = 5.4, 4.4 Hz, 1H), 4.21 (t, *J* = 8.1 Hz, 1H), 2.70 – 2.45 (m, 2H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 150.39, 148.69, 138.11, 132.61, 128.45, 127.20, 126.04, 118.70, 116.10 (t, *J*_{C-F} = 237.9 Hz), 113.72, 110.72, 44.92 (t, *J*_{C-F} = 6.0 Hz), 39.40 (t, *J*_{C-F} = 21.5 Hz), 34.49, 31.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.05, -116.06, -116.81, -116.81, -117.10, -117.10, -117.85, -117.86. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₁F₂N: 313.1642; found: 313.1639.

4-(3,3-difluoro-1-(4-fluorophenyl)propyl)benzonitrile (7ab).

Yellow oil in 73 % yield (60 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.64 - 7.58 (m, 2H), 7.36 - 7.31

(m, 2H), 7.21 - 7.14 (m, 2H), 7.07 - 6.98 (m, 2H), 5.59 (t, J = 4.9 Hz, 1H), 4.25 (t, J = 8.0 Hz, 1H), 2.64 - 2.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.92 (d, $J_{C-F} = 245.2$ Hz), 148.17, 137.07 (d, $J_{C-F} = 3.3$ Hz), 132.72, 129.15 (d, $J_{C-F} = 7.9$ Hz), 128.34, 118.54, 116.07 (d, $J_{C-F} = 21.2$ Hz), 115.85 (t, $J_{C-F} = 238.2$ Hz), 111.01, 44.56 (t, $J_{C-F} = 5.8$ Hz), 39.40 (t, $J_{C-F} = 21.7$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.77, -116.07, -116.83, -116.99, -117.75. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₁F₂N: 275.0922; found:275.0926.

4-(3,3-difluoro-1-(3-methoxyphenyl)propyl)benzonitrile (7ac).

Yellow oil in 69 % yield (59 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.57 (m, 2H), 7.33 – 7.30 (m, 2H), 7.26 – 7.23 (m, 2H), 7.18 (dd, J = 4.4, 2.9 Hz, 2H), 5.61 (m, 1H), 4.47 (t, J = 8.0 Hz, 1H), 2.67 – 2.46 (m, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 148.18, 139.06, 136.28, 132.57, 131.28, 128.72, 127.39, 126.68, 126.29, 118.65, 116.05 (t, J_{C-F} = 238.0 Hz), 110.70, 40.94 (t, J_{C-F} = 5.9 Hz), 39.66 (t, J_{C-F} = 21.5 Hz), 19.76. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.77, -116.53, -116.73, -117.49. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₁₇H₁₅F₃NO: 287.1122; found: 287.1126.

4-(1-(4-cyanophenyl)-3,3-difluoropropyl)phenyl (3r,5r,7r)-adamantane-1-carboxylate (7ad). Yellow oil in 43 % yield (51 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 7.22 – 7.17 (m, 2H), 7.05 – 7.00 (m, 2H), 5.59 (m, 1H), 4.25 (t, J = 8.0 Hz, 1H), 2.64 – 2.50 (m, 2H), 2.10 – 2.05 (m, 3H), 2.03 (d, J = 2.9 Hz, 6H), 1.76 (q, J = 3.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.13, 150.28, 148.15, 138.40, 132.68, 128.51, 128.42, 122.28, 118.58, 115.88 (t, J_{C-F} = 238.0 Hz), 110.94, 44.73 (t, J_{C-F} = 6.1 Hz), 41.05, 39.37 (t, J_{C-F} = 21.6 Hz), 38.73, 36.42, 27.87. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.06, -116.82, -117.06, -117.82. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₇H₂₇F₂NO₂: 435.2010; found: 435.2019.

4-(1-(4-(tert-butyl)phenyl)-3,3,3-trifluoropropyl)benzamide (8)

White solid in 67 % yield (71 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.73 (m, 2H), 7.33 (dd, *J* = 8.4, 3.3 Hz, 4H), 7.18 – 7.11 (m, 2H), 6.39 (s, 2H), 4.35 (t, *J* = 7.3 Hz, 1H), 2.90 (m, 2H), 1.28 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 169.52, 150.03, 147.06, 138.99, 131.88, 127.89, 127.87, 126.97, 126.330 (q, *J*_{C-F} = 2.760 Hz), 125.81, 44.54 (q, *J*_{C-F} = 2.9 Hz), 39.38 (t, *J*_{C-F} = 27.4 Hz), 34.43, 31.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.63. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₀H₂₂F₃NO: 349.1653; found: 349.1661.

(Z)-4-(6,6,6-trifluoro-1,4-diphenylhex-3-en-1-yl)benzonitrile (10)

Yellow oil in 56 % yield (66 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.40 – 7.37 (m, 2H), 7.34 (dd, J = 8.2, 6.8 Hz, 2H), 7.31 – 7.26 (m, 3H), 7.26 – 7.22 (m, 3H), 7.21 – 7.17 (m, 2H), 5.84 (t, J = 7.1 Hz, 1H), 4.16 (t, J = 7.9 Hz, 1H), 3.24 (q, J = 10.6 Hz, 2H), 3.00 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 149.60, 142.48, 141.64, 132.84, 132.46, 131.42 (q, J_{C-F} = 2.7 Hz), 128.91, 128.77, 128.46, 127.89, 127.53, 127.10, 126.37, 125.96 (q, J_{C-F} = 276.5 Hz), 118.88, 110.45, 51.08, 34.83 (q, J_{C-F} = 29.2 Hz), 34.78. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.31. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₅H₂₀F₃N: 391.1548; found: 391.1542.

(Z)-4-(6,6-difluoro-1,4-diphenylhex-3-en-1-yl)benzonitrile (11)

Yellow oil in 43 % yield (51 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.39 – 7.36 (m, 2H), 7.35 – 7.29 (m, 3H), 7.29 – 7.27 (m, 2H), 7.23 (m, 3H), 7.19 – 7.16 (m, 2H), 5.74 (t, *J* = 7.1 Hz, 1H), 5.64 (t, *J* = 4.8 Hz, 1H), 4.15 (t, *J* = 7.9 Hz, 1H), 3.04 – 2.94 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 149.73, 142.62, 141.44, 133.23, 132.40, 130.98, 128.84, 128.82, 128.59, 127.92, 127.56, 127.01, 126.30, 118.90, 115.77 (t, *J*_{C-F} = 240.1 Hz), 110.35, 51.24, 35.52 (t, *J*_{C-F} = 22.6 Hz), 34.52. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.28, -114.30. HRMS (ESI) m/z: [M+H]⁺ Calculated for C₂₅H₂₁F₂N: 373.1642; found: 373.1653.

¹H, ¹³C and ¹⁹F NMR spectra of all products

50

30 20

40

10

0 -10

180 170 160 150 140

10

130

120

-1000

-500

-0

-500

¹⁹F NMR (376 MHz, CDCl₃) of 4aa

S30

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of **4ab**

f1 (ppm)

¹³C NMR (100 MHz, CDCl₃) of 4ad

S35

¹³C NMR (100 MHz, CDCl₃) of 4ae

¹⁹F NMR (376 MHz, CDCl₃) of 4ae

S38

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of 4af

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of **4ah**

¹⁹F NMR (376 MHz, CDCl₃) of 4ai

¹H NMR (400 MHz, CDCl₃) of 4ak

S50

S54

¹³C NMR (100 MHz, CDCl₃) of 4ao

¹³C NMR (100 MHz, CDCl₃) of 4ar

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of 4ar

¹⁹F NMR (376 MHz, CDCl₃) of 4as

¹³C NMR (100 MHz, CDCl₃) of 4at

 f1 (ppm)

 -0 -500

-10

 $\stackrel{1}{0}$

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of 4aw

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of 4ax

S76

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of **4ay**

S79

¹³C NMR (100 MHz, CDCl₃) of **4ba**

19 F NMR (376 MHz, CDCl₃) of **4ba**

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of 4bb

¹³C NMR (100 MHz, CDCl₃) of 5aa

¹⁹F NMR (376 MHz, CDCl₃) of 5aa

¹³C NMR (100 MHz, CDCl₃) of **5ab**

S87

S88

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of **5ac**

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of **5ad**

-10000

¹³C NMR (100 MHz, CDCl₃) of 5ae

¹⁹F NMR (376 MHz, CDCl₃) of 5ae

¹³C NMR (100 MHz, CDCl₃) of 7aa

¹⁹F NMR (376 MHz, CDCl₃) of 7aa

¹H NMR (400 MHz, CDCl₃) of 7ab

f1 (ppm) -10

¹³C NMR (100 MHz, CDCl₃) of 7ac

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of 7ad

90 8 f1 (ppm) ò -10

¹H NMR (400 MHz, CDCl₃) of **10**

$^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of 10

¹H NMR (400 MHz, CDCl₃) of **11**

¹⁹F NMR (376 MHz, CDCl₃) of **11**

1. W. Yu, S. Wang, M. He, Z. Jiang, Y. Yu, J. Lan, J. Luo, P. Wang, X. Qi, T. Wang and A. Lei, *Angew. Chem. Int. Ed.*, 2023, **62**, e202219166.

2. J. Shen, J. Li, M. Chen and Y. Chen, Org. Chem. Front., 2023, 10, 1166-1172.

3. X. Li, J. Zhou, W. Deng, Z. Wang, Y. Wen, Z. Li, Y. Qiu and Y. Huang, *Chem. Sci.*, 2024, **15**, 11418-11427.