Supporting Information

Visible-light organophotoredox-catalyzed fluoroalkyl aminoxylation of unactivated and activated alkenes

Jianhua Ji,^{‡,a} Kangjie Li,^{‡,a} Xiangzhu Zhou,^a Chun Xu,^a Die Zhang^a and Wen Shao^{*,a}

^a Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

^{*} These authors contributed equally to this work.

*Email: shaowen@xtu.edu.cn

List of Contents

1.	General Information	2
2.	Detailed Optimization of Reaction Conditions	3
3.	General Procedure for the Fluoroalkyl Aminoxylation of Alkenes	10
4.	Gram-Scale Reaction on the Synthesis of 4a	11
5.	Derivatizations of Products	12
	5.1 Cleavage the N-O bond of 4a for the synthesis of free alcohol 5	12
	5.2 E1cb elimination reaction for the synthesis of trifluorovinyl compound 6	13
	5.3 Metalation of the bromide 4l and sequential capture with electrophiles	14
6.	Mechanistic Studies	15
	6.1 Attempts using other nucleophiles	15
	6.2 Radical trapping experiments	15
	6.3 Stern–Volmer quenching	20
	6.4 Light on/off experiment	22
	6.5 Cyclic voltammetry experiments	24
7.	Characterization Data of Compounds	25
8.	Copies of NMR Spectra of All Products	60
9.	References	130

1. General Information

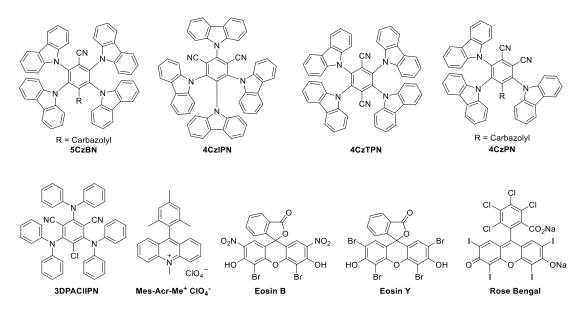
The reactions via general procedure were carried out under an atmosphere of argon unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker-AV (400, 100 and 376 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets, dq = doublet ofquartets, dqd = doublet of quartet of doublets, ddd = doublet of double doublets, m = multiplet or unresolved, br = broad signal), coupling constant (J) in Hz, integration. Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literatures. All reactions were performed in an oil bath when heating was required.

2. Detailed Optimization of Reaction Conditions

Table S1 Optimization of reaction conditions ^a

HO +	Br F Br	Bn ₂ N-OH (3a) PC (1.0 mol%) additive (1.0 equiv) MeOH, blue LED, Ar	HO HO HO HO HO HO HO HO HO HO HO HO HO H
1a	2a		4a F ^{Br}

Entry	[PC]	Additive	Yield (%) ^b
1	Ru(bpy) ₃ Cl·6H ₂ O	Et ₃ N	12
2	[Ir(dF(CF ₃)ppy) ₂ (dtbbpy)]PF ₆	Et ₃ N	43
3	Eosin B	Et ₃ N	trace
4	Rose bengal	Et ₃ N	trace
5	4CzIPN	Et ₃ N	76
6	4CzIPN	Et ₃ N	N.D. ^c
7	-	Et ₃ N	N.D.
8	4CzIPN	-	75
9	4CzIPN	H_2O	67
10	4CzIPN	Cs_2CO_3	64
11	4CzIPN	<i>i</i> -Pr ₂ NEt	89
12	4CzIPN	<i>i</i> -Pr ₂ NEt	$87(81)^d$


^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), **3a** (0.3 mmol), photocatalyst (1 mol %), additive (1.0 equiv) in MeOH (2.0 mL) at room temperature, Ar, 12 h, irradiation with 35W blue LED strips ($\lambda_{max} = 460$ nm). ^{*b*} Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard (isolated yield in parentheses). ^{*c*} No light. ^{*d*} **1a** (0.2 mmol), **2a** (1.5 equiv), **3a** (1.2 equiv), 6 h. N.D. = not detected.

Initially, we employed biomass eugenol (1a), commercial coolant 1,2dibromotetrafluoroethane (2a) and *N*,*N*-dibenzylhydroxylamine (3a) as model substrates to evaluate the reaction parameters, such as the photocatalysts, solvent, and additives (Table S1). As participated, the desired product **4a** was obtained in 12% yield when the reaction was carried out in the presence of Ru(bpy)₃Cl·6H₂O and Et₃N in MeOH with irradiation of blue LED for 12 h (entry 1). Subsequently, various photocatalysts, including Ir-complex, Eosin B, Rose bengal and 4CzIPN were also explored (entries 2–5). Among them, 4CzIPN exhibited a better catalytic efficiency, and the yield of **4a** could be dramatically increased to 76% (entry 5). The photochemical nature of this transformation was confirmed when control experiments in the absence of light irradiation or the photocatalyst showed no conversion to product **4a** (entries 6-7). To our delight, the yield of **4a** was increased to 89% when the *i*-Pr₂NEt was employed as an additive (entries 8-11). The further optimization for the ratio of substrates was also tested, and the process did not affect when the ratio of **1a**, **2a** and **3a** was adjusted to 1:1.5:1.2 at a shortened time of 6 hours (entry 12).

HO 1a	+ Br + Br + Br + Br + Br + Br + Hr +	
Entry	Photocatalyst	Yield (%) ^b
1	None	0
2	5CzBN	75
3	4CzIPN	76
4	4CzTPN	14
5	4CzPN	trace
6	3DPACIIPN	14
7	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆	43
8	Ru(bpy) ₃ Cl·6H ₂ O	12
9	Mes-Acr-Me ⁺ ClO ₄ ⁻	trace
10	Eosin B	trace
11	Eosin Y	trace
12	Rose bengal	trace

Table S2. Optimization of photocatalyst ^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), **3a** (1.5 equiv), photocatalyst (1.0 mol%), Et₃N (1.0 equiv) in MeOH (2.0 mL) at room temperature, Ar, 12 h, irradiation with blue LED strips ($\lambda_{max} = 460$ nm). ^{*b*} Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard.

HO 1a	Br + ^{Bn} ∖N ^{∽Bn} − F F OH − 2a 3a	4CzIPN Et₃N Solvent Blue LED, Ar, 12 h	HO HO HO HO HO HO HO HO HO HO HO HO HO H
Entry	Solvent		Yield (%) ^b
1	MeOH		76
2	MeCN		32
3	THF		38
4	EtOH		30
5	EtOAc		36
6	DMF		44
7	DMSO		50
8	CH ₂ Cl ₂		28
9	CF ₃ CH ₂ OH		18
10	<i>i</i> -PrOH		42
11	<i>t</i> -BuOH		20

 Table S3. Optimization of solvent ^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), **3a** (1.5 equiv), 4CzIPN (1.0 mol%), Et₃N (1.0 equiv) in corresponding solvents (2.0 mL) at room temperature, Ar, 12 h, irradiation with blue LED strips ($\lambda_{max} = 460$ nm). ^{*b*} Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard.

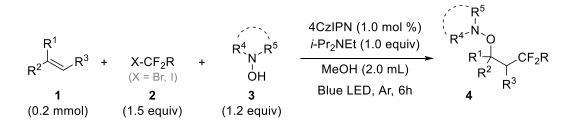
HO 1a	$Br + Bn N^{Bn}$ F F OH 2a 3a	Additive MeOH Blue LED, Ar, 12 h Additive HO HO HO HO HO HO HO HO HO HO
Entry	Additive	Yield (%) ^b
1	-	75
2	Et ₃ N	76
3	Et ₂ NH	70
4	LiOt-Bu	54
5	CS_2CO_3	64
6	H ₂ O	67
7	<i>i</i> -Pr ₂ NEt	89
8	NH4Br	68
9	(NBu ₄)Br	76

Table S4. Optimization of additives ^a

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (1.5 equiv), **3a** (1.5 equiv), 4CzIPN (1.0 mol%), additive (1.0 equiv) in MeOH (2.0 mL) at room temperature, Ar, 12 h, irradiation with blue LED strips ($\lambda_{max} = 460$ nm). ^{*b*} Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard.

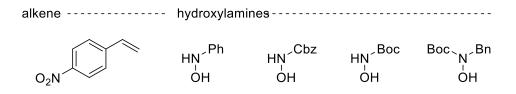
HO 1a	F F F 2a (m equiv)	Bn N ^{Bn} OH 3a (n equiv)	4CzIPN <i>i</i> -Pr ₂ NEt MeOH Blue LED, Ar, 12 h	$HO \qquad F = F = F = F = F = F = F = F = F = F$
Entry	m		n	Yield (%) ^b
1	1.5		1.2	88(81)
2	1.5		1.5	89
3	1.5		2.0	81
4	1.5		2.5	81
5	1.2		1.2	75
6	2.0		1.2	88

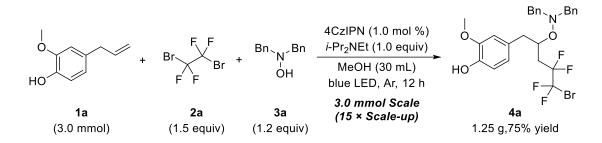
 Table S5. Optimization of equivalent of substrates ^a


^{*a*} Reaction Conditions: **1a** (0.1 mmol), **2a** (m equiv), **3a** (n equiv), 4CzIPN (1.0 mol%), *i*-Pr₂NEt (1.0 equiv) in MeOH (2.0 mL) at room temperature, Ar, 12 h, irradiation with blue LED strips ($\lambda_{max} = 460$ nm). ^{*b*} Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard (isolated yield in parentheses).

Bn_NBn 4CzIPN 0 Ć Bn Bn *i*-Pr₂NEt MeOH όн HO HO Blue LED, Ar, time Br 1a 2a 3a 4a (1.5 equiv) (1.2 equiv) Yield (%) ^b Entry Time 1 3 h 60 2 87(81) 6 h 3 88(81) 12 h

Table S6. Optimization of reaction time ^a


^{*a*} Reaction Conditions: **1a** (0.1 mmol), **2a** (1.5 equiv), **3a** (1.2 equiv), 4CzIPN (1.0 mol%), *i*-Pr₂NEt (1.0 equiv) in MeOH (2.0 mL) at room temperature, Ar, irradiation with blue LED strips ($\lambda_{max} = 460$ nm). ^{*b*} Determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard (isolated yield in parentheses).


3. General Procedure for the Organophotoredox-Catalyzed Fluoroalkyl Aminoxylation of Alkenes

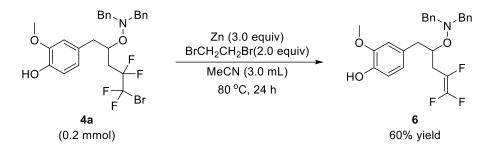
Under argon atmosphere, to a flame-dried 10 mL Schlenk tube were added 1 (0.2 mmol), 2 (0.3 mmol, 1.5 equiv), 3 (0.24 mmol, 1.2 equiv), 4CzIPN (1.6 mg, 0.002 mmol, 1.0 mol%), *i*-Pr₂NEt (35 μ L, 0.2 mmol, 1.0 equiv) and MeOH (2.0 mL), then the tube was sealed. The mixture was stirred under the irradiation of blue LED strips (light-emitting diode, $\lambda_{max} = 460$ nm) at room temperature under Ar atmosphere for 6 h. After complete consumption of 1 (determined by TLC), the reaction mixture was concentrated under vacuum to afford the crude mixture. The diastereoisomeric ratio was determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as an internal standard. The residue was purified by silica gel flash column chromatography (typically using petroleum ether to PE/EtOAc = 20:1 as elution) or prepared thin layer chromatography to afford the target products **4**.

Unsuccessful substrates:

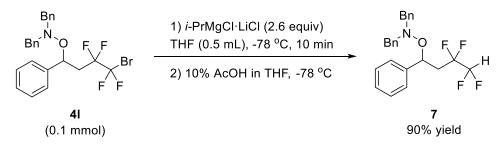


4. Gram-Scale Reaction on the Synthesis of 4a

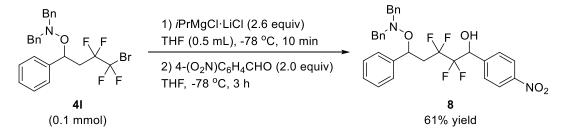
A 100 mL Schlenk tube was flame-dried and cooled down under Ar atmosphere. To the Schlenk tube were added **1a** (3.0 mmol, 493 mg, 1.0 equiv), **2a** (4.5 mmol, 1.17 g, 1.5 equiv), **3a** (3.6 mmol, 768 mg, 1.2 equiv), 4CzIPN (0.03 mmol, 23.7 mg, 1.0 mol%), *i*-Pr₂NEt (3.0 mmol, 522 μ L, 1.0 equiv) and MeOH (30 mL), then sealed. The mixture was stirred under the irradiation of blue LED strips (light-emitting diode, $\lambda_{max} = 460$ nm) at room temperature under Ar atmosphere for 12 h. After complete consumption of **1a** (determined by TLC), the reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate and concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (petroleum ether) to afford the pure product **4a** as a colorless viscous oil (1.25 g, 75% yield).


5. Derivatizations of Products

5.1 Cleavage the N-O bond of 4a for the synthesis of free alcohol 5^[1]

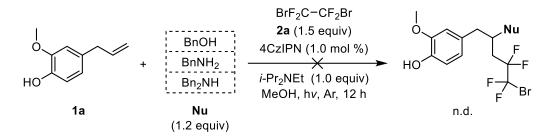

To a 10 mL Schlenk tube, 10 w.t.% Pd/C (30 mg) was added to a solution of **4a** (0.2 mmol, 111.3 mg) in EtOH (5.0 mL). The mixture was stirred under a hydrogen atmosphere (balloon) at 80 °C for 36 hours. After complete consumption of **4a** (determined by TLC), the reaction mixture was filtered over a short pad of silica gel, washed with MeOH (3×5 mL) and concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford free alcohol **5** as a colorless viscous oil (52.0 mg, 72% yield).

5.2 E1cb elimination reaction for the synthesis of trifluorovinyl compound 6^[2]


Under Ar atmosphere, to a flame-dried 10 mL Schlenk tube were added the starting material **4a** (0.2 mmol, 111.3 mg), activated zinc powder (0.6 mmol, 19.5 mg) and MeCN (3.0 mL). Subsequently, 1,2-dibromoethane compound was added via syringe (0,4 mmol, 2 equiv). The reaction mixture was reflux at 80 °C for 24 hours. After complete consumption of **1a** (determined by TLC), the reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate and concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford trifluorovinyl compound **6** as a colorless viscous oil (54.8 mg, 60% yield).

5.3 Metalation of the bromide 4l and sequential capture with electrophiles ^[3]
(1) Synthesis of -CF₂CF₂H moiety-containing compounds 7

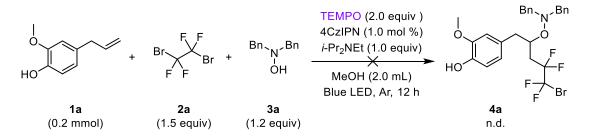
Product **41** (0.1 mmol, 49.6 mg) was dissolved in anhydrous THF (0.5 mL) and cooled to -78 °C. A solution of *i*-PrMgCl·LiCl (Turbo Grignard) in THF (0.2 mmol, 1.3 M, 200 µL) was added dropwise. After stirred 10 min at -78 °C, the reaction was quenched by the addition of 10% AcOH in THF (1.0 mL). Saturated aqueous NH₄Cl (5.0 mL) was added, the product was extracted with CH₂Cl₂ (3 × 4 mL), dried with MgSO₄, then filtered over Celite, and concentrated under vacuum. The crude product was purified by silica gel column chromatography (petroleum ether/dichloromethane = 10: 1) to afford 7 as a colorless oil (37.5 mg, 90% yield).


(2) Organomagnesium intermediate trapped by aldehyde

Product **41** (0.1 mmol, 49.6 mg) was dissolved in anhydrous THF (0.5 mL) and cooled to -78 °C. A solution of *i*-PrMgCl·LiCl (Turbo Grignard) in THF (0.26 mmol, 1.3 M, 200 µL) was added dropwise. After stirred 10 min at -78 °C, a solution of 4-nitrobenzaldehyde (0.2 mmol, 30.3 mg) in THF (0.3 mL) was introduced, and the mixture was stirred for 3 hours while warming up to rt. Then quenched by saturated aqueous NH₄Cl (5.0 mL). The mixture was extracted with CH₂Cl₂ (3 × 4 mL), dried with MgSO₄, then filtered over Celite, and concentrated under vacuum. The crude product was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5: 1) to afford **8** as a colorless oil (34.5 mg, 61% yield, 1:1 dr).

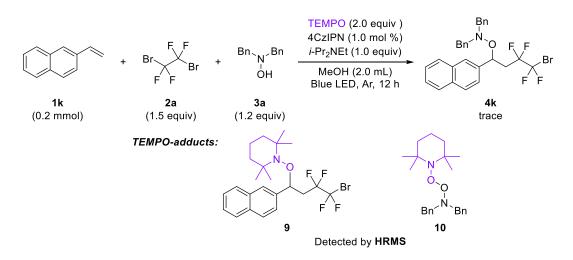
6. Mechanistic Studies

6.1 Attempts using other nucleophiles

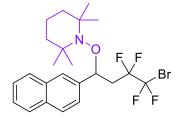


Under argon atmosphere, to a flame-dried 10 mL Schlenk tube were added **1a** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv), BnOH or BnNH₂/Bn₂NH (0.24 mmol, 1.2 equiv), 4CzIPN (1.6 mg, 0.002 mmol, 1.0 mol%), *i*-Pr₂NEt (35 μ L, 0.2 mmol, 1.0 equiv), and MeOH (2.0 mL), then the tube was sealed. The mixture was stirred under the irradiation of blue LED strips (light-emitting diode, $\lambda_{max} = 460$ nm) at room temperature under Ar atmosphere for 6 h. None of difunctionalized products could be detected by TLC and ¹H NMR and ¹⁹F NMR analysis.

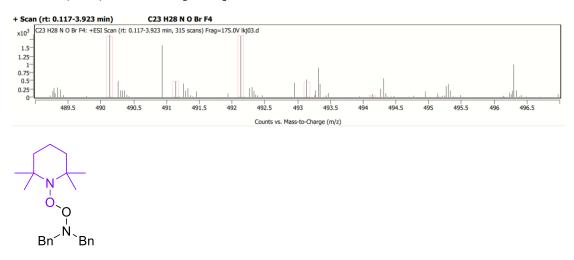
Replacement of hydroxylamine with other alcohol or amine nucleophiles, however, none of difunctionalized products could be detected under the standard conditions, but with recovery of starting material **1a**. These attempts could rule out the carbo-cation intermediate involved in this photocatalytic cycle.


6.2 Radical trapping experiments

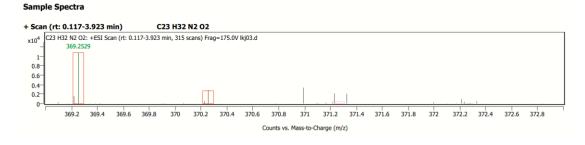
6.2.1 TEMPO trapping experiments

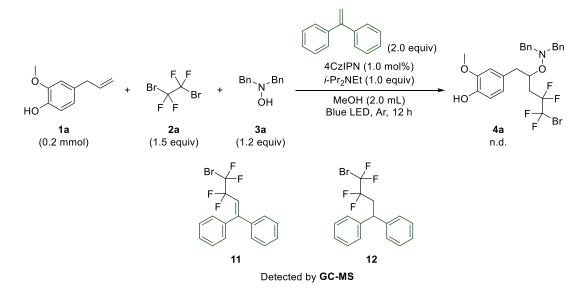

Under argon atmosphere, to a flame-dried 10 mL Schlenk tube were added **1a** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.24 mmol, 1.2 equiv), 4CzIPN (1.6 mg, 0.002 mmol, 1.0 mol%), *i*-Pr₂NEt (35 μ L, 0.2 mmol, 1.0 equiv), 2,2,6,6-tetramethyl-1-

piperidinyloxy (**TEMPO**) (62.8 mg, 0.4 mmol, 2.0 equiv) and MeOH (2.0 mL), then the tube was sealed. The mixture was stirred under the irradiation of blue LED strips (light-emitting diode, $\lambda_{max} = 460$ nm) at room temperature under Ar atmosphere for 6 h. No production of **4a** was determined by TLC and ¹⁹F NMR analysis, with starting material remained. *However, no TEMPO-adduct was detected, probably due to the less stability of the carbo-radical intermediate (intermediate B in Scheme 5d).*



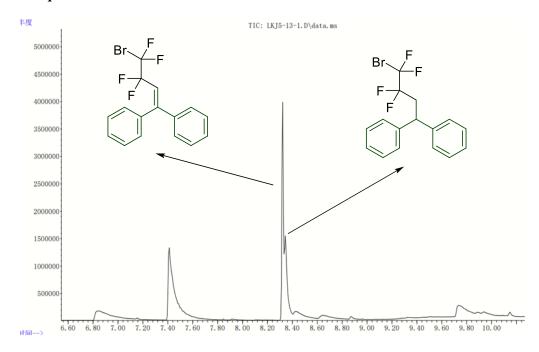
Under argon atmosphere, to a flame-dried 10 mL Schlenk tube were added **1k** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.24 mmol, 1.2 equiv), 4CzIPN (1.6 mg, 0.002 mmol, 1.0 mol%), *i*-Pr₂NEt (35 μ L, 0.2 mmol, 1.0 equiv), 2,2,6,6-tetramethyl-1-piperidinyloxy (**TEMPO**) (62.8 mg, 0.4 mmol, 2.0 equiv) and MeOH (2.0 mL), then the tube was sealed. The mixture was stirred under the irradiation of blue LED strips (light-emitting diode, $\lambda_{max} = 460$ nm) at room temperature under Ar atmosphere for 12 h. The reaction was determined by HRMS and ¹⁹F NMR analysis. Trace amount of product **4k** was determined by TLC and ¹⁹F NMR analysis. *However, in this case, TEMPO-adducts could be detected by HRMS, probably due to the more stability of the benzylic carbo-radical intermediate (intermediate B in Scheme 5d).*


HRMS detection for reaction

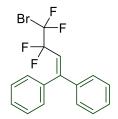

HRMS (ESI⁺): calculated $[M+H]^+$ for C₂₃H₂₉BrF₄NO⁺: 490.1363; found: 490.1356.

HRMS (ESI⁺): calculated $[M+H]^+$ for C₂₃H₃₃N₂O₂⁺: 369.2537; found: 369.2529.

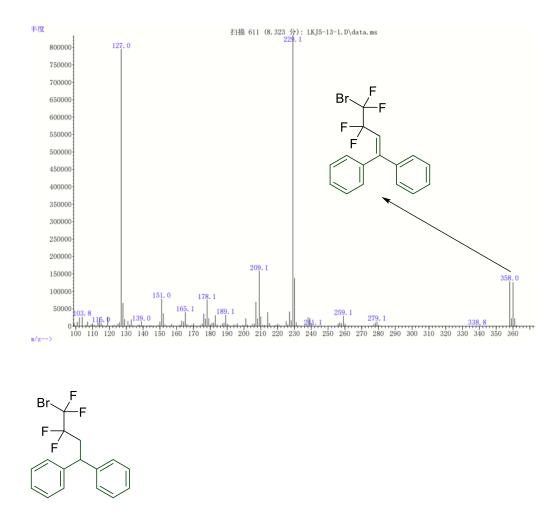
6.2.2 1,1-Diphenylethylene trapping experiment

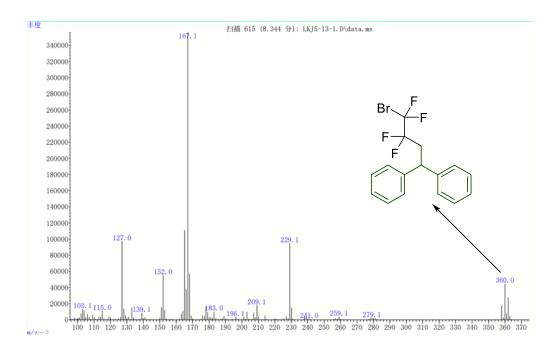

Under argon atmosphere, to a flame-dried 10 mL Schlenk tube were added 1a (0.2 mmol), 2a (0.3 mmol, 1.5 equiv), 3a (0.24 mmol, 1.2 equiv), 4CzIPN (1.6 mg, 0.002 mmol, 1.0 mol%), i-Pr2NEt (35 µL, 0.2 mmol, 1.0 equiv), 1,1-diphenylethylene (72.1 mg, 0.4 mmol, 2.0 equiv) and MeOH (2.0 mL), then the tube was sealed. The mixture **S17**

was stirred under the irradiation of blue LED strips (light-emitting diode, $\lambda_{max} = 460$ nm) at room temperature under Ar atmosphere for 12 h. No production of **4a** was determined by TLC and ¹⁹F NMR analysis. *However, in this case, the adducts between fluoroalkyl radical and 1,1-diphenylethylene could be detected by GC-MS*.

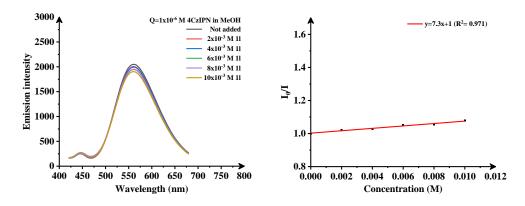

Fluoroalkyl radical (\cdot CF₂R) could be captured by 1,1-diphenylethylene, which was supported by GC-MS spectroscopy. These experiments indicated a radical pathway should be participated in this process.

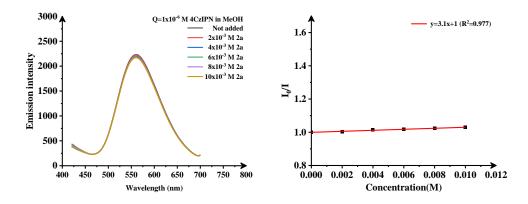
GC-MS detection for reaction


GC spectrum:


MS spectra:

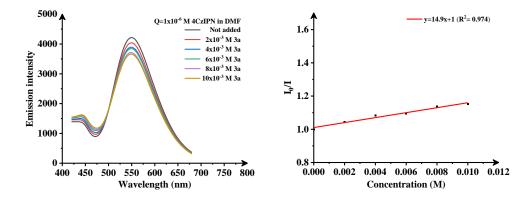
GCMS: calcd [M] for C₁₆H₁₁BrF₄: 357.9980; found 358.0 : 360.0 = 1 : 1


GCMS: calcd [M] for $C_{16}H_{13}BrF_4$: 360.0137; found 360.0 : 362.0 = 3 : 2

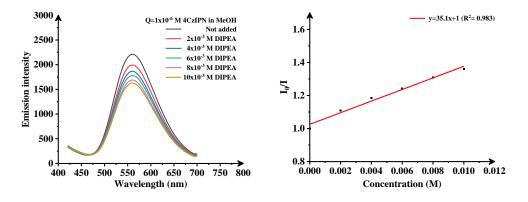

6.3 Stern–Volmer quenching

Formulation solution: Styrene (**11**, 115 μ L, 1.0 mmol) was dissolved in MeOH in a 5 mL volumetric flask to set the concentration to be 0.2 M. 1,2dibromotetrafluoroethane (**2a**, 120 μ L, 1.0 mmol) was dissolved in MeOH in a 5 mL volumetric flask to set the concentration to be 0.2 M. <u>Due to the poor solubility of N,Ndibenzylhydroxylamine in methanol</u>, N,N-dibenzylhydroxylamine (**3a**, 213.3 mg, 1.0 mmol) was dissolved in DMF in a 5 mL volumetric flask to set the concentration to be 0.2 M. DIPEA (174 μ L, 1.0 mmol) was dissolved in MeOH in a 5 mL volumetric flask to set the concentration to be 0.2 M. Photocatalyst 4CzIPN (2 mg, 0.0025 mmol) was dissolved in MeOH or DMF (25.0 mL) to set the concentration to be 0.1 mM.

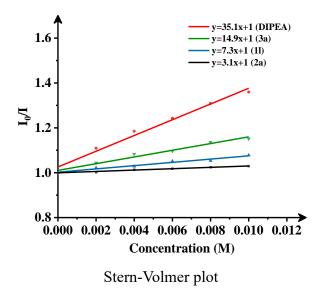
Experimental procedure: The resulting 0.1 mM solution of catalyst (20 μ L) was added to cuvette, then diluted to a volume of 2.0 mL by adding MeOH or DMF to prepare a 1.0 μ M solution. The resulting mixture was sparged with argon for 2 minutes and then irradiated at 360 nm. Fluorescence emission spectra were recorded. Into this solution, corresponding amount solution of each reaction reagent (**11**, **2a**, **3a** or DIPEA) was successively added in a gradient of 20 μ L and uniformly stirred, and the resulting mixture was bubbled with argon for 2 minutes and irradiated at 360 nm. Fluorescence intensity of 0 μ L, 20.0 μ L, 40.0 μ L, 60.0 μ L, 80.0 μ L for each component was recorded. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn. The results were shown in the following figures.



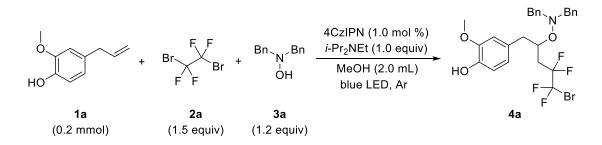
Emission quenching of 4CzIPN with styrene (11) in MeOH



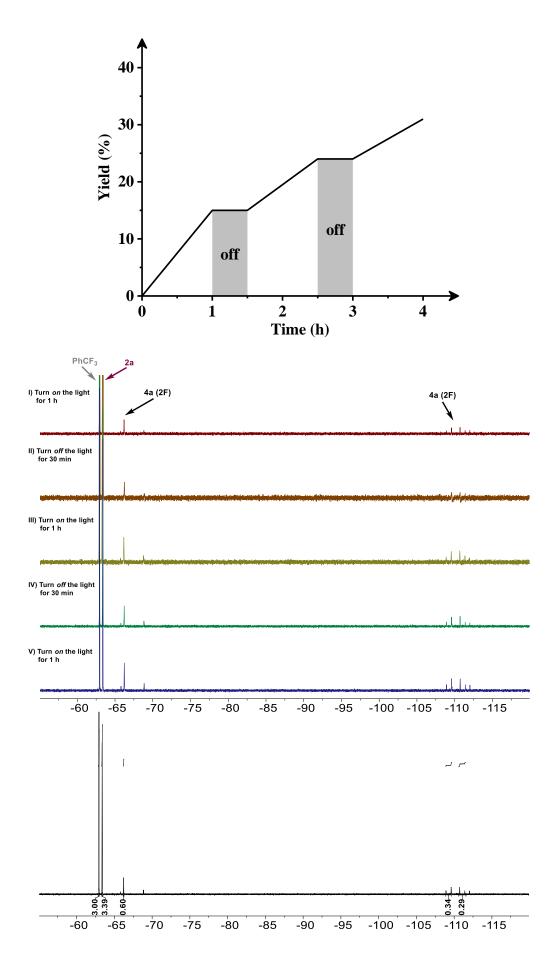
Emission quenching of 4CzIPN with 1,2-dibromotetrafluoroethane (2a) in MeOH


Due to the poor solubility of N,N-dibenzylhydroxylamine (**3a**) in MeOH, fluorescence quenching experiment by N,N-dibenzylhydroxylamine (**3a**) was conducted in DMF.

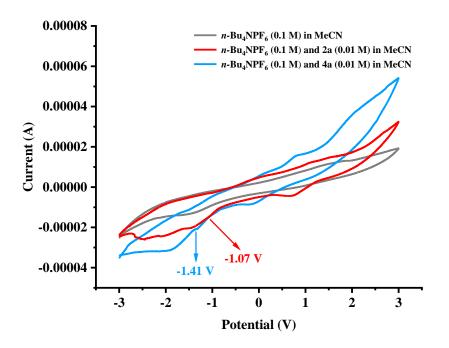
Emission quenching of 4CzIPN with N,N-Dibenzylhydroxylamine (3a) in DMF



Emission quenching of 4CzIPN with DIPEA in MeOH


The Stern–Volmer plot suggests that a strong interaction exists between excited photocatalyst and *i*- Pr_2NEt , revealing a direct energy transfer between them. However, in the absence of tertiary amine, hydroxylamine **3a** could also act as a reductive quencher for excited-state 4CzIPN.

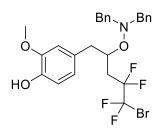
6.4 Light on/off experiment


Under argon atmosphere, to a flame-dried 10 mL Schlenk tube were added **1a** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv), **3a** (0.24 mmol, 1.2 equiv), 4CzIPN (1.6 mg, 0.002 mmol, 1.0 mol%), *i*-Pr₂NEt (35 μ L, 0.2 mmol, 1.0 equiv), PhCF₃ (0.2 mmol, 1.0 equiv) and MeOH (2.0 mL), then the tube was sealed. Subsequent samples (each 80 μ L) were taken at fixed time and determined by ¹⁹F NMR analysis of the crude reaction mixture using PhCF₃ as internal standard.

The light on/off experiment demonstrates the continuous irradiation is essential for this transformation, thus excluding the mechanism of atom transfer radical addition (ATRA) process.

6.5 Cyclic voltammetry experiments

Cyclic voltammetry (CV) experiments were conducted in a 20 mL glass vial fitted with a glassy carbon working electrode, a silver/silver chloride electrode (Ag/AgCl) submerged in saturated aqueous KCl solution reference electrode, and a platinum wire counter electrode (CE). All measurements were carried out in 20 mL anhydrous MeCN, using a scan rate of 100 mV/s.



The cyclic voltammetry (CV) experiments of dibromoperfluoroalkane **2a** and product **4a** was performed. Two weak reductive peaks could be observed at -1.07 V (for **2a**) and -1.41 V (for **4a**), respectively. From literature report,^[4] we could know that 4CzIPN possess a -1.21 V reduction potential [$E_{1/2}$ (PC/PC⁻)]. Based on these data, it could be figured out why the radical anion of 4CzIPN is unable to further reduce products **4** to produce the double substitution of 1,2-dibromotetrafluoroethane **2a**.

7. Characterization Data of Compounds

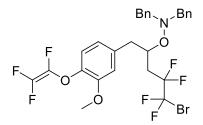
4-(5-bromo-2-((dibenzylamino)oxy)-4,4,5,5-tetrafluoropentyl)-2-methoxyphenol

(4a)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4a** as a colorless viscous oil (90.1 mg, 81% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.31 – 7.19 (m, 10H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.1 Hz, 1H), 6.57 (s, 1H), 5.54 (s, 1H), 3.84 – 3.70 (m, 8H), 2.64 (dd, *J* = 14.3, 7.2 Hz, 1H), 2.54 (dd, *J* = 14.3, 4.9 Hz, 1H), 2.20 – 2.05 (m, 1H), 1.65 – 1.54 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.1, 144.1, 137.3, 129.8, 129.7, 128.2, 127.3, 122.5, 117.6 (tt, *J* = 310.2, 39.6 Hz), 117.0 (tt, *J* = 253.5, 31.0 Hz), 114.0, 112.1, 75.4, 62.2, 55.8, 39.6, 32.3 (t, *J* = 20.9 Hz).


¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -65.9 (s, 2F), -108.9 (dt, J = 255.5, 3.7 Hz, 1F),
-110.8 (dt, J = 255.7, 3.9 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{26}H_{26}BrF_4NO_3Na^+$: 578.0924; found: 578.0929.

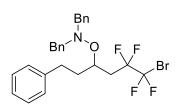
IR (neat) v (cm⁻¹): 3031, 2925, 2846, 1736, 1514, 1453, 1372, 1237, 1146, 1083, 1035, 905, 743, 698, 636, 590, 565.

N,N-dibenzyl-O-(5-bromo-4,4,5,5-tetrafluoro-1-(3-methoxy-4-((1,2,2-

trifluorovinyl)oxy)phenyl)pentan-2-yl)hydroxylamine (4b)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4b** as a colorless viscous oil (57.3 mg, 45% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.22 – 7.10 (m, 10H), 6.88 (d, *J* = 8.6 Hz, 1H), 6.58 (d, *J* = 6.1 Hz, 2H), 3.79 – 3.64 (m, 8H), 2.54 (d, *J* = 5.9 Hz, 2H), 2.22 – 2.02 (m, 1H), 1.51 – 1.39 (m, 1H).


¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 149.0, 146.7 (ddd, *J* = 277.7, 272.8, 62.1 Hz), 142.4, 137.1, 135.6, 134.1 (ddd, *J* = 262.1, 47.1, 41.7 Hz), 129.7, 128.2, 127.4, 121.9, 117.5 (tt, *J* = 310.0, 39.6 Hz), 117.0 (tt, *J* = 253.4, 31.2 Hz), 116.0, 114.4, 75.1, 62.4, 56.0, 39.7, 32.2 (t, *J* = 20.8 Hz).

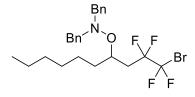
¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -108.7 (dt, J = 255.5, 3.6 Hz, 1F),
-111.0 (dt, J = 255.7, 4.0 Hz, 1F), -120.6 (dd, J = 98.8, 58.0 Hz, 1F), -126.9 (dd, J = 109.4, 98.9 Hz, 1F), -134.1 (dd, J = 109.4, 58.1 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{28}H_{25}BrF_7NO_3Na^+$: 658.0798; found: 658.0824.

IR (neat) v (cm⁻¹): 2931, 1604, 1510, 1454, 1421, 1269, 1200, 1084, 1036, 906, 741, 618, 588, 538.

N,*N*-dibenzyl-O-(6-bromo-5,5,6,6-tetrafluoro-1-phenylhexan-3-yl)hydroxylamine (4c)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate =20:1) to afford 4c as a colorless viscous oil (63.9 mg, 61% yield).

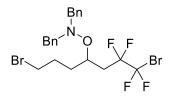

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.42 – 7.12 (m, 15H), 4.14 – 3.64 (m, 5H), 2.80 – 2.67 (m, 1H), 2.54 – 2.41 (m, 1H), 2.38 – 2.19 (m, 1H), 1.87 – 1.76 (m, 1H), 1.76 – 1.64 (m, 1H), 1.63 – 1.49 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) =141.8, 137.4, 129.8, 128.3, 128.3, 127.5, 125.8, 117.6 (tt, *J* = 310.0, 39.7 Hz), 117.0 (tt, *J* = 253.0, 31.0.0 Hz), 73.8, 62.3, 35.4, 32.9 (t, *J* = 20.9 Hz), 31.3

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -65.9 (s, 2F), -108.7 (dt, *J* = 255.6, 3.5 Hz, 1F), -111.8 (dt, *J* = 255.8, 4.0 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₆H₂₆BrF₄NONa⁺: 546.1026; found: 546.1040. **IR** (neat) ν (cm⁻¹): .3029, 2927, 1603, 1495, 1454, 1208, 1144, 1119, 1028, 903, 744, 687, 569, 537.

N,N-dibenzyl-O-(1-bromo-1,1,2,2-tetrafluorodecan-4-yl)hydroxylamine (4d)


Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4d** as a colorless viscous oil (68.5 mg, 68% yield).

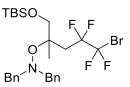
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.39 – 7.25 (m, 10H), 4.05 – 3.60 (m, 5H), 2.30 – 2.11 (m, 1H), 1.61 – 1.14 (m, 11H), 0.90 (t, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.5, 129.7, 128.2, 127.4, 117.7 (tt, *J* = 310.2, 39.7 Hz), 117.0 (tt, *J* = 253.0, 30.9 Hz), 74.3, 62.3, 33.8, 33.0 (t, *J* = 20.9 Hz), 31.7, 29.2, 25.0, 22.6, 14.1.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -65.8 (s, 2F), -109.0 (dt, J = 255.5, 3.6 Hz, 1F),
-111.7 (dt, J = 255.7, 3.8 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₄H₃₀BrF₄NONa⁺: 526.1339; found: 526.1354. **IR** (neat) ν (cm⁻¹): 3032, 2926, 2854, 1495, 1454, 1208, 1144, 1077, 1029, 904, 746, 697, 649, 556. N,N-dibenzyl-O-(1,7-dibromo-1,1,2,2-tetrafluoroheptan-4-yl)hydroxylamine (4e)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4e** as a colorless viscous oil (73.6 mg, 68% yield).


¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.40 – 7.26 (m, 10H), 4.00 – 3.65 (m, 5H), 3.21 (td, J = 6.8, 1.8 Hz, 2H), 2.40 – 2.18 (m, 1H), 1.91 – 1.80 (m, 1H), 1.66 – 1.41 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 137.3, 129.7, 128.3, 127.5, 117.5 (tt, J = 310.1, 39.6 Hz), 116.9 (tt, J = 253.2, 30.8 Hz), 73.6, 62.5, 33.4, 32.8 (t, J = 20.9 Hz), 32.5, 28.3.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -108.9 (dt, J = 255.8, 3.4 Hz, 1F),
-111.8 (dt, J = 255.5, 3.5 Hz, 1F).

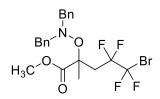
HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{21}H_{23}Br_2F_4NONa^+$: 561.9975; found: 561.9992.

IR (neat) v (cm⁻¹): 2922, 1496, 1454, 1255,1208, 1143, 1079, 1030, 905, 745, 698, 647, 585.

N,*N*-dibenzyl-*O*-(5-bromo-1-((tert-butyldimethylsilyl)oxy)-4,4,5,5-tetrafluoro-2methylpentan-2-yl)hydroxylamine (4f)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4f** as a colorless viscous oil (60.2 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = δ 7.38 – 7.23 (m, 10H), 4.00 – 3.75 (m, 4H), 3.60 – 3.18 (m, 2H), 2.44 – 2.25 (m, 1H), 2.19 – 2.00 (m, 1H), 0.88 (s, 9H), 0.00 (s, 6H).


¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.4, 129.8, 128.2, 127.4, 118.0 (tt, *J* = 310.9, 40.0 Hz), 117.4 (tt, *J* = 255.1, 30.6 Hz), 80.8, 66.6, 62.4, 33.5 (t, *J* = 20.3 Hz), 25.8, 20.2, 18.1, -5.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -65.7 (s, 2F), -108.7 (s, 1F), -108.8 (s, 1F).

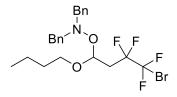
HRMS (ESI⁺): calculated $[M+Na]^+$ for C₂₇H₃₆BrF₄NO₂SiNa⁺: 600.1527; found: 600.1552.

IR (neat) v (cm⁻¹): 2929, 1455, 1361, 1251, 1210, 1146, 1098, 1072, 905, 835, 775, 737, 697, 670, 563, 538.

Methyl 5-bromo-2-((dibenzylamino)oxy)-4,4,5,5-tetrafluoro-2-methylpentanoate (4g)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4g** as a colorless viscous oil (57.1 mg, 58% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.36 – 7.22 (m, 10H), 3.99 – 3.78 (m, 4H), 3.72 (s, 3H), 2.86 – 2.70 (m, 1H), 2.12 – 1.90 (m, 1H), 1.47 (s, 3H).


¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 171.4, 136.7, 129.9, 128.3, 127.5, 117.3 (tt, *J* = 310.3, 39.4 Hz), 116.3 (tt, *J* = 254.9, 31.2 Hz), 80.3, 62.0, 52.3, 36.7 (t, *J* = 20.1 Hz), 20.9.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.41 (s, 2F), -106.1 (dd, J = 257.5, 5.0 Hz, 1F), -110.8 (dd, J = 257.5, 5.1 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{21}H_{22}BrF_4NO_3Na^+$: 514.0611; found: 514.0642.

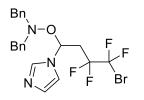
IR (neat) v (cm⁻¹): 2952, 1742, 1495, 1454, 1315,1248, 1204, 1147, 1113, 1073, 985, 908, 749, 697, 583, 544.

N,N-dibenzyl-O-(4-bromo-1-butoxy-3,3,4,4-tetrafluorobutyl)hydroxylamine (4h)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4h** as a colorless viscous oil (43.4 mg, 44% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.38 – 7.27 (m, 10H), 4.67 (dd, J = 7.8, 2.8 Hz, 1H), 4.11 – 3.78 (m, 5H), 3.39 (dt, J = 9.4, 6.8 Hz, 1H), 2.21 – 2.05 (m, 1H), 1.95 – 1.80 (m, 1H), 1.52 – 1.43 (m, 2H), 1.35 – 1.29 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.1, 129.6, 128.3, 127.6, 117.4 (tt, *J* = 310.2, 39.4 Hz), 115.9 (tt, *J* = 253.4, 31.2 Hz), 101.1, 69.6, 62.9, 34.6 (t, *J* = 20.8 Hz), 31.7, 19.1, 13.8.


¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.2 (s, 2F), -109.8 (dt, J = 257.6, 3.5 Hz, 1F),
-111.8 (dt, J = 258.1, 4.1 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for C₂₂H₂₆BrF₄NO₂Na⁺: 514.0975; found: 514.0993.

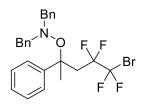
IR (neat) v (cm⁻¹): 3031, 2930, 1454, 1379, 1143,1086, 962, 907, 747, 698, 615, 579, 554.

N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(1H-imidazol-1-

yl)butyl)hydroxylamine (4i)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 3:1) to afford **4i** as a white solid (71.0 mg, 73% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.46 (s, 1H), 7.32 – 7.06 (m, 10H), 6.96 (s, 1H), 6.84 (s, 1H), 5.05 (dd, *J* = 7.1, 5.3 Hz, 1H), 3.81 – 3.47 (m, 4H), 2.48 – 2.29 (m, 2H).
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.2, 136.3, 130.2, 129.6, 128.5, 127.8, 116.7 (tt, *J* = 309.6, 38.5 Hz), 115.7, 114.9 (tt, *J* = 255.4, 31.9 Hz), 82.6, 64.5, 34.3 (t, *J* = 21.5 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.7 (s, 2F), -111.5 (dt, *J* = 14.3, 3.7 Hz, 2F). **m.p.** = 52-54 °C

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{21}H_{20}BrF_4N_3ONa^+$: 508.0618; found: 508.0640.

IR (neat) v (cm⁻¹): 2924, 2850, 1493, 1454, 1384, 1304, 1252, 1223, 1140, 1103, 1030, 977, 914, 860, 806, 751, 737, 696, 660, 561, 544.

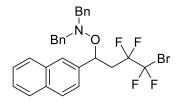
N,N-dibenzyl-O-(5-bromo-4,4,5,5-tetrafluoro-2-phenylpentan-2-

yl)hydroxylamine (4j)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 80:1) to afford **4j** as a colorless viscous oil (62.0 mg, 61% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.49 (d, *J* = 7.5 Hz, 2H), 7.40 – 7.12 (m, 13H), 4.02 – 3.47 (m, 4H), 2.48 – 2.18 (m, 2H), 1.78 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 142.5, 137.4, 130.2, 128.3, 127.9, 127.9, 127.5, 126.6, 117.8 (tt, *J* = 310.7, 40.1 Hz), 116.5 (tt, *J* = 256.3, 30.8 Hz), 80.0, 63.6, 62.3,


38.9 (t, J = 19.8 Hz), 22.9.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -65.9 (s, 2F), -106.3 (dt, J = 254.5, 4.2 Hz, 1F),
-109.3 (dt, J = 252.5, 3.0 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₅H₂₄BrF₄NONa⁺: 532.0870; found: 532.0888. **IR** (neat) v (cm⁻¹): 3031, 2926, 1495, 1452, 1356, 1228, 1144, 1097, 1078, 1030, 901, 749, 695, 616, 536.

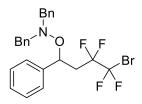
N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(naphthalen-2-

yl)butyl)hydroxylamine (4k)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4k** as a white solid (57.9 mg, 53% yield).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.84 – 7.79 (m, 2H), 7.77 (d, *J* = 8.5 Hz, 1H),

7.54 (s, 1H), 7.51 – 7.46 (m, 2H), 7.39 – 7.17 (m, 11H), 4.68 (dd, *J* = 8.0, 5.1 Hz, 1H), 3.91 – 3.78 (m, 4H), 2.71 – 2.56 (m, 1H), 2.15 – 2.00 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.4, 137.3, 133.2, 133.0, 129.8, 128.2, 128.14, 128.07, 127.6, 127.4, 127.0, 126.1, 126.0, 124.7, 117.5 (tt, *J* = 310.0, 39.2 Hz), 116.2 (tt, *J* = 254.0, 31.1 Hz), 77.7, 62.6, 34.8 (t, *J* = 20.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -109.1 (dt, J = 256.3, 3.6 Hz, 1F),
-110.9 (dt, J = 256.4, 3.8 Hz, 1F).

m.p. = 88-90 °C

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₈H₂₄BrF₄NONa⁺: 568.0770; found: 532.0790. **IR** (neat) v (cm⁻¹): 3056, 3032, 2997, 2918,2871, 2849, 1493, 1393, 1345, 1236, 1145, 1079, 1038, 973, 906, 867, 837, 810, 741, 697, 649, 588, 548.

N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-phenylbutyl)hydroxylamine (41)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **41** as a white solid (55.5 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.41 – 7.19 (m, 13H), 7.14 (dd, *J* = 6.7, 2.9 Hz, 2H), 4.49 (dd, *J* = 8.0, 5.0 Hz, 1H), 4.01 – 3.60 (m, 4H), 2.66 – 2.48 (m, 1H), 2.05 – 1.87 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 140.1, 137.3, 129.8, 128.3, 128.23, 128.21, 127.5, 127.4, 117.5 (tt, *J* = 310.0, 39.4 Hz), 116.2 (tt, *J* = 254.2, 31.4 Hz), 77.52, 62.59, 34.8 (t, *J* = 20.7 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -109.3 (dt, *J* = 256.6, 3.6 Hz, 1F),
-110.9 (dt, *J* = 256.5, 3.9 Hz, 1F).

 $m.p. = 44-46 \ ^{\circ}C$

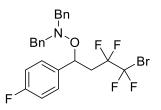
HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₄H₂₂BrF₄NONa⁺: 518.0713; found: 518.0733.
IR (neat) v (cm⁻¹): 3033, 2925, 1496, 1456, 1383, 1319, 1237, 1144, 1079, 905, 864, 838, 742, 694, 611, 557, 540.

N,*N*-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-(*p*-tolyl)butyl)hydroxylamine (4m)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4m** as a white solid (48.9 mg, 48% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.35 – 7.20 (m, 10H), 7.08 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 4.43 (dd, *J* = 8.2, 4.9 Hz, 1H), 3.88 – 3.70 (m, 4H), 2.61 – 2.47 (m, 1H), 2.31 (s, 3H), 2.00 – 1.82 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.9, 137.4, 137.1, 129.8, 129.0, 128.2, 127.42, 127.39, 117.5 (tt, *J* = 310.0, 39.4 Hz), 116.3 (tt, *J* = 254.2, 31.2 Hz), 77.3, 62.6, 34.6 (t, *J* = 20.7 Hz), 21.2.


¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -109.2 (dt, J = 256.2, 3.6 Hz, 1F),
-111.0 (dt, J = 256.6, 3.9 Hz, 1F).

m.p. = 41-43 °C

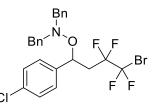
HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₅H₂₄BrF₄NONa⁺: 532.0870; found: 532.0889. **IR** (neat) ν (cm⁻¹): 3036, 2920, 1496, 1455, 1207, 1143, 1078, 1037, 972, 902, 866, 848, 803, 752, 742, 698, 574.

N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(4-

fluorophenyl)butyl)hydroxylamine (4n)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4n** as a white solid (61.7 mg, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.40 – 7.18 (m, 10H), 7.06 – 7.00 (m, 2H), 6.97 – 6.90 (m, 2H), 4.41 (dd, J = 8.3, 5.0 Hz, 1H), 3.90 – 3.67 (m, 4H), 2.62 – 2.44 (m, 1H), 1.96 – 1.77 (m, 1H).


¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 162.5 (d, *J* = 246.5 Hz), 137.2, 135.9 (d, *J* = 3.3 Hz), 129.7, 129.1 (d, *J* = 8.3 Hz), 128.3, 127.5, 117.4 (tt, *J* = 310.0, 39.3 Hz), 116.2 (tt, *J* = 254.1, 31.2 Hz), 115.1 (d, *J* = 21.4 Hz), 76.7, 62.7, 34.83 (t, *J* = 20.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.1 (s, 2F), -109.3 (dt, *J* = 256.5, 3.5 Hz, 1F), -111.0 (dt, *J* = 256.2, 3.8 Hz, 1F), -113.9 (s, 1F).

m.p. = 61-63 °C

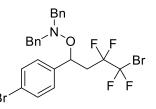
HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₄H₂₁BrF₅NONa⁺: 536.0619; found: 536.0642. **IR** (neat) ν (cm⁻¹): 3036, 2917, 1605, 1512, 1456, 1257, 1225, 1144, 1077, 975, 904, 867, 851, 817, 754, 725, 698, 651, 596. N,N-dibenzyl-O-(4-bromo-1-(4-chlorophenyl)-3,3,4,4-

tetrafluorobutyl)hydroxylamine (40)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **40** as a colorless viscous oil (49.8 mg, 47% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.34 – 7.17 (m, 12H), 6.97 (d, *J* = 8.2 Hz, 2H), 4.41 (dd, *J* = 8.1, 5.1 Hz, 1H), 3.86 – 3.72 (m, 4H), 2.60 – 2.41 (m, 1H), 1.97 – 1.78 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 138.6, 137.2, 133.9, 129.7, 128.8, 128.4, 128.3, 127.5, 117.4 (tt, *J* = 310.1, 39.2 Hz), 116.1 (tt, *J* = 254.1, 31.3 Hz), 76.8, 62.8, 34.8 (t, *J* = 20.8 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.1 (s, 2F), -109.0 (dt, *J* = 256.7, 3.5 Hz, 1F), -110.9 (dt, *J* = 256.7, 3.9 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for C₂₄H₂₁BrClF₄NONa⁺: 552.0323; found: 552.0335.

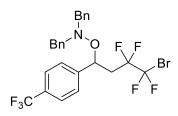
IR (neat) v (cm⁻¹): 3036, 2925, 1600, 1493, 1455, 1236, 1207, 1145, 1080, 1030, 1012, 974, 902, 864, 850, 811, 746, 699, 650, 578.

N,N-dibenzyl-O-(4-bromo-1-(4-bromophenyl)-3,3,4,4-

tetrafluorobutyl)hydroxylamine (4p)

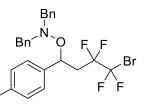
Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **40** as a colorless viscous oil (71.3 mg, 62% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.35 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.15 (m, 10H), 6.91 (d, *J* = 8.2 Hz, 2H), 4.40 (dd, *J* = 8.1, 5.1 Hz, 1H), 3.87 – 3.72 (m, 4H), 2.57 – 2.43 (m, 1H), 1.96 – 1.80 (m, 1H).


¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 139.2, 137.2, 131.4, 129.7, 129.1, 128.3, 127.5, 122.1, 117.4 (tt, *J* = 310.2, 39.2 Hz), 116.1 (tt, *J* = 256.3, 31.4 Hz), 76.8, 62.7, 34.8 (t, *J* = 20.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.1 (s, 2F), -109.0 (dt, *J* = 256.6, 3.5 Hz, 1F), -110.9 (dt, *J* = 256.6, 3.9 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{24}H_{21}Br_2F_4NONa^+$: 595.9818; found: 595.9836.

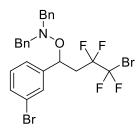

IR (neat) v (cm⁻¹): 3031, 2926, 1488, 1454, 1205, 1143, 1080, 1010, 903, 850, 741, 697, 623, 580, 547, 539.

N,*N*-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-(4-(trifluoromethyl)phenyl)butyl) hydroxylamine (4q)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4q** as a colorless viscous oil (68.6 mg, 61% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.47 (d, J = 7.9 Hz, 2H), 7.38 – 7.07 (m, 12H), 4.50 (dd, J = 7.9, 5.3 Hz, 1H), 3.82 (s, 4H), 2.62 – 2.43 (m, 1H), 1.98 – 1.83 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 144.1, 137.1, 130.1 (q, J = 32.4 Hz), 129.6, 128.3, 127.7, 127.6, 125.2 (q, J = 3.8 Hz), 124.0 (q, J = 272.1 Hz). 117.3 (tt, J = 309.5, 39.0 Hz), 116.1 (tt, J = 253,7, 31.4 Hz), 76.8, 62.8, 34.9 (t, J = 20.9 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -62.6 (s, 3F), -66.2 (s, 2F), -109.1 (dt, J = 256.0, 3.6 Hz, 1F), -110.8 (dt, J = 256.6, 4.0 Hz, 1F). 4-(4-bromo-1-((dibenzylamino)oxy)-3,3,4,4-tetrafluorobutyl)benzonitrile (4r)

NC


Purified by silica gel column chromatography (petroleum ether/dichloromethane = 10:1) to afford **4r** as a colorless viscous oil (57.6 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.50 (d, J = 8.0 Hz, 2H), 7.47 – 6.99 (m, 12H), 4.47 (dd, J = 8.0, 5.2 Hz, 1H), 3.83 (s, 4H), 2.59 – 2.41 (m, 1H), 1.96 – 1.81 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 145.3, 137.0, 132.0, 129.6, 128.3, 128.0, 127.6, 118.6, 117.1 (tt, J = 309.8, 39.0 Hz), 116.0 (tt, J = 254.4, 31.4 Hz), 111.8, 76.8, 62.9, 34.9 (t, J = 20.9 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.2 (s, 2F), -108.8 (dt, J = 256.7, 3.6 Hz, 1F),
-110.8 (dt, J = 256.6, 3.8 Hz, 1F).

N,N-dibenzyl-O-(4-bromo-1-(3-bromophenyl)-3,3,4,4-

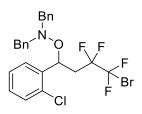
tetrafluorobutyl)hydroxylamine (4s)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4s** as a colorless viscous oil (66.7 mg, 58% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.37 (d, *J* = 7.9 Hz, 1H), 7.35 – 7.17 (m, 11H),

7.12 (t, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.7 Hz, 1H), 4.38 (dd, *J* = 8.0, 5.1 Hz, 1H), 3.87 – 3.74 (m, 4H), 2.57 – 2.42 (m, 1H), 1.97 – 1.81 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 142.4, 137.1, 131.3, 130.7, 129.8, 129.7, 128.3, 127.6, 126.0, 122.3, 117.3 (tt, *J* = 310.0, 39.3 Hz), 116.1 (tt, *J* = 254.1, 31.4 Hz), 77.2, 62.8, 34.8 (t, *J* = 20.9 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.1 (s, 2F), -109.0 (dt, *J* = 256.8, 3.6 Hz, 1F), -110.8 (dt, *J* = 256.6, 3.8 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for C₂₄H₂₁Br₂F₄NONa⁺: 595.9818; found: 595.9836.

IR (neat) v (cm⁻¹): 3031, 2926, 1571, 1494, 1431,1200, 1143, 1080, 1028, 903, 783, 745, 696, 617, 581, 554.

N,N-dibenzyl-O-(4-bromo-1-(2-chlorophenyl)-3,3,4,4-

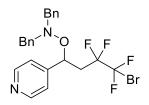
tetrafluorobutyl)hydroxylamine (4t)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4t** as a colorless viscous oil (72.2 mg, 68% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.24 – 7.01 (m, 14H), 5.24 (t, *J* = 6.5 Hz, 1H),

3.86 - 3.63 (m, 4H), 2.49 - 2.33 (m, 1H), 2.10 - 1.95 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.9, 137.2, 133.2, 129.6, 129.5, 129.1, 128.8, 128.2, 127.4, 126.8, 117.5 (tt, *J* = 310.0, 39.3 Hz), 116.1 (tt, *J* = 254.5, 31.2 Hz), 73.4, 62.2, 34.6 (t, *J* = 21.1 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -110.1 (s, 1F), -110.5 (s, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for C₂₄H₂₁BrClF₄NONa⁺: 552.0323; found: 552.0355.

IR (neat) v (cm⁻¹): 3031, 2848, 1596, 1495, 1454,1240, 1141, 1081, 904, 870, 745, 697, 574, 547.

N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(pyridin-4-

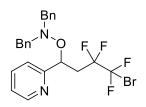
yl)butyl)hydroxylamine (4u)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1) to afford **4u** as a white solid (71.6 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.40 (d, *J* = 6.1 Hz, 2H), 7.34 – 7.00 (m, 10H), 6.86 (d, *J* = 6.1 Hz, 2H), 4.34 (dd, *J* = 7.8, 5.2 Hz, 1H), 3.84 – 3.68 (m, 4H), 2.49 – 2.30 (m, 1H), 1.92 – 1.73 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 149.7, 148.8, 137.0, 129.7, 128.3, 127.6, 122.2, 117.1 (tt, *J* = 309.8, 39.0 Hz), 115.9 (tt, *J* = 254.3, 31.1 Hz), 76.4, 62.8, 34.8 (t, *J* = 21.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.2 (s, 2F), -108.9 (dt, J = 256.9, 3.5 Hz, 1F),
-110.9 (dt, J = 256.6, 3.6 Hz, 1F).


m.p. = 69-71 °C

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{23}H_{21}BrF_4N_2ONa^+$: 519.0666; found: 519.0685.

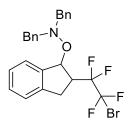
IR (neat) v (cm⁻¹): 2920, 1602, 1566, 1497, 1415, 1259, 1144, 1106, 1078, 906, 868, 852, 740, 700, 652, 592, 561, 549.

N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(pyridin-2-

yl)butyl)hydroxylamine (4v)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1) to afford **4v** as a colorless viscous oil (74.6 mg, 75% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.46 (d, *J* = 4.2 Hz, 1H), 7.47 (td, *J* = 7.7, 1.8 Hz, 1H), 7.25 – 7.04 (m, 11H), 6.89 (d, *J* = 7.7 Hz, 1H), 4.58 (dd, *J* = 7.3, 5.4 Hz, 1H), 4.02 – 3.32 (m, 5H), 2.54 – 2.36 (m, 2H).


¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 158.6, 149.4, 137.3, 136.1, 129.6, 128.2, 127.3, 123.4, 123.0, 117.5 (tt, *J* = 310.3, 39.0 Hz), 116.3 (tt, *J* = 254.1, 31.1 Hz), 78.5, 62.4, 33.6 (t, *J* = 21.0 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -109.8 (q, J = 3.5 Hz, 2F).

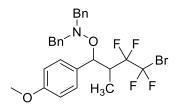
HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{23}H_{21}BrF_4N_2ONa^+$: 519.0666; found: 519.0655.

IR (neat) v (cm⁻¹): 2937, 1770, 1592, 1496, 1441, 1210, 1143, 1075, 905, 864, 849, 741, 699, 650, 587, 555.

N,N-dibenzyl-*O*-(2-(2-bromo-1,1,2,2-tetrafluoroethyl)-2,3-dihydro-1H-inden-1yl)hydroxylamine (4w)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10:1) to afford **4w** as a colorless viscous oil (61.0 mg, 60% yield, > 19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.31 – 7.14 (m, 12H), 7.12 – 7.03 (m, 2H), 5.17 (s, 1H), 4.03 – 3.58 (m, 4H), 2.85 – 2.69 (m, 3H).


¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 142.5, 139.3, 137.2, 129.9, 129.2, 128.3, 127.5, 126.8, 125.9, 124.3, 118.5 (tt, *J* = 311.4, 41.4 Hz), 117.1 (tt, *J* = 255.4, 30.6 Hz), 84.2, 62.4, 45.3 (t, *J* = 20.8 Hz), 30.6.

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -61.7 (dd, J = 178.4, 5.5 Hz, 1F), -62.6 (dd, J = 178.3, 8.0 Hz, 1F), -108.0 (dd, J = 264.7, 5.4 Hz, 1F), -115.0 (dd, J = 264.6, 7.9 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₅H₂₂BrF₄NONa⁺: 530.0713; found: 530.0725. **IR** (neat) v (cm⁻¹): 3031, 2933, 1495, 1454, 1331, 1220, 1142, 1112, 1075, 1028, 958, 891, 827, 748, 697, 621, 582, 561.

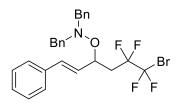
N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(4-methoxyphenyl)-2-

methylbutyl)hydroxylamine (4x)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 40:1) to afford **4x** as a colorless viscous oil (78.9 mg, 73% yield, 13:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.30 – 7.12 (m, 10H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.3 Hz, 2H), 4.78 (d, *J* = 4.4 Hz, 1H), 3.90 – 3.68 (m, 8H), 2.73 – 2.37 (m, 1H), 1.06 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 158.9, 137.5, 133.1, 129.5, 128.6, 128.0, 127.1, 118.8 (tt, J = 310.7, 39.9 Hz), 117.3 (tt, J = 255.7, 31.2 Hz), 113.2, 80.5, 61.5, 55.2, 41.6 (t, J = 19.8 Hz), 8.1.


¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -61.3 (dd, J = 176.2, 9.8 Hz, 1F), -62.4 (dd, J = 175.9, 3.9 Hz, 1F), -105.2 (dd, J = 263.0, 4.0 Hz, 1F), -115.8 (dd, J = 263.0, 9.9 Hz, 1F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{26}H_{26}BrF_4NO_2Na^+$: 562.0975; found: 562.1000.

IR (neat) v (cm⁻¹): 2999, 2933, 1612, 1512, 1454, 1248, 1142, 1067, 1031, 913, 837, 739, 698, 603, 561, 543.

(E)-N,N-dibenzyl-O-(6-bromo-5,5,6,6-tetrafluoro-1-phenylhex-1-en-3-yl)

Purified by silica gel column chromatography (hexane/dichloromethane = 10:1) to afford 4y as a colorless viscous oil (59.9 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.34 – 7.23 (m, 15H), 6.34 (d, *J* = 15.8 Hz, 1H), 5.72 (dd, *J* = 15.9, 8.4 Hz, 1H), 4.15 (td, *J* = 8.0, 4.9 Hz, 1H), 3.87 (q, *J* = 13.0 Hz, 4H), 2.38 – 2.20 (m, 1H), 1.90 – 1.73 (m, 1H).

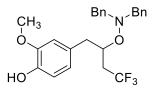
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 137.4, 136.3, 133.2, 129.8, 128.4, 128.2, 128.0, 127.8, 127.4, 126.7, 117.5 (tt, *J* = 310.2, 39.4 Hz), 116.3 (tt, *J* = 254.1, 31.4 Hz), 76.3, 62.8, 34.3 (t, *J* = 20.8 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.0 (s, 2F), -108.7 (dt, J = 256.8, 3.5 Hz, 1F),
-110.8 (dt, J = 257.1, 3.8 Hz, 1F).

4-(5-bromo-4,4,5,5-tetrafluoro-2-(morpholinooxy)pentyl)-2-methoxyphenol (4aa)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4aa** as a colorless viscous oil (36.6 mg, 41% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 6.84 (d, *J* = 7.9 Hz, 1H), 6.74 – 6.68 (m, 2H), 5.57 (s, 1H), 4.25 – 4.18 (m, 1H), 3.91 – 3.81 (m, 5H), 3.64 – 3.51 (m, 2H), 3.12 (d, *J* = 10.9 Hz, 1H), 3.00 – 2.90 (m, 2H), 2.80 – 2.69 (m, 2H), 2.66 – 2.56 (m, 1H), 2.45 – 2.29 (m, 1H), 2.25 – 2.10 (m, 1H).

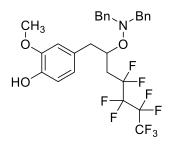

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.3, 144.2, 129.4, 122.2, 117.6 (tt, *J* = 309.7, 39.7 Hz), 116.9 (tt, *J* = 253.8, 31.4 Hz), 114.3, 112.0, 75.6, 66.0, 56.6, 55.9, 40.0, 33.1 (t, *J* = 21.3 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -66.0 (t, *J* = 3.7 Hz, 2F), -109.8 (t, *J* = 3.6 Hz, 2F).

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{16}H_{20}BrF_4NO_4Na^+$: 468.0404; found: 468.0426.

IR (neat) v (cm⁻¹): 2927, 2852, 1603, 1515, 1461, 1431, 1376, 1267, 1237, 1206, 1143, 1103, 1082, 1034, 908, 855, 819, 749, 618, 575.

4-(2-((dibenzylamino)oxy)-4,4,4-trifluorobutyl)-2-methoxyphenol (4ab)


Using trifluoroiodomethane (CF₃I) as radical precursor. Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4ab** as a colorless viscous oil (57.9 mg, 65% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.32 – 7.22 (m, 10H), 6.80 (d, J = 8.0 Hz, 1H), 6.56 (dd, J = 8.1, 1.9 Hz, 1H), 6.51 (d, J = 1.9 Hz, 1H), 5.50 (s, 1H), 3.91 – 3.86 (m, 1H), 3.83 (s, 3H), 3.80 – 3.71 (m, 4H), 2.72 (dd, J = 14.1, 6.6 Hz, 1H), 2.36 (dd, J = 14.1, 6.1 Hz, 1H), 2.15 – 2.05 (m, 1H), 1.80 – 1.68 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 146.2, 144.1, 137.3, 129.8, 129.6, 128.2, 127.4, 126.2 (q, J = 275.4 Hz), 122.3, 114.1, 111.9, 76.2, 62.2, 55.9, 39.0, 36.1 (q, J = 27.2 Hz).

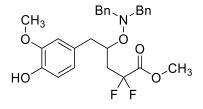
¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -62.6.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₅H₂₆F₃NO₃Na⁺: 468.1757; found: 468.1780. **IR** (neat) ν (cm⁻¹): 2933, 1759, 1603, 1515, 1454, 1431, 1386, 1331, 1252, 1125, 1031, 887, 819, 742, 698, 590, 561. 4-(2-((dibenzylamino)oxy)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl)-2-methoxyphenol (4ac)

Using perfluorobutyl iodide (C₄F₉I) as radical precursor. Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **4ac** as a colorless viscous oil (69.1 mg, 58% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.31 – 7.20 (m, 10H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 6.56 (s, 1H), 5.50 (s, 1H), 3.87 – 3.69 (m, 8H), 2.66 (dd, *J* = 14.3, 7.2 Hz, 1H), 2.52 (dd, *J* = 14.3, 4.9 Hz, 1H), 2.17 – 2.01 (m, 1H), 1.67 – 1.57 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 146.2, 144.1, 137.3, 129.8, 129.6, 128.2, 127.4, 122.5, 114.1, 112.1, 75.0, 62.2, 55.9, 39.7, 32.7 (t, *J* = 20.7 Hz).


¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -81.1 (s, 3F), -111.7 (dt, J = 270.8, 13.7 Hz, 1F), -113.2 (dt, J = 270.0, 12.9 Hz, 1F), -124.6 (d, J = 9.7 Hz, 2F), -125.9 (s, 2F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₈H₂₆F₉NO₃Na⁺ : 618.1661; found: 618.1694. **IR** (neat) v (cm⁻¹): 2924, 1605, 1515, 1454, 1432, 1356, 1216, 1132, 1037, 881, 817, 737, 718, 621, 575, 546.

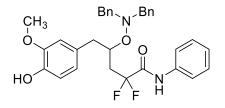
4-((dibenzylamino)oxy)-2,2-difluoro-5-(4-hydroxy-3-

Methyl

methoxyphenyl)pentanoate (4ad)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 10:1) to afford **4ad** as a colorless viscous oil (53.4 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.27 – 7.15 (m, 10H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.44 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.38 (d, *J* = 1.9 Hz, 1H), 5.41 (s, 1H), 3.81 – 3.71 (m, 8H), 3.67 – 3.59 (m, 3H), 2.88 – 2.79 (m, 1H), 2.12 – 1.94 (m, 2H), 1.81 – 1.65 (m, 1H).


¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 164.6 (t, J = 32.4 Hz), 146.3, 144.0, 137.4, 129.8, 129.7, 128.1, 127.3, 122.1, 115.3 (t, J = 250.8 Hz), 114.1, 112.8, 111.7, 76.1, 62.0, 55.9, 53.0, 39.1, 37.1 (t, J = 23.0 Hz).

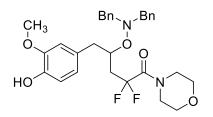
¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -100.7 (d, *J* = 262.2 Hz, 1F), -107.6 (d, *J* = 261.9 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₇H₂₉F₂NO₅Na⁺: 508.1906; found: 508.1928. **IR** (neat) ν (cm⁻¹): 3519, 3028, 2932, 1767, 1604, 1514, 1495, 1453, 1342, 1267, 1205, 1122, 1075, 1030, 885, 822, 742, 698, 634, 560.

4-((dibenzylamino)oxy)-2,2-difluoro-5-(4-hydroxy-3-methoxyphenyl)-N-

phenylpentanamide (4ae)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1) to afford **4ae** as a colorless viscous oil (54.7 mg, 50% yield).


¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.20 (m, 10H), 6.79 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 8.1 Hz, 1H), 6.50 (s, 1H), 5.50 (s, 1H), 3.86 – 3.68 (m, 8H), 2.91 (dd, *J* = 13.9, 5.8 Hz, 1H), 2.35 – 2.18 (m, 2H), 1.98 – 1.84 (m, 1H).

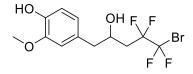
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 161.9 (t, J = 28.6 Hz), 146.2, 144.0, 137.3, 136.2, 129.8, 129.7, 129.2, 128.1, 127.3, 125.4, 122.1, 120.0, 117.2 (t, J = 251.9 Hz), 114.1, 111.8, 76.4, 62.1, 55.8, 39.4, 36.6 (t, J = 22.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -100.7 (d, *J* = 255.2 Hz, 1F), -106.4 (d, *J* = 255.1 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₃₂H₃₂F₂N₂O₄Na⁺: 569.2222; found: 508.2252. **IR** (neat) ν (cm⁻¹): 2935, 1697, 1601, 1543, 1514, 1448, 1372, 1238, 1155, 1122, 1074, 1028, 885, 751, 698, 560. 4-((dibenzylamino)oxy)-2,2-difluoro-5-(4-hydroxy-3-methoxyphenyl)-1-

morpholinopentan-1-one (4af)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 5:1) to afford **4af** as a colorless viscous oil (50.8 mg, 47% yield).

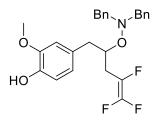

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.32 – 7.23 (m, 10H), 6.79 (d, *J* = 7.9 Hz, 1H), 6.61 – 6.53 (m, 2H), 5.55 (s, 1H), 3.94 – 3.85 (m, 2H), 3.83 (s, 3H), 3.79 – 3.54 (m, 11H), 2.80 (dd, *J* = 14.0, 6.2 Hz, 1H), 2.34 (dd, *J* = 14.0, 6.5 Hz, 1H), 2.28 – 2.12 (m, 1H), 1.98 – 1.82 (m, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 162.0 (t, *J* = 29.4 Hz), 146.1, 143.9, 137.4, 130.1, 129.8, 128.1, 127.2, 122.2, 118.2 (t, *J* = 252.0 Hz), 114.0, 112.0, 76.0, 66.6, 61.9, 55.8, 46.4, 43.2, 39.5, 37.0 (t, *J* = 21.9 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -97.6.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₃₀H₃₄F₂N₂O₅Na⁺: 563.2328; found: 563.2359. **IR** (neat) ν (cm⁻¹): 2923, 2850, 1736, 1665, 1602, 1515, 1451, 1371, 1268, 1237, 1201, 1115, 1068, 1032, 995, 934, 887, 840, 744, 698, 634, 580, 560.

4-(5-bromo-4,4,5,5-tetrafluoro-2-hydroxypentyl)-2-methoxyphenol (5)


Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **5** as a colorless viscous oil (52.0 mg, 72% yield).

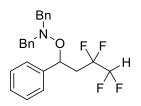
¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 6.88 (d, *J* = 9.0 Hz, 1H), 6.76 – 6.68 (m, 2H), 5.56 (s, 1H), 4.34 – 4.26 (m, 1H), 3.89 (s, 3H), 2.85 (dd, *J* = 13.8, 4.5 Hz, 1H), 2.72 (dd, *J* = 13.7, 8.5 Hz, 1H), 2.40 – 2.25 (m, 2H), 1.90 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 146.7, 144.7, 128.5, 122.1, 117.5 (tt, *J* = 309.6, 39.2 Hz), 117.1 (tt, *J* = 253.5, 31.0 Hz), 114.6, 111.8, 66.5, 55.9, 43.6, 36.8, (t, *J* = 21.1 Hz).

¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -66.2 (s, 2F), -109.9 (dt, J = 257.6, 3.5 Hz, 1F),
-110.9 (dt, J = 257.5, 4.0 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₂H₁₃BrF₄O₃Na⁺: 382.9876; found: 382.9871. **IR** (neat) v (cm⁻¹): 2919, 2848, 1518, 1453, 1272, 1084, 1021, 910, 642, 613, 567, 551. 4-(2-((dibenzylamino)oxy)-4,5,5-trifluoropent-4-en-1-yl)-2-methoxyphenol (6)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **6** as a colorless viscous oil (54.9 mg, 60% yield).


¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.32 – 7.24 (m, 10H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.52 (dd, *J* = 8.0, 1.9 Hz, 1H), 6.46 (d, *J* = 1.9 Hz, 1H), 5.47 (s, 1H), 3.87 – 3.75 (m, 7H), 3.64 – 3.56 (m, 1H), 2.71 (dd, *J* = 13.9, 6.2 Hz, 1H), 2.35 – 2.22 (m, 2H), 2.04 – 1.93 (m, 1H).

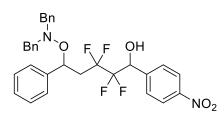
¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 146.2, 144.0, 137.4, 129.9, 129.7, 128.1, 127.3, 122.1, 114.0, 111.8, 79.1, 62.5, 55.8, 38.9, 29.1 (dd, *J* = 20.7, 2.7 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -104.4 (dd, *J* = 86.1, 32.1 Hz, 1F), -123.6 (dd, *J* = 113.8, 86.0 Hz, 1F), -171.5 (dd, *J* = 113.8, 32.0 Hz, 1F).

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₆H₂₆F₃NO₃Na⁺: 480.1757; found: 480.1785. **IR** (neat) ν (cm⁻¹): 2931, 1796, 1605, 1514, 1454, 1431, 1367, 1266, 1235, 1152, 1122, 1032, 817, 742, 698, 615, 577, 553.

N,*N*-dibenzyl-*O*-(3,3,4,4-tetrafluoro-1-phenylbutyl)hydroxylamine (7)

Purified by silica gel column chromatography (petroleum ether/dichloromethane = 10:1) to afford 7 as a colorless oil (37.5 mg, 90% yield).


¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.35 – 7.10 (m, 15H), 5.44 (tdd, ³*J*_{H-F} = 53.8 Hz, *J*_{H-H} = 5.4, 2.9 Hz, 1H), 4.48 (t, *J* = 6.7 Hz, 1H), 3.82 (d, *J* = 13.0 Hz, 2H), 3.68 (d, *J* = 13.0 Hz, 2H), 2.57 – 2.36 (m, 1H), 2.03 – 1.84 (m, 1H).

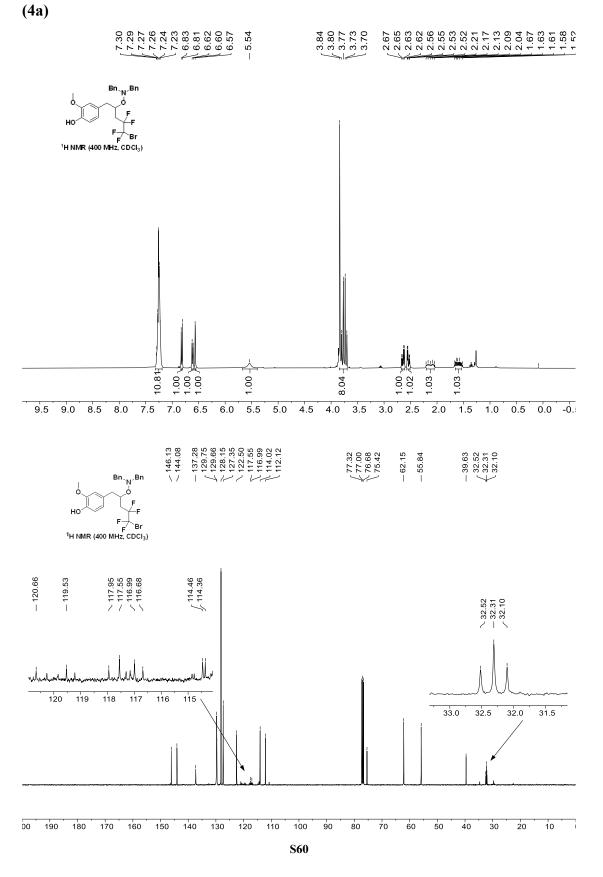
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 140.4, 137.3, 129.6, 128.4, 128.3, 128.2, 127.7, 127.4, 116.6 (tt, *J* = 247.0, 28.0 Hz), 110.1 (tt, *J* = 248.0, 38.0 Hz), 77.9 (t, *J* = 4.0 Hz), 62.4, 35.9 (t, *J* = 21.7 Hz).

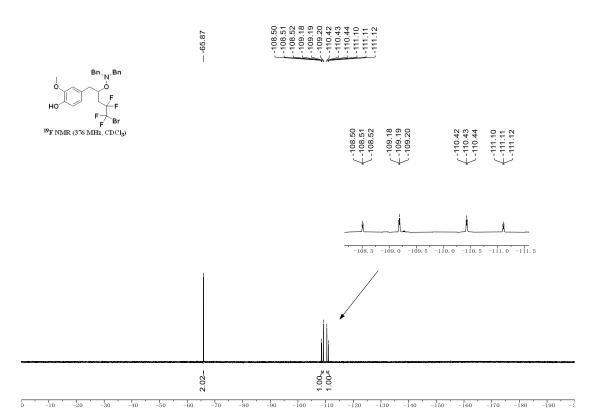
¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -114.7 (dt, *J* = 270.0, 4.2 Hz, 1F), -115.9 (d, *J* = 269.9 Hz, 1F), -136.9 (dt, *J* = 297.6, 2.8 Hz, 1F), -137.7 (dt, *J* = 297.4, 4.3 Hz, 1F). **HRMS** (ESI⁺): calculated [M+H]⁺ for C₂₄H₂₄F₄NO⁺: 418.1789; found: 418.1785.

5-((dibenzylamino)oxy)-2,2,3,3-tetrafluoro-1-(4-nitrophenyl)-5-phenylpentan-1-ol

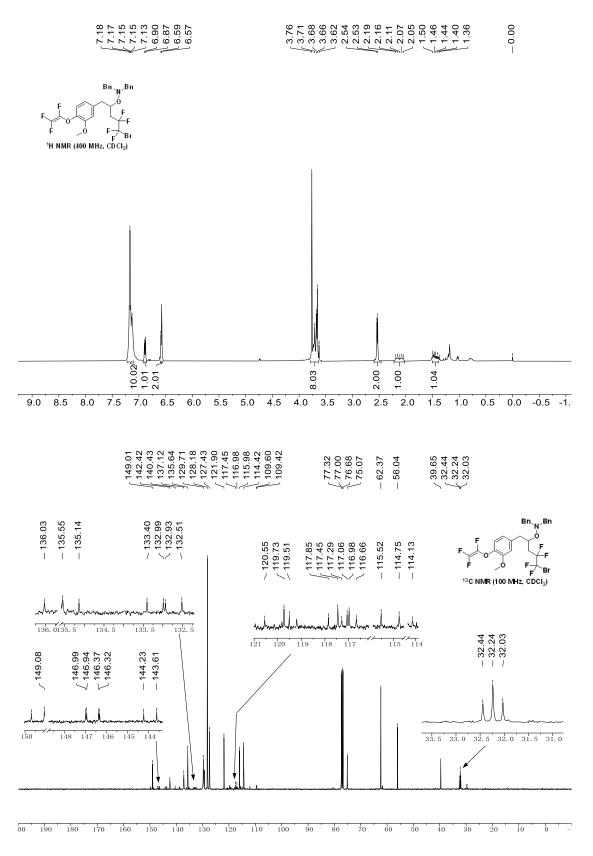
(8)

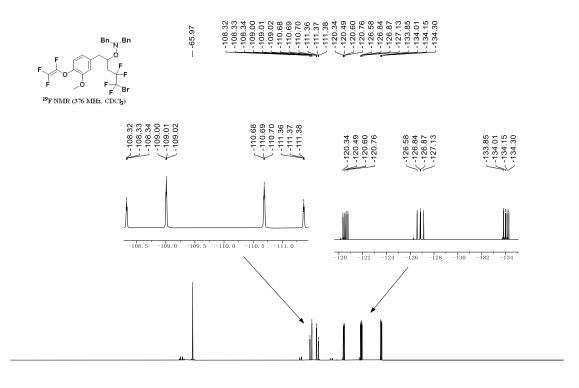
Purified by silica gel column chromatography (petroleum ether/ ethyl acetate = 5:1) to afford **8** as a colorless oil (34.5 mg, 61% yield, 1:1 dr).

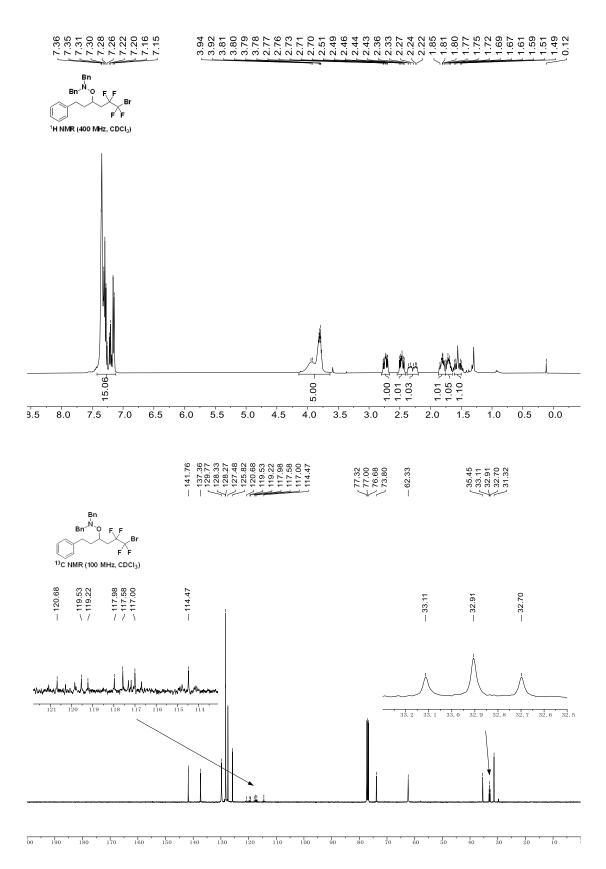

For the mixture of two diastereoisomers: ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.27 – 8.18 (m, 2H), 7.61 – 7.52 (m, 2H), 7.31 – 7.12 (m, 15H), 5.18 – 5.05 (m, 1H), 4.55 – 4.45 (m, 1H), 3.87 – 3.79 (m, 2H), 3.76 – 3.67 (m, 2H), 2.78 – 2.44 (m, 1H), 2.12 – 1.92 (m, 1H).

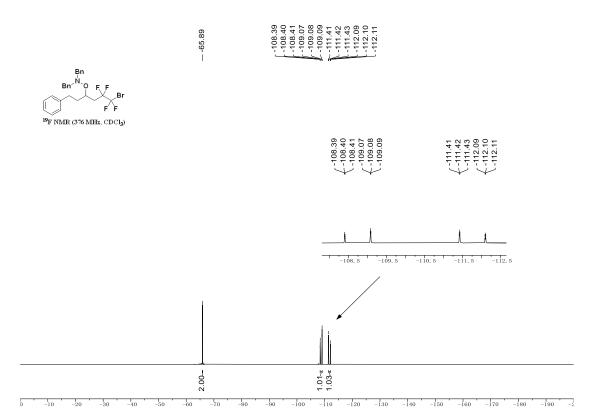

For the mixture of two diastereoisomers: ¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 148.3 (two diastereoisomers), 141.7 (two diastereoisomers), 140.5 (two diastereoisomers), 137.3, 129.73, 129.70, 129.0, 128.3, 128.2, 127.5 (two diastereoisomers), 127.4, 123.3 (two diastereoisomers), 118.8 (tt, J = 254.0, 34.0 Hz), 114.8 (tt), 77.6 (two diastereoisomers), 70.8 (two diastereoisomers), 62.5, 35.5 (td, J = 20.9, 8.8 Hz). For the mixture of two diastereoisomers: ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) = -109.11 – -111.91 (two diastereoisomers: m, 2F), -118.8 (two diastereoisomers: dd, J = 274.5, 3.8 Hz, 1F), -127.2 (two diastereoisomers: dd, J = 278.2, 3.8 Hz, 1F).

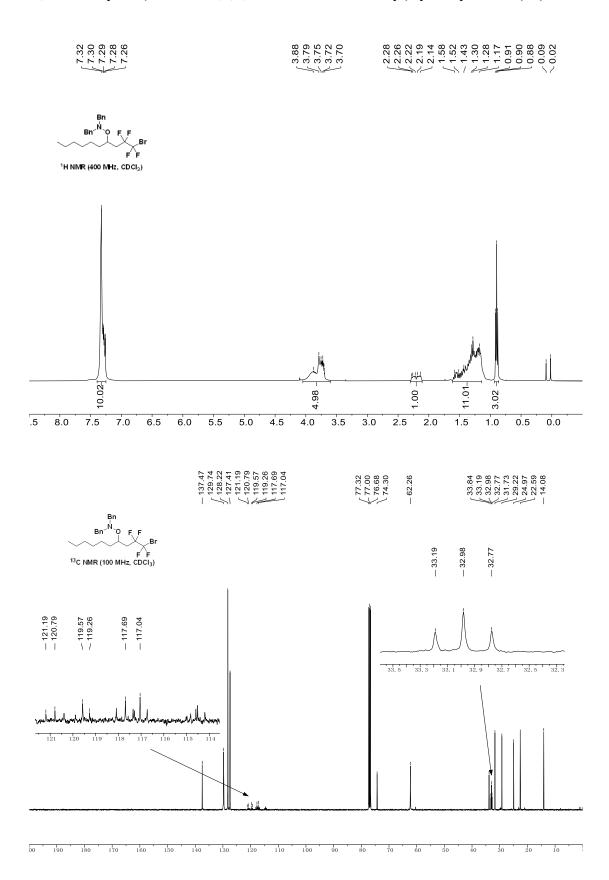
HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{31}H_{28}F_4N_2O_4Na^+$: 591.1877; found: 591.1874.

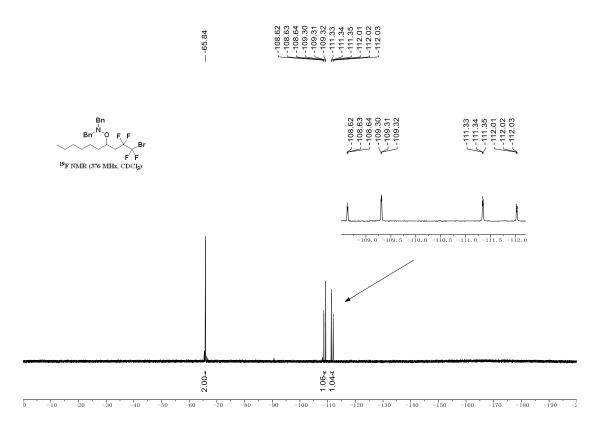

8. Copies of NMR Spectra of All Products

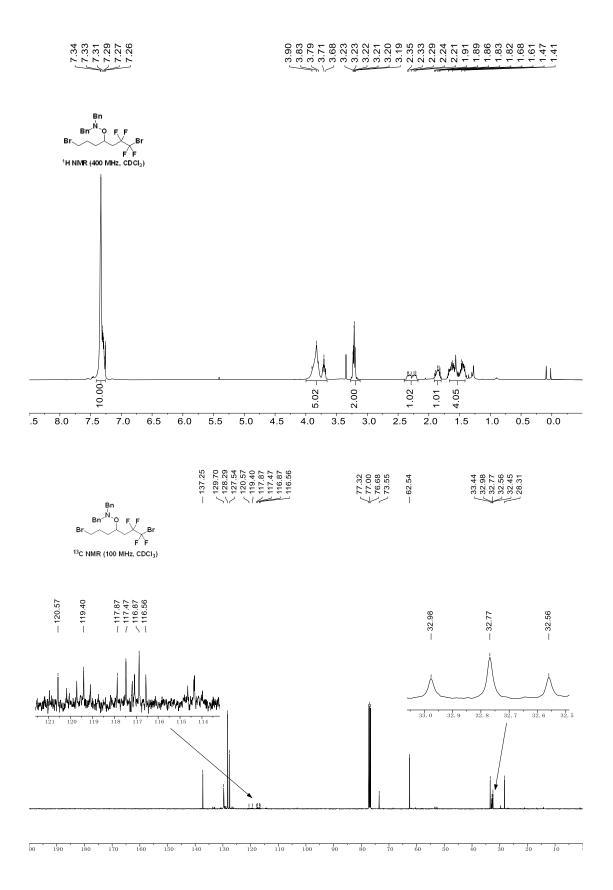

4-(5-bromo-2-((dibenzylamino)oxy)-4,4,5,5-tetrafluoropentyl)-2-methoxyphenol

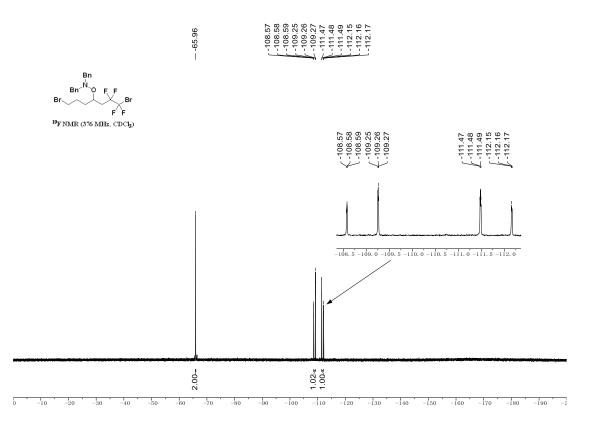



N,*N*-dibenzyl-*O*-(5-bromo-4,4,5,5-tetrafluoro-1-(3-methoxy-4-((1,2,2-trifluorovinyl)oxy)phenyl)pentan-2-yl)hydroxylamine (4b)

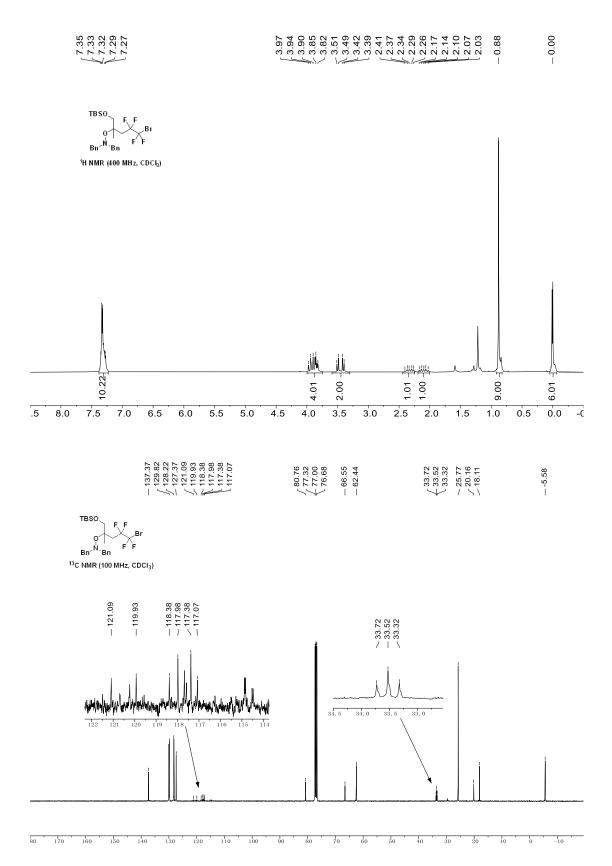


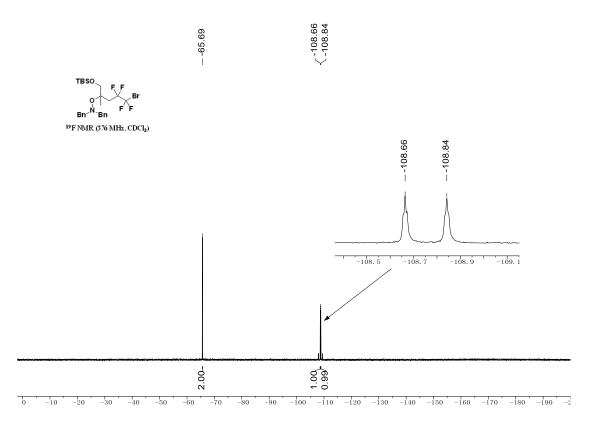


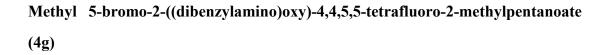


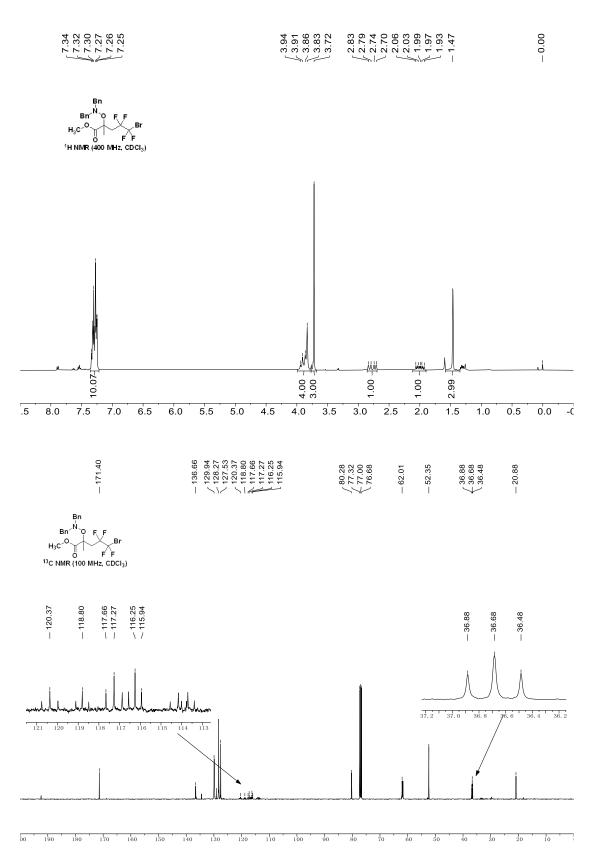


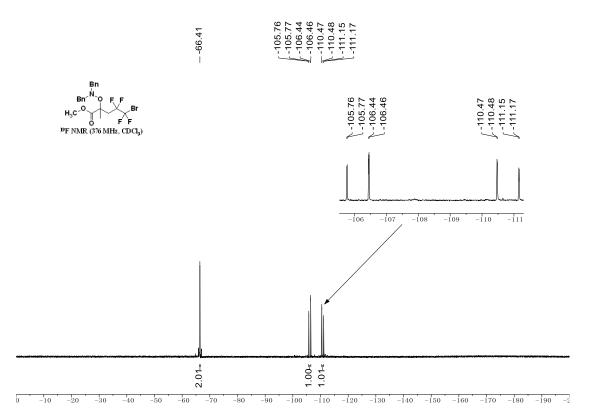
N,*N*-dibenzyl-*O*-(1-bromo-1,1,2,2-tetrafluorodecan-4-yl)hydroxylamine (4d)

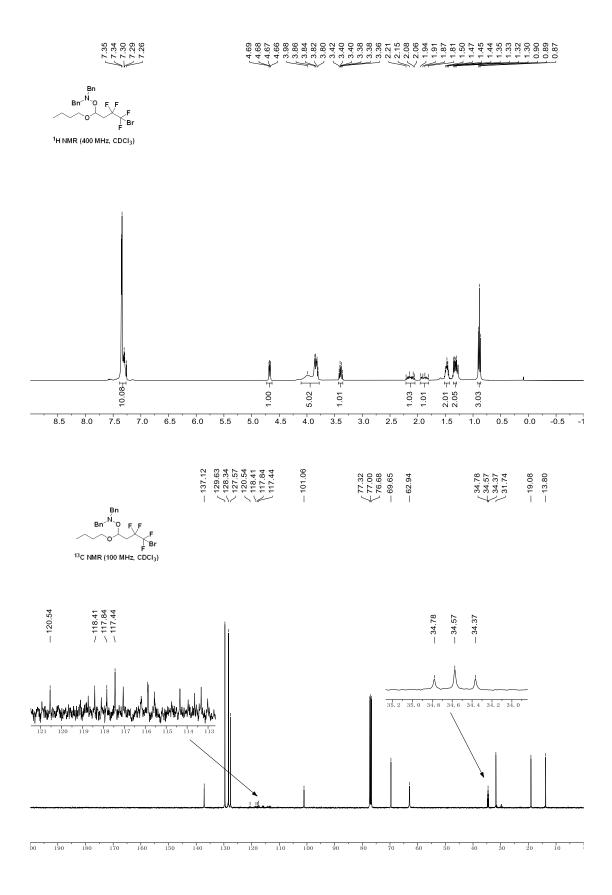


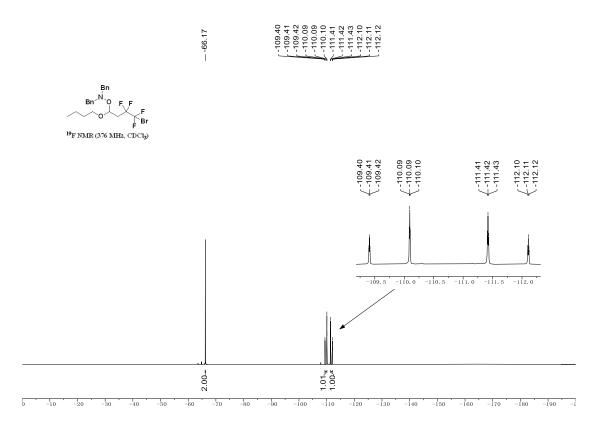


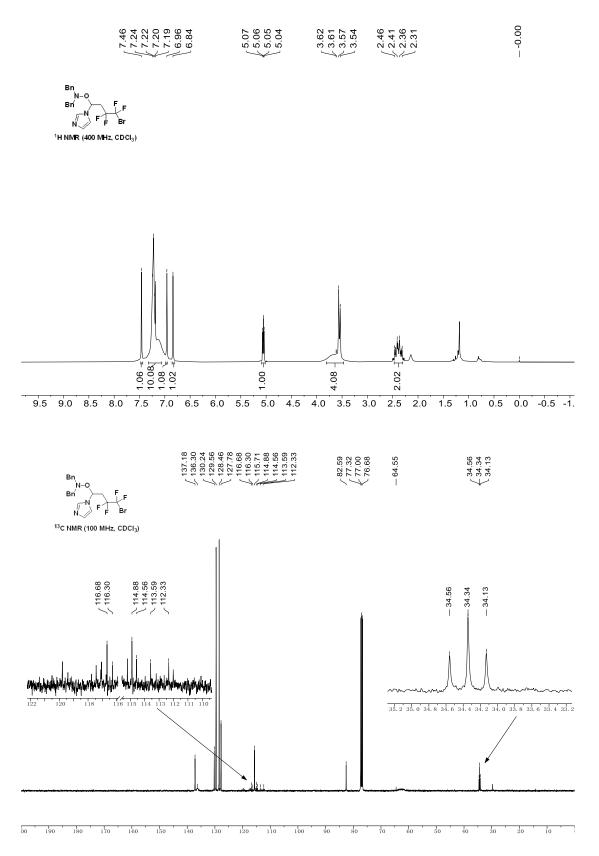

N,*N*-dibenzyl-*O*-(1,7-dibromo-1,1,2,2-tetrafluoroheptan-4-yl)hydroxylamine (4e)



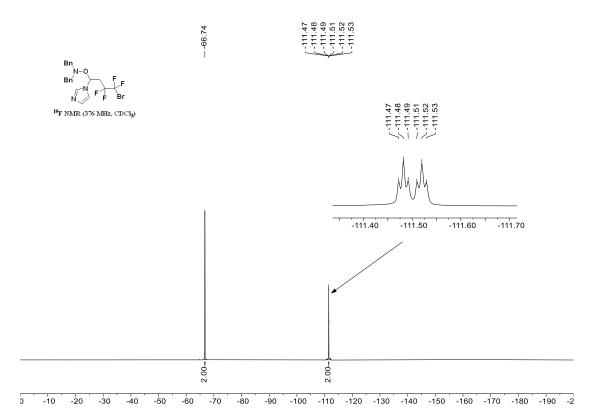

N,*N*-dibenzyl-*O*-(5-bromo-1-((tert-butyldimethylsilyl)oxy)-4,4,5,5-tetrafluoro-2methylpentan-2-yl)hydroxylamine (4f)



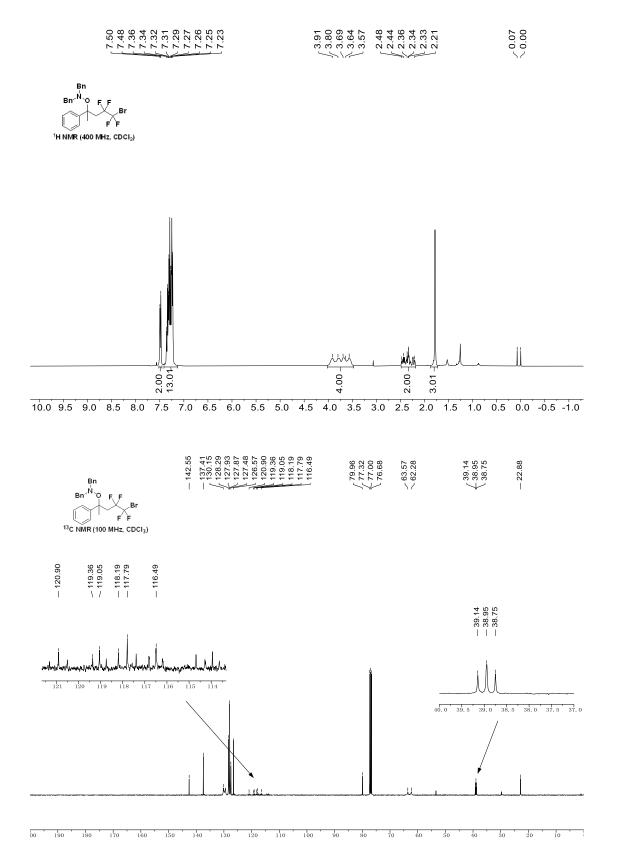


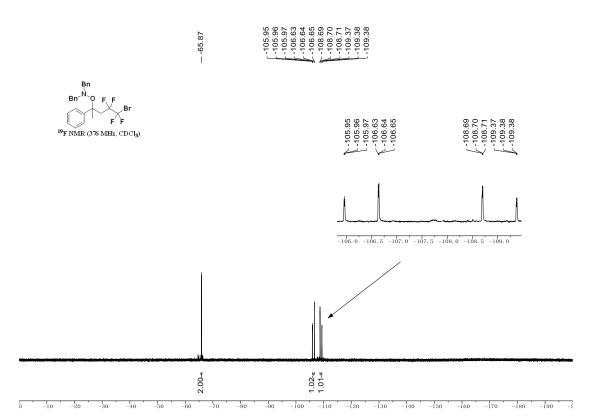


N,*N*-dibenzyl-*O*-(4-bromo-1-butoxy-3,3,4,4-tetrafluorobutyl)hydroxylamine (4h)



N,N-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-(1H-imidazol-1yl)butyl)hydroxylamine (4i)




S76

N,N-dibenzyl-O-(5-bromo-4,4,5,5-tetrafluoro-2-phenylpentan-2-

yl)hydroxylamine (4j)

N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(naphthalen-2-

yl)butyl)hydroxylamine (4k)

 7.83

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.82

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.750

 7.751

 7.755

 7.755

 7.755

 7.755

 7.755

 7.756

 7.757

 7.756

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

 7.755

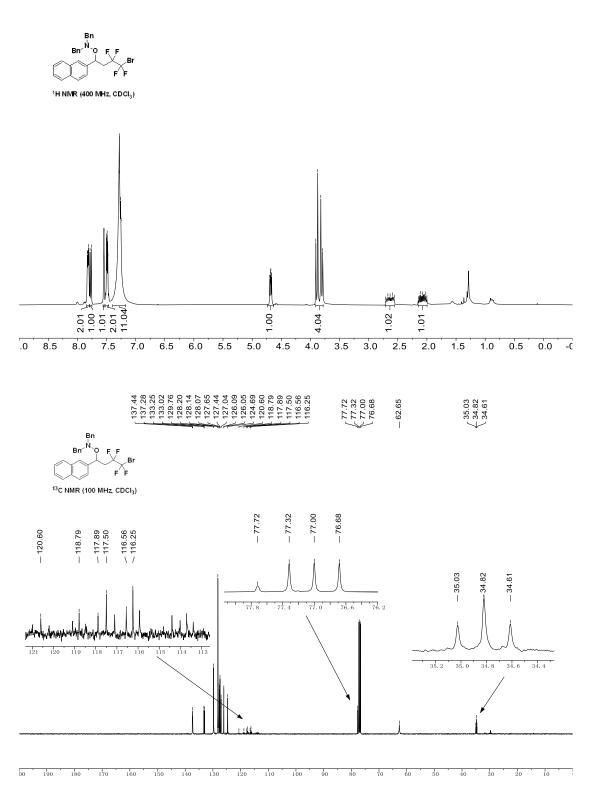
 7.755

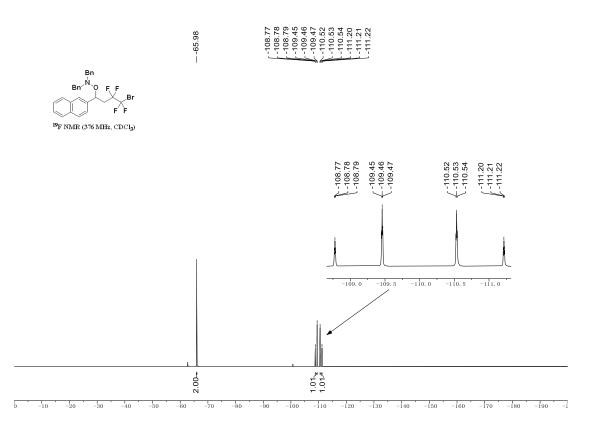
 7.755

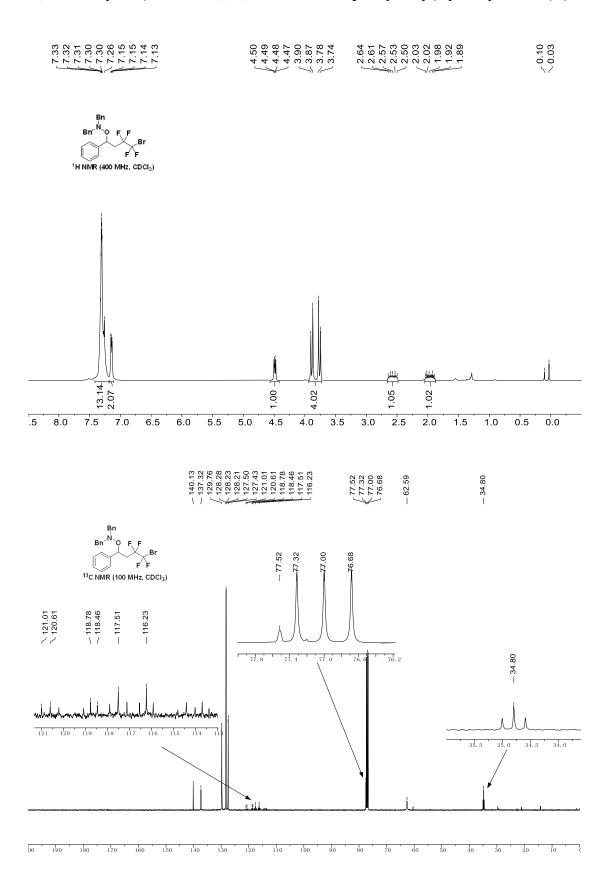
 7.755

 7.755

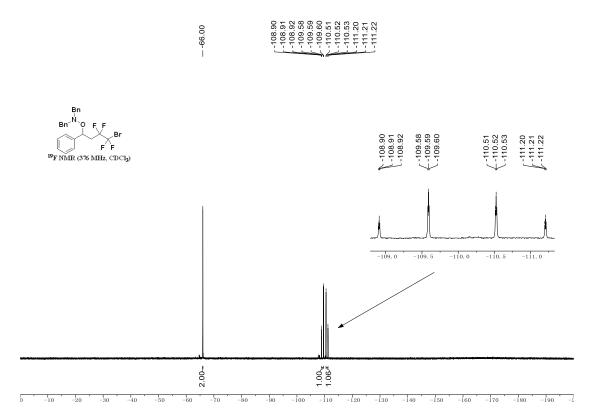
 7.755

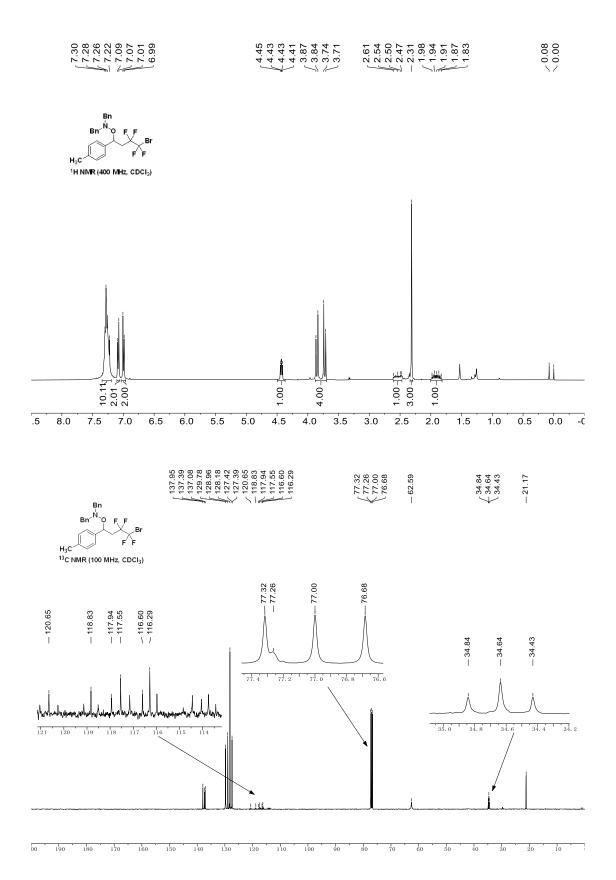

 7.755

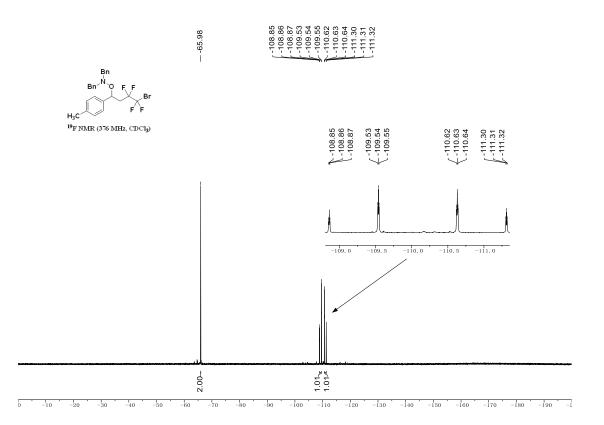

 7.755


 7.755

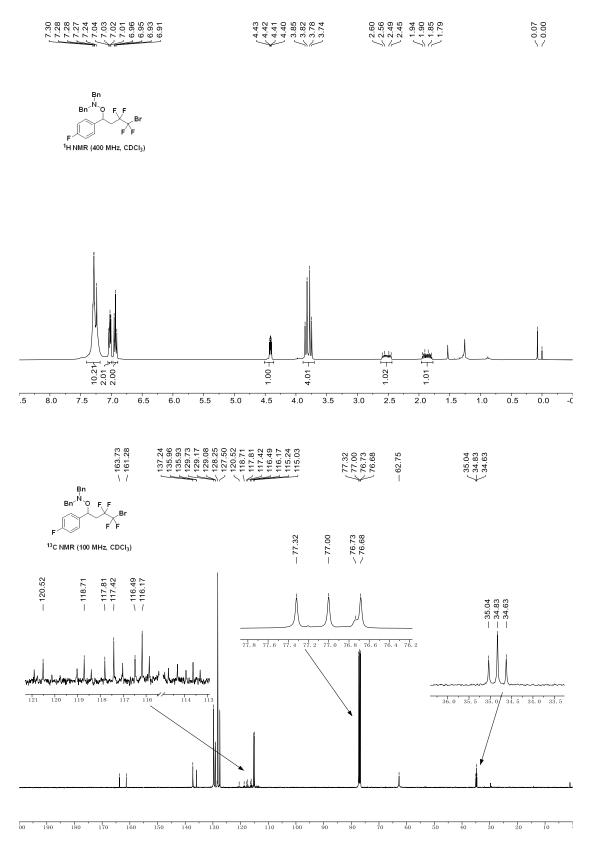
 7.755

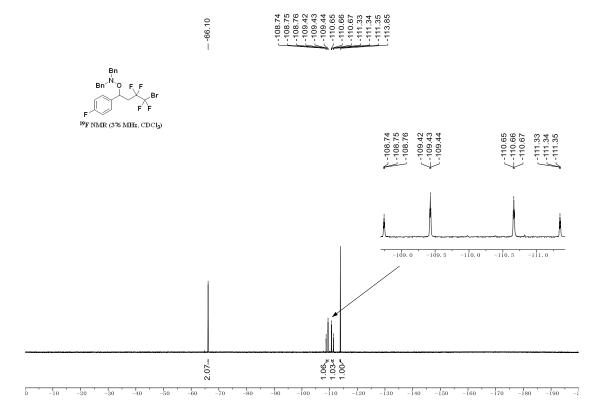

 7.7



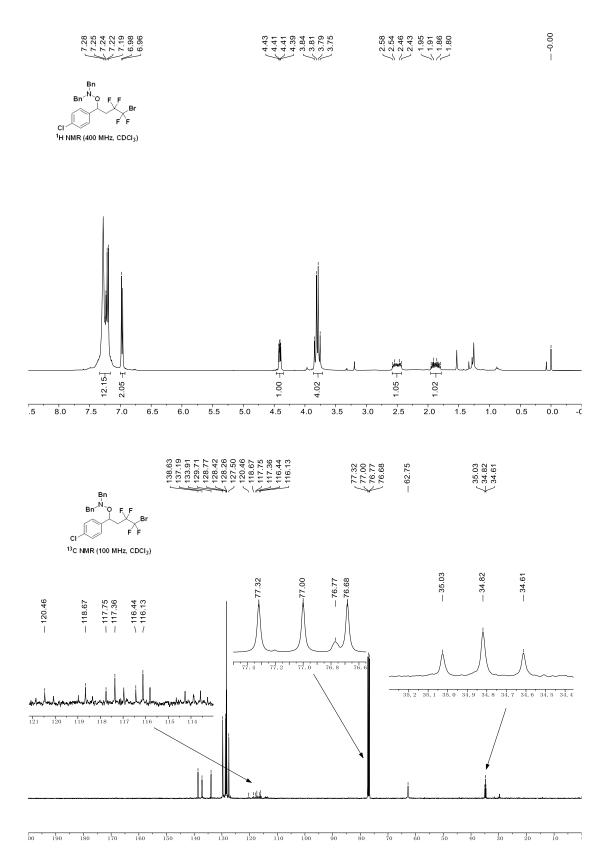


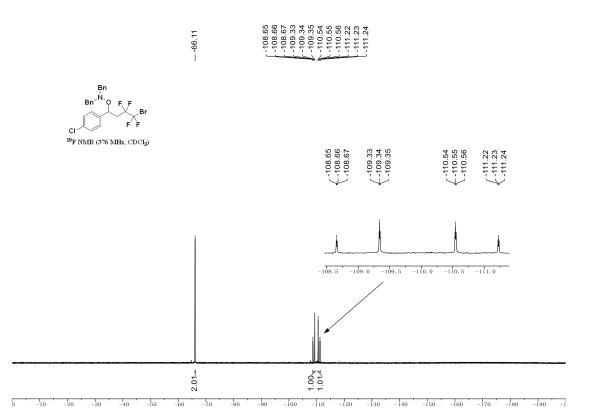
N,N-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-phenylbutyl)hydroxylamine (41)

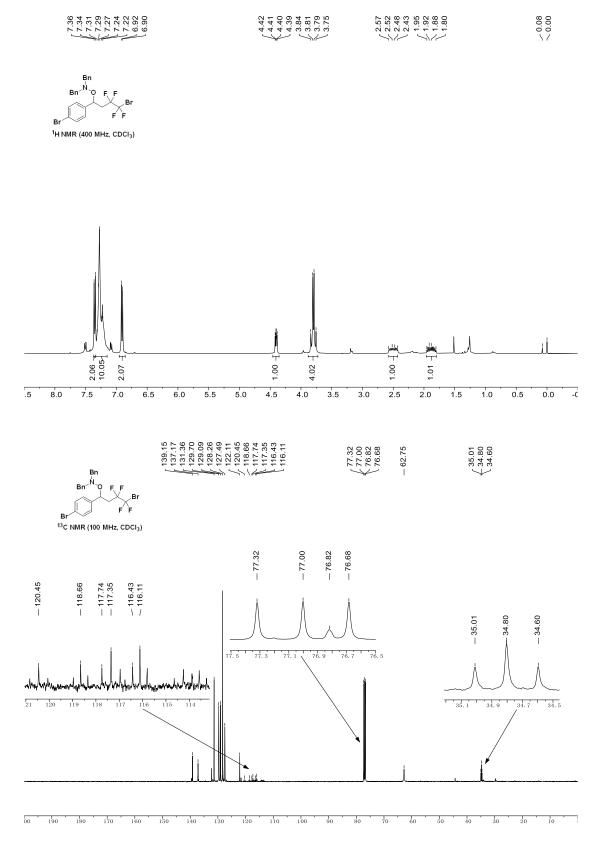


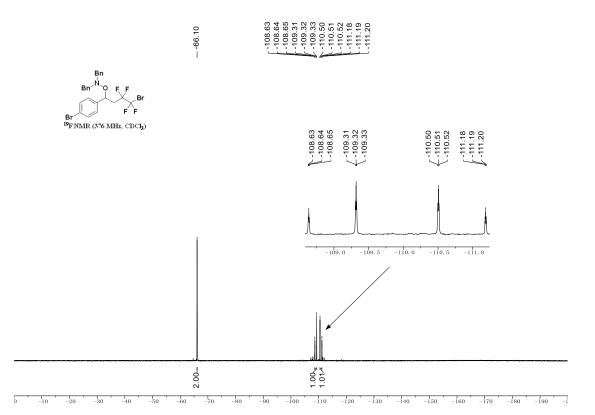


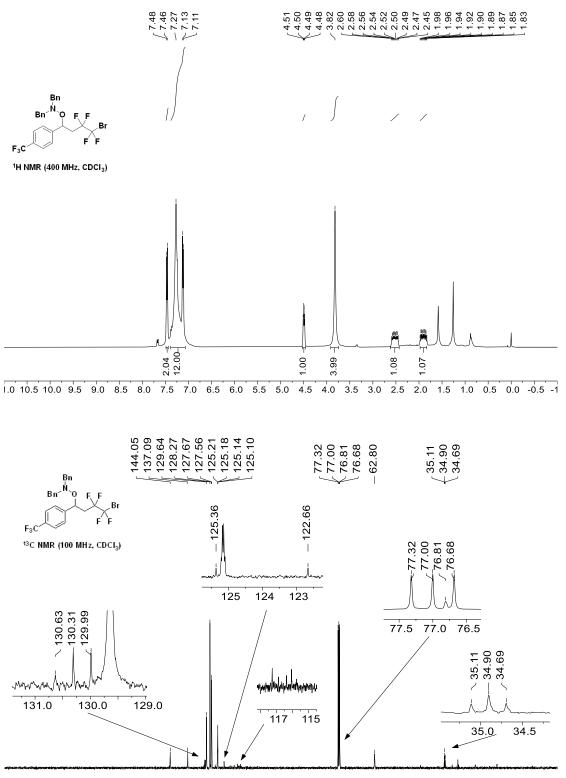
N,N-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-(p-tolyl)butyl)hydroxylamine (4m)

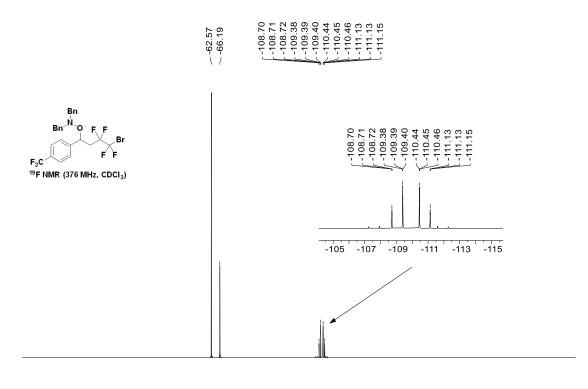



N,N-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-(4fluorophenyl)butyl)hydroxylamine (4n)

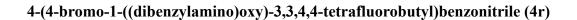


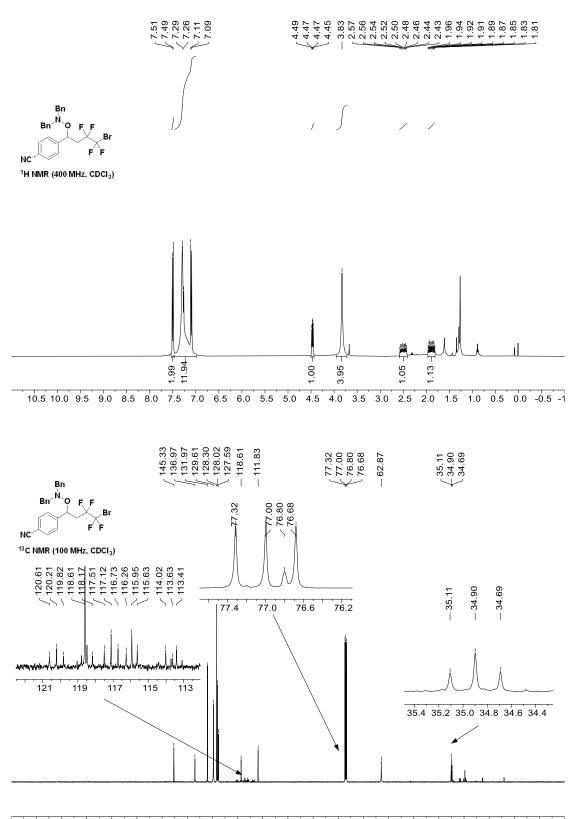

N,N-dibenzyl-*O*-(4-bromo-1-(4-chlorophenyl)-3,3,4,4tetrafluorobutyl)hydroxylamine (40)


N,N-dibenzyl-*O*-(4-bromo-1-(4-bromophenyl)-3,3,4,4tetrafluorobutyl)hydroxylamine (4p)

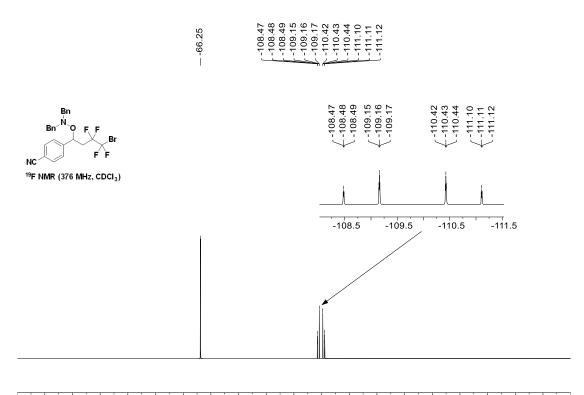


N,N-dibenzyl-O-(4-brom o-3,3,4,4-tetrafluor o-1-(4-(trifluor omethyl) phenyl) butyl)

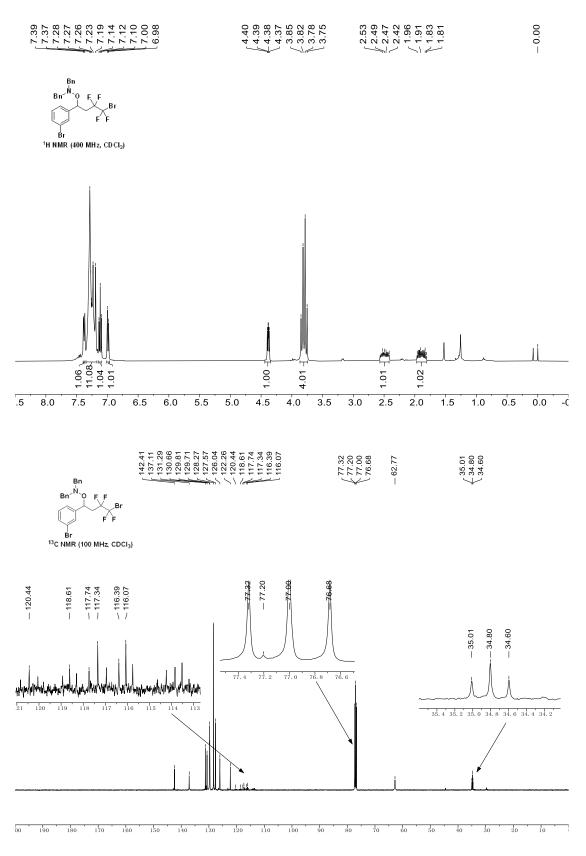

hydroxylamine (4q)

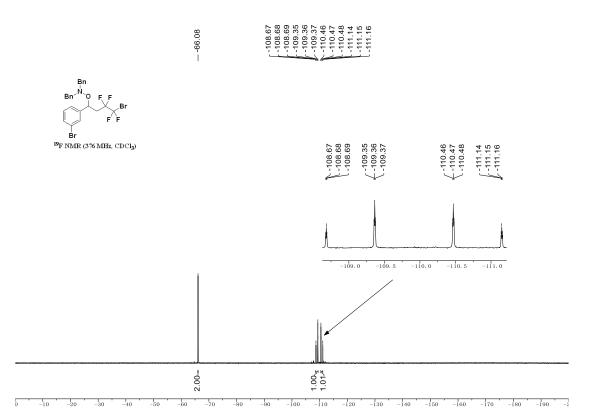


10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -



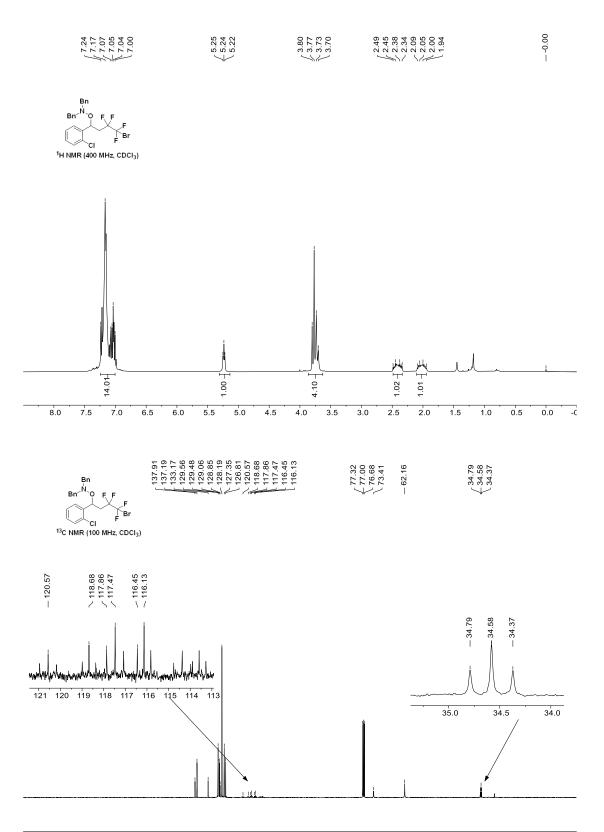
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

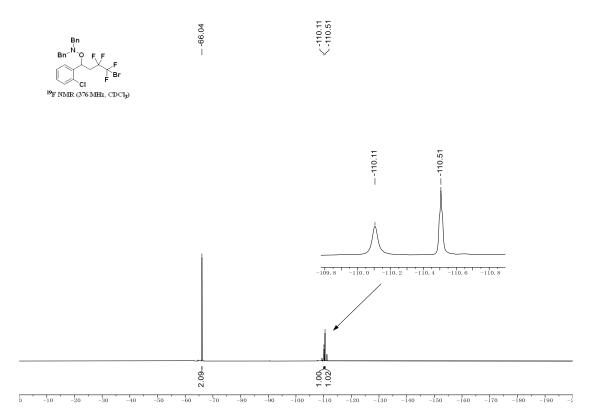

^{10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -}



0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2

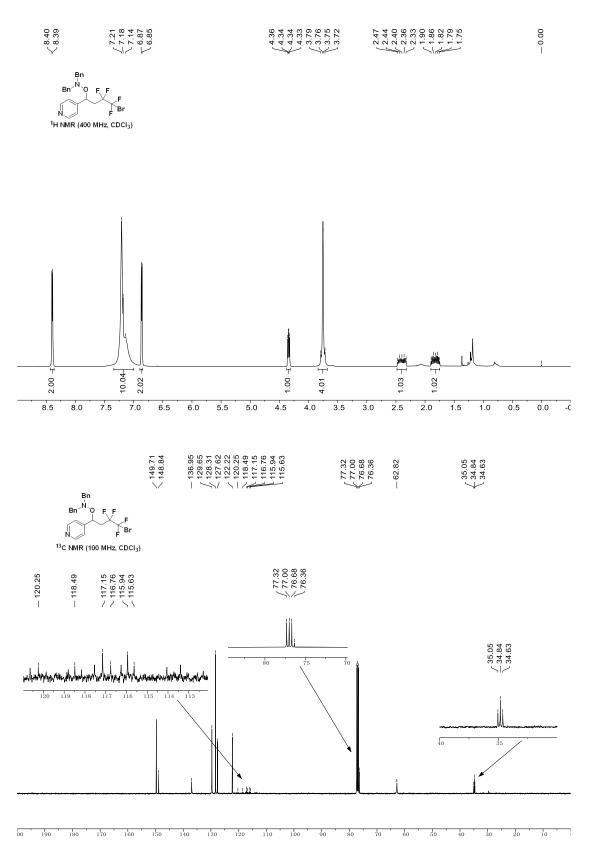
N,N-dibenzyl-O-(4-bromo-1-(3-bromophenyl)-3,3,4,4-

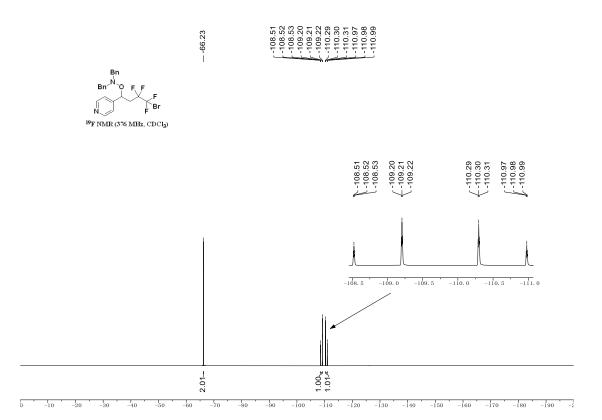

tetrafluorobutyl)hydroxylamine (4s)



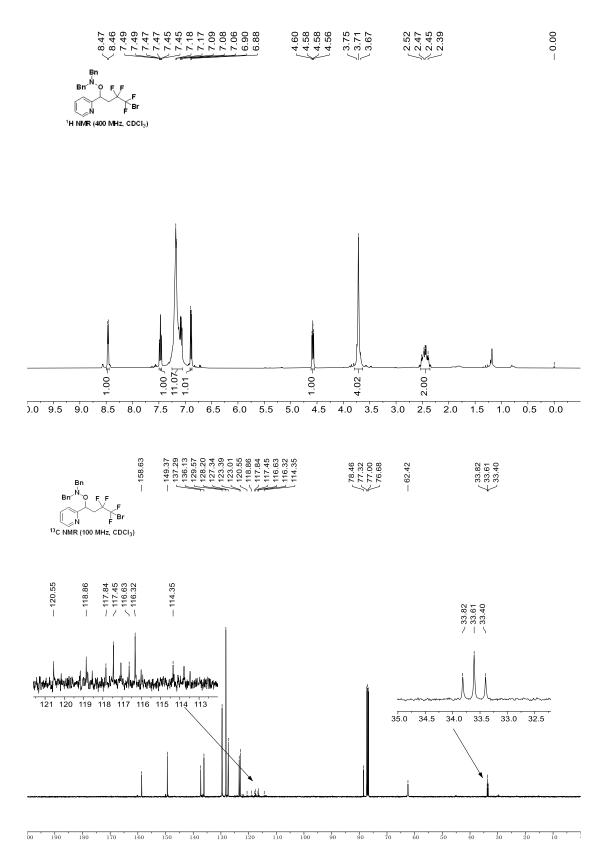
N,N-dibenzyl-O-(4-bromo-1-(2-chlorophenyl)-3,3,4,4-

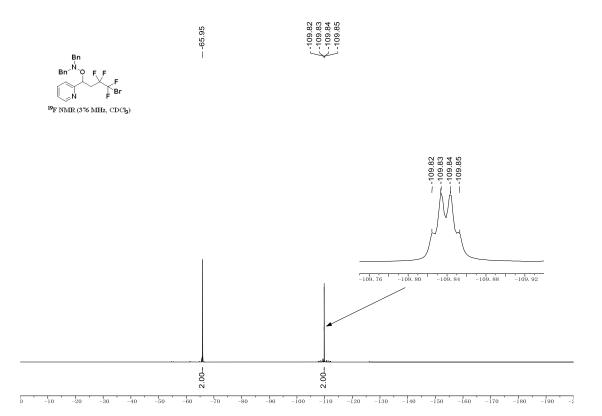
tetrafluorobutyl)hydroxylamine (4t)



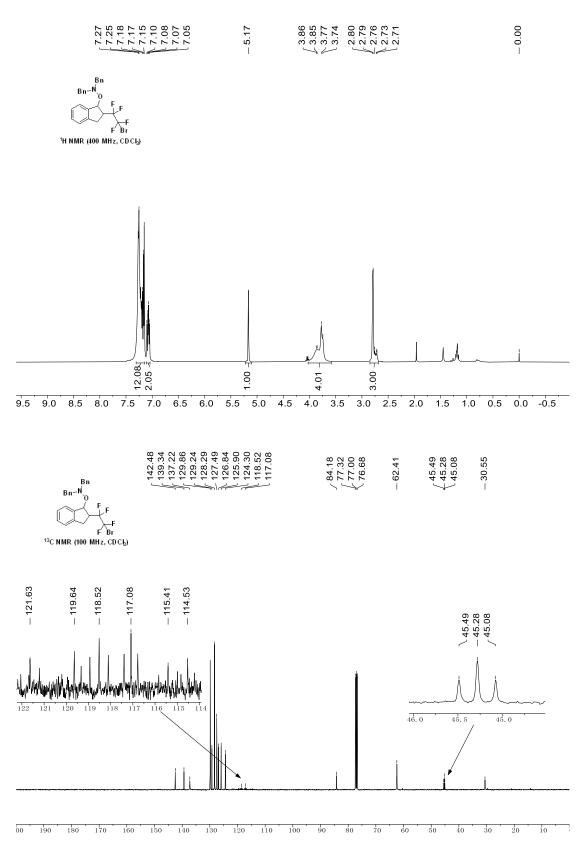

i

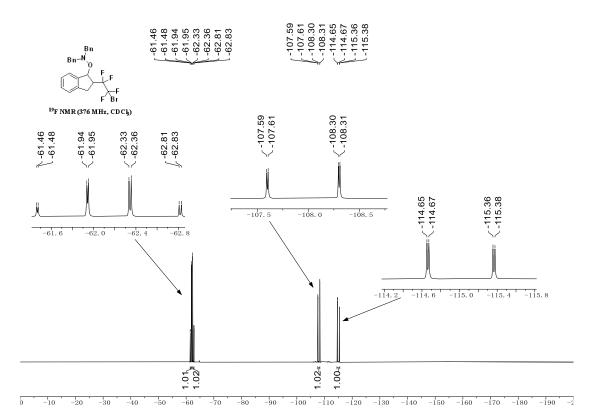
N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(pyridin-4-


yl)butyl)hydroxylamine (4u)

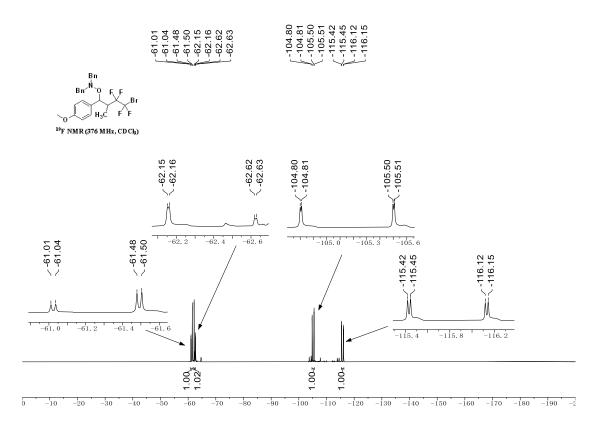


N,N-dibenzyl-O-(4-bromo-3,3,4,4-tetrafluoro-1-(pyridin-2-

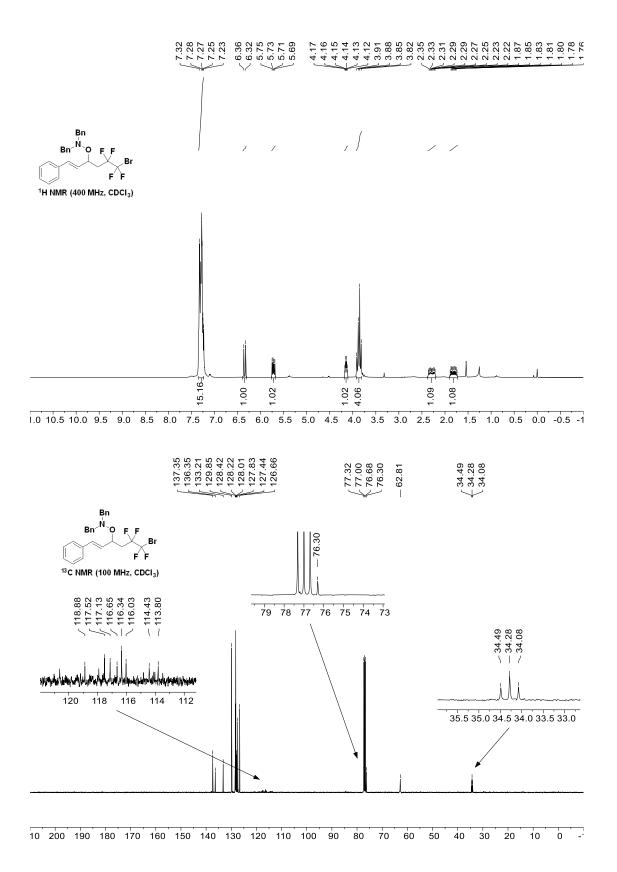

yl)butyl)hydroxylamine (4v)


S102

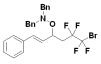
N,N-dibenzyl-*O*-(2-(2-bromo-1,1,2,2-tetrafluoroethyl)-2,3-dihydro-1H-inden-1yl)hydroxylamine (4w)



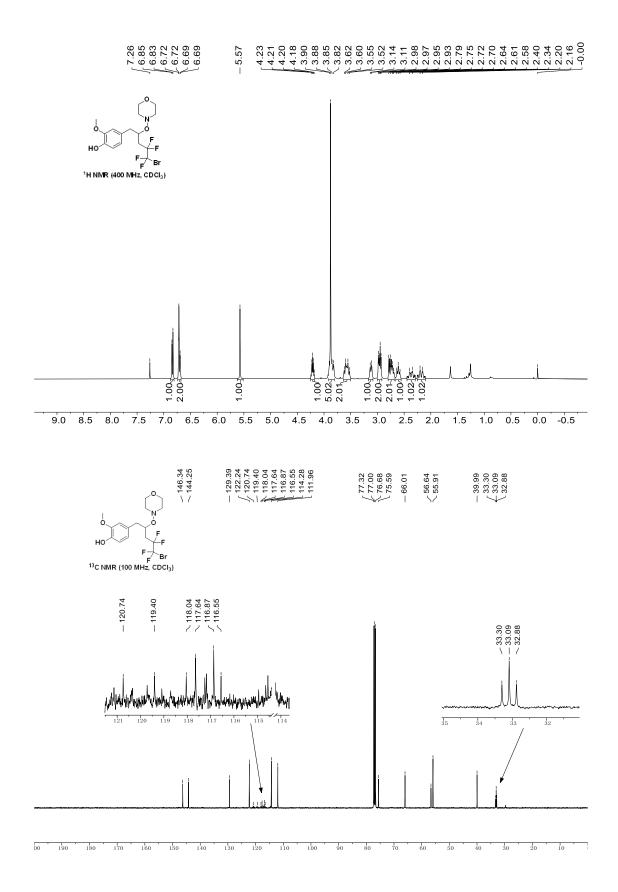
S104

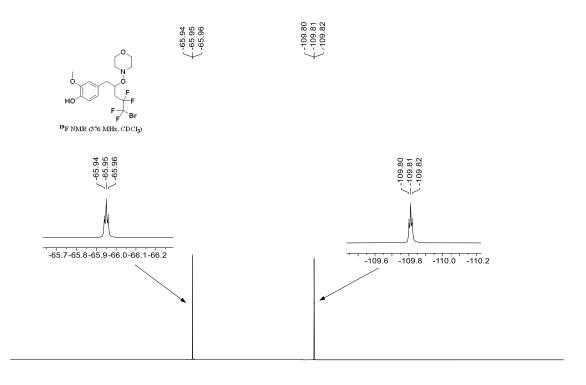


N,*N*-dibenzyl-*O*-(4-bromo-3,3,4,4-tetrafluoro-1-(4-methoxyphenyl)-2methylbutyl)hydroxylamine (4x)



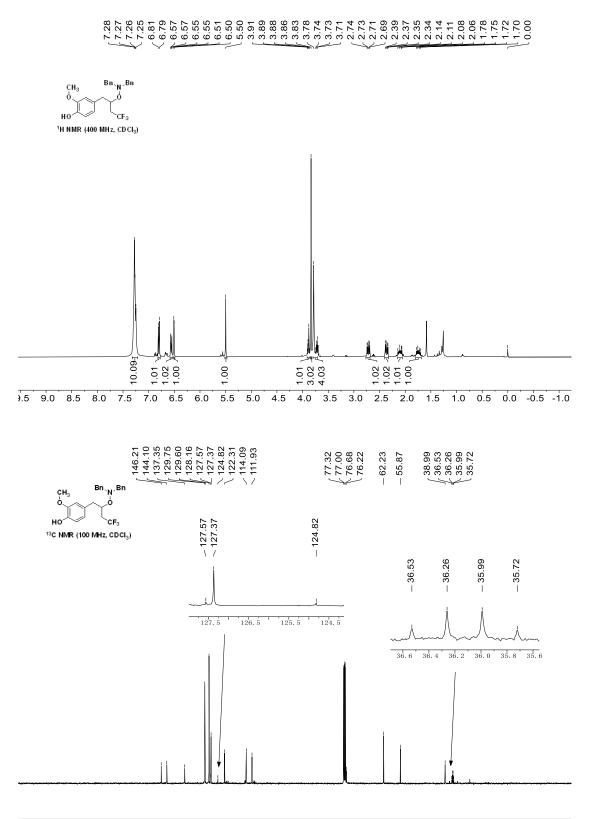
(*E*)-*N*,*N*-dibenzyl-*O*-(6-bromo-5,5,6,6-tetrafluoro-1-phenylhex-1-en-3-yl) hydroxylamine (4y)





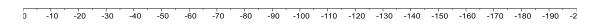
¹⁹F NMR (376 MHz, CDCI₃)

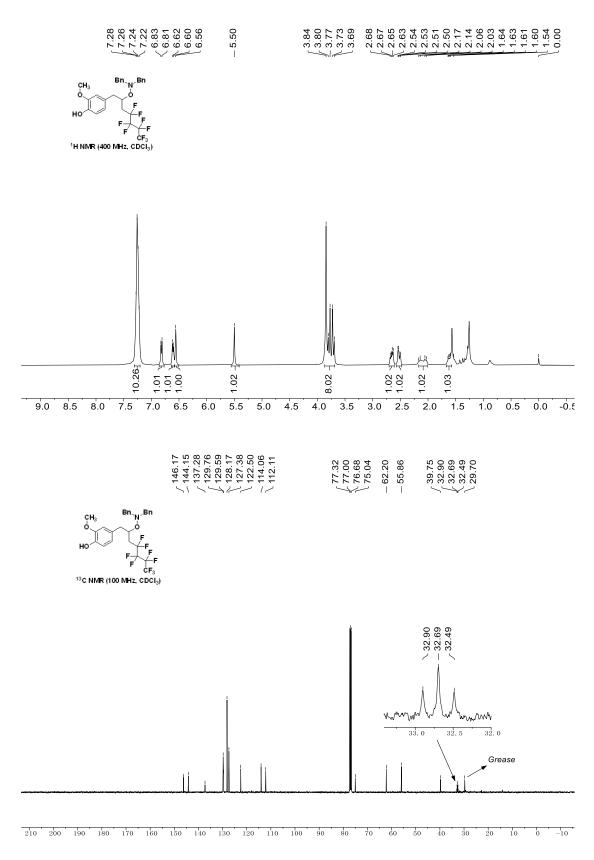
10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

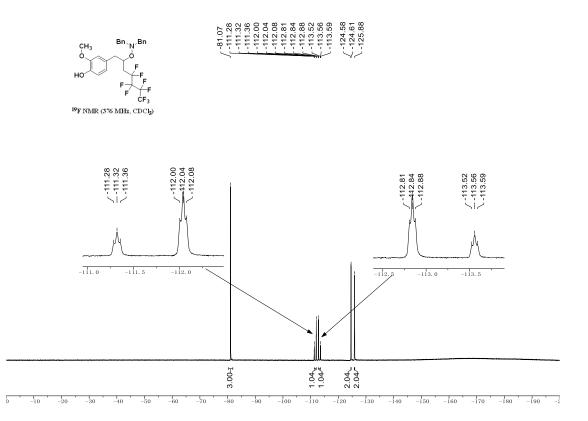


4-(5-bromo-4,4,5,5-tetrafluoro-2-(morpholinooxy)pentyl)-2-methoxyphenol (4aa)

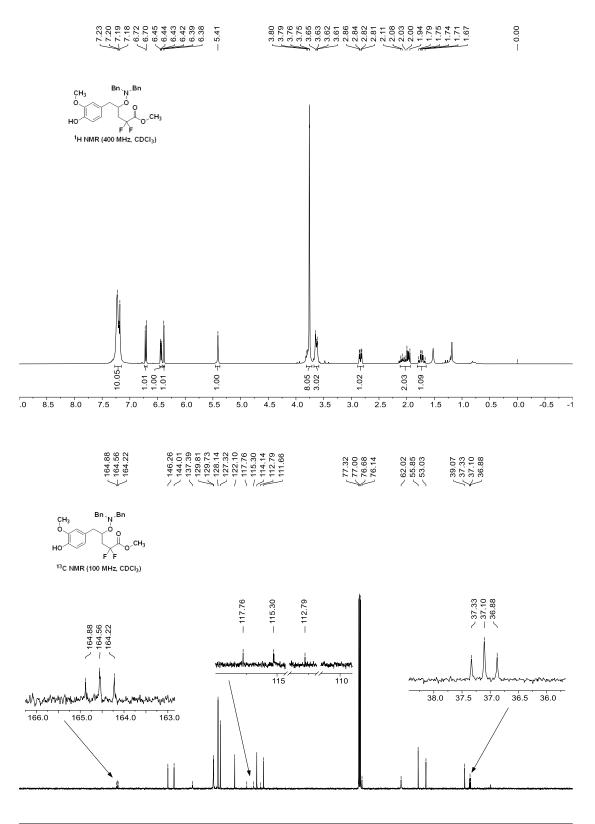
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2

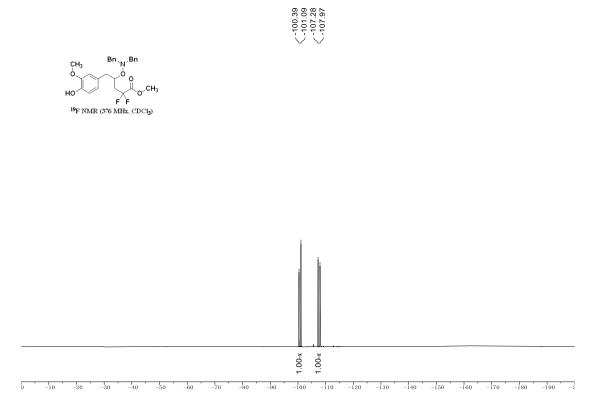

4-(2-((dibenzylamino)oxy)-4,4,4-trifluorobutyl)-2-methoxyphenol (4ab)

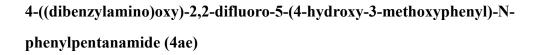

90 80 150 140

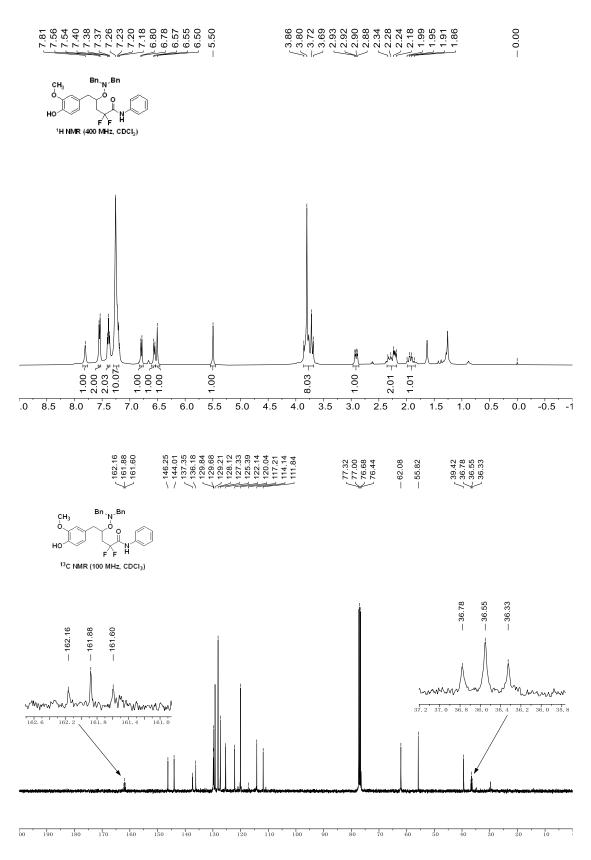


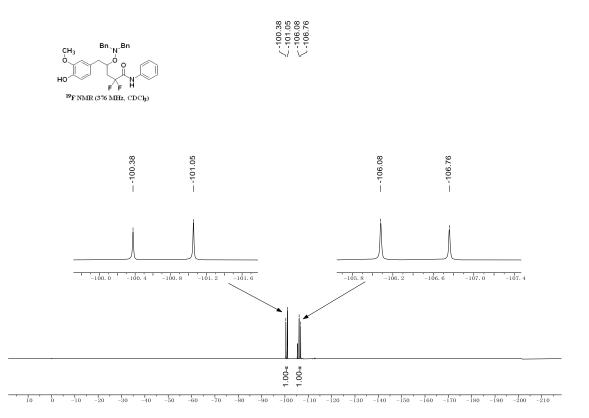
— -62.57


4-(2-((dibenzylamino)oxy)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl)-2-methoxyphenol (4ac)

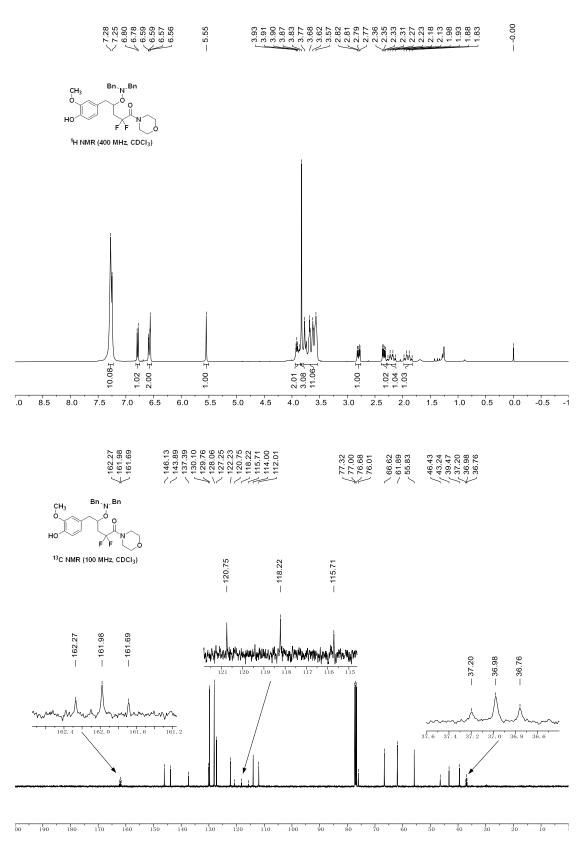


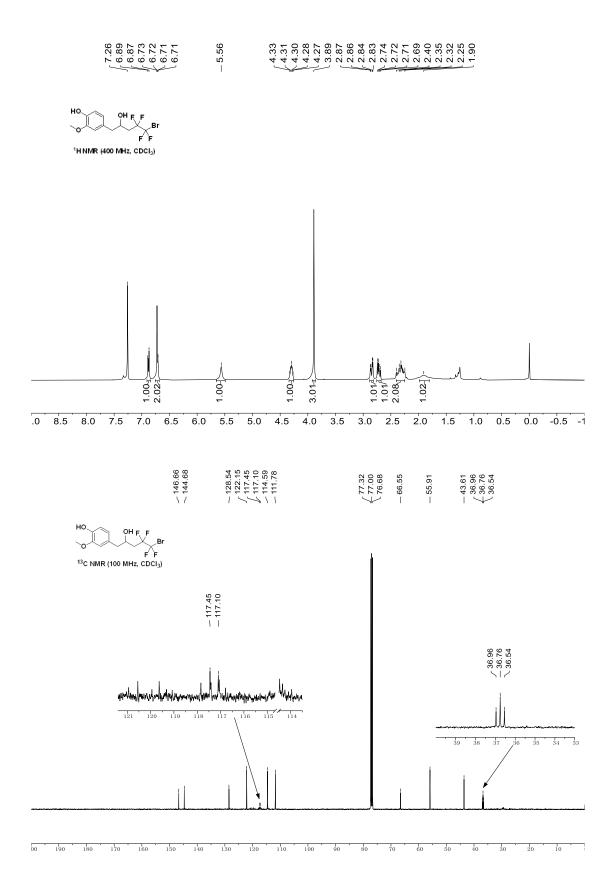

Methyl

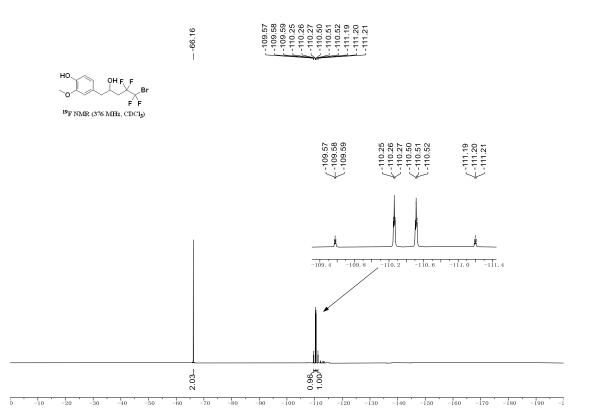

methoxyphenyl)pentanoate (4ad)

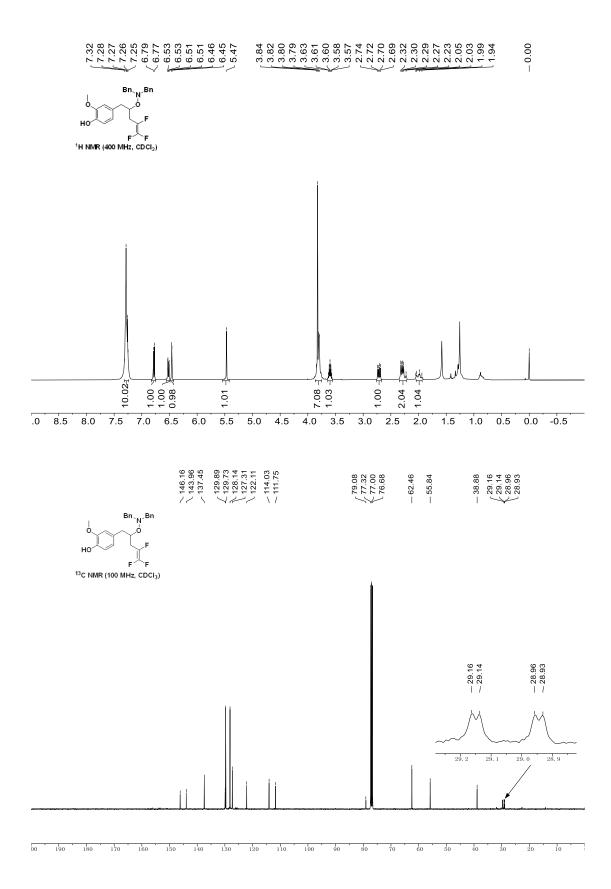


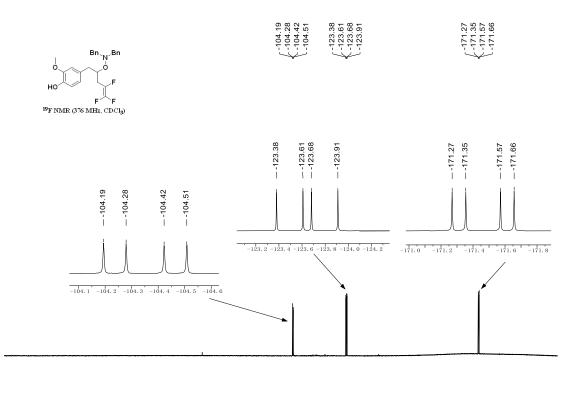
i

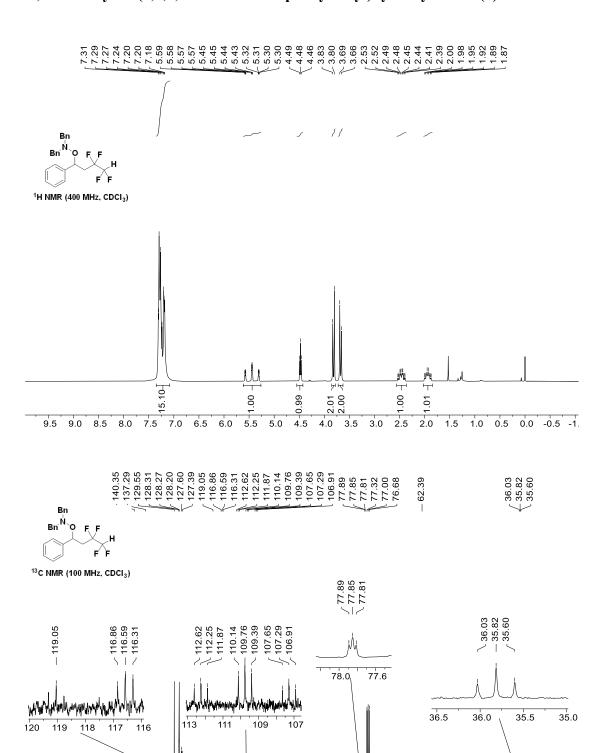


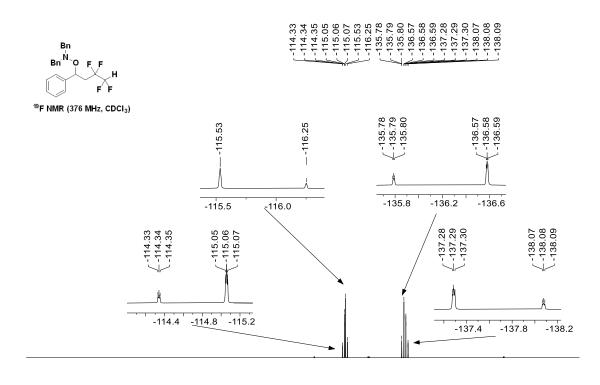

4-((dibenzylamino)oxy)-2,2-difluoro-5-(4-hydroxy-3-methoxyphenyl)-1morpholinopentan-1-one (4af)

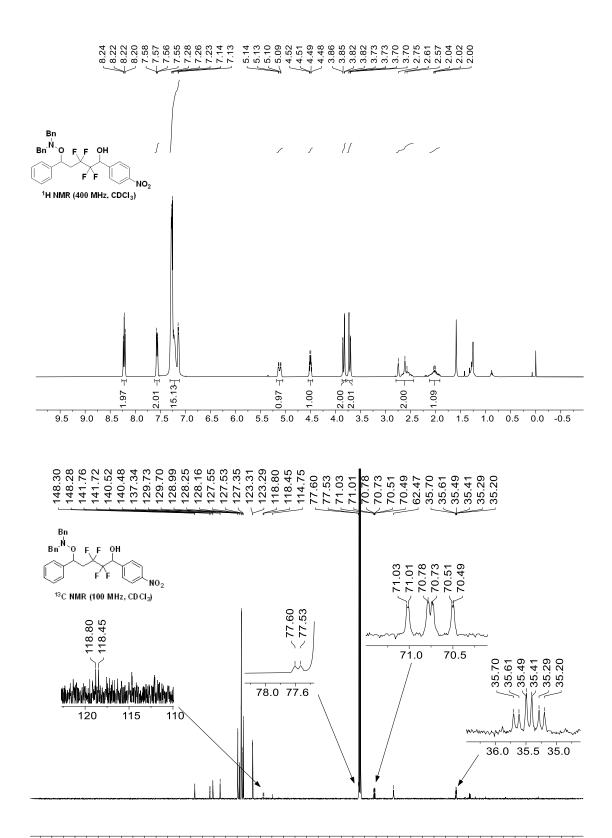

Bn_{`N}´Bn сн₃ 0 но FF $^{19}\!\mathrm{F}\,\mathrm{NMR}$ (376 MHz, $\mathrm{CDCl}_3)$


0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2



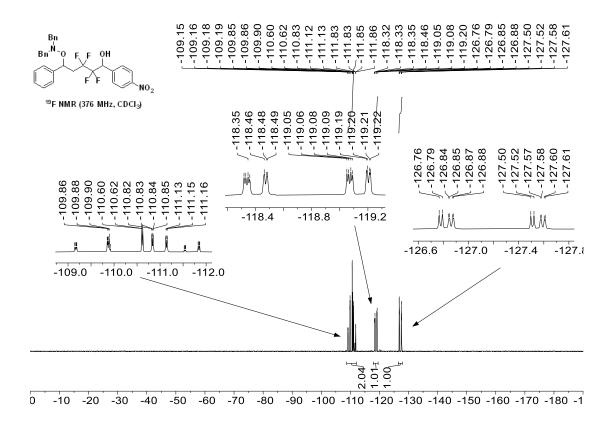

4-(5-bromo-4,4,5,5-tetrafluoro-2-hydroxypentyl)-2-methoxyphenol (5)





N,*N*-dibenzyl-*O*-(3,3,4,4-tetrafluoro-1-phenylbutyl)hydroxylamine (7)

Ш



-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190

5-((dibenzylamino)oxy)-2,2,3,3-tetrafluoro-1-(4-nitrophenyl)-5-phenylpentan-1-ol (8)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

9. References

- [1] M. Yang, W. Shao, L. Zuo, J. Wang, Y. Xu, G. Mao and G. J. Deng, Site-Selective Radical Trifluoromethylaminoxylation of Olefins for the Modular Synthesisof Diverse β-Trifluoromethyl Trisubstituted Hydroxylamines and Beyond. *Org. Lett.*, 2023, 25, 2728-2732.
- [2] Q. Wu, W. Zhang, W. Shao, Y. Pei and J. Wang, Partially Bio-Based and Fluorinated Polysiloxane with High Transparency and Low Dielectric Constant. *Eur. Polym. J.*, 2023, **194**, 112136.
- [3] A. Budinská, J. Václavík, V. Matoušek and P. Beier, Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents. *Org. Lett.*, 2016, 18, 5844–5847.
- [4] J. Luo and J. Zhang, Donor–Acceptor Fluorophores for Visible-Light-Promoted Organic Synthesis: Photoredox/Ni Dual Catalytic C(sp³)–C(sp²) Cross-Coupling. *ACS Catal.*, 2016, 6, 873–877. (Correction: *ACS Catal.*, 2020, 10, 14302–14303)