

ELECTRONIC SUPPORTING INFORMATION

Alkynyltellurolato ligands including a solvatochromic rhenium(I) complex

Liam K. Burt, Ryan M. Kirk and Anthony F. Hill*

Received 00th February 2025, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Experimental Section

General Considerations

Unless otherwise stated, experimental work was carried out at ambient temperature under a dry, oxygen-free nitrogen atmosphere utilising standard Schlenk techniques with dried and degassed solvents.

NMR spectra were obtained at 25 °C on a Bruker Avance 400 (¹H at 400 MHz, ¹³C at 101 MHz, ³¹P at 162 MHz, ⁷⁷Se at 76 MHz, ^{125}Te at 126 MHz), a Bruker Avance 600 (1H at 600 MHz, ^{13}C at 151 MHz) or a Bruker Avance 700 (1^H at 700 MHz, 1³C at 176.1 MHz, ⁷⁷Se at 134 MHz, ¹²⁵Te at 221 MHz) or Jeol FX270 (¹H at 270 MHz, ¹³C at 68 MHz) spectrometers. Chemical shifts (δ) are reported in ppm and referenced to the residual solvent peak (¹H, ¹³C) or an external reference (⁷⁷Se: Ph₂Se₂ δ_{Se} = 459.0, ¹²⁵Te: $Ph_2Te_2 \delta_{Te}$ = 421.8) with coupling constants given in Hz. The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t(triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ⁷⁷Se or ¹²⁵Te isotopomer satellites. In some cases, distinct peaks were observed in the ¹H and ¹³C{¹H} NMR spectra, but to the level of accuracy that is reportable (i.e. 2 decimal places for ¹H NMR, 1 decimal place for ¹³C NMR) they are reported as having the same chemical shift. Infrared spectra were obtained using a Perkin-Elmer Spectrum One FT-IR spectrometer. The strengths of IR absorptions are denoted by the abbreviations vs (very strong), s (strong), m (medium), w (weak), sh (shoulder) and br (broad). Highresolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile as the matrix. Data for Xray crystallography were collected with an Agilent Xcalibur CCD

diffractomer using Mo-K α radiation (λ = 0.71073 Å) or an Agilent SuperNova CCD diffractometer using Cu-K α radiation(λ = 1.54184 Å) using the CrysAlis PRO software.¹ The structures were solved by direct or intrinsic phasing methods and refined by full- matrix least squares on F² using the SHELXL programs² and the WinGX3 or Olex2 software.³ Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury.⁵ The complexes [FeCl(CO)₂(η⁵-C₅H₅)],⁵ and [ReBr(CO)₃(bipy)]⁶ were prepared according to literature procedures. Remaining reagents were purchased from commercial sources and generally used as received.

Computational studies were performed by using the *SPARTAN20*[®] suite of programs.⁷ Geometry optimisation was performed at the DFT level of theory using the exchange functionals ω B97X-D of Head-Gordon.⁸ The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt⁹ was used for rhenium and tellurium while Pople 6-31G^{*} basis sets¹⁰ were used for all other atoms. Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest. Cartesian atomic coordinates are provided below.

Synthesis of [Fe(TeC=CPh)(CO)₂(η^5 -C₅H₅)] (1-Te). A solution of ethynylbenzene (0.33 mL, 3.00 mmol) in THF (20 mL) was treated dropwise with *n*-butyllithium (1.9 mL, 3.04 mmol, 1.6 M in hexanes) at 0°C under N₂. The solution was warmed to ambient temperature and the resulting pale-yellow solution was treated with tellurium powder (0.38 g, 3.00 mg.atom) at 0°C, which was consumed over 1 h. The mixture was cooled (dry-ice/propanone) before the addition of a solution [FeCl(CO)₂(η^5 -C₅H₅)] (0.63 g, 3.0 mmol) in THF (10 mL). This caused a significant colour change from bright red to green as the mixture was allowed to slowly warm to room temperature. The volatiles were removed under reduced pressure to afford a dark residue that was purified via flash column chromatography (silica gel) eluting with 1:1 CH₂Cl₂/petroleum spirits 40-60. The

^{a.} Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, Australia ACT 2601. Email. a.hill@anu.edu.au

COMMUNICATION

solvent was evaporated from the major green fraction under reduced pressure to afford the title compound as a green oil. The complex is unstable in solution, compromising the acquisition of some spectroscopic data. Attempts to grow crystallographic grade crystals from pentane resulted in the deposition of brown insoluble material (ESI-MS indicated "Fe₂Te₂(C₅H₅)₂").

IR (CH₂Cl₂): 2026, 1979 v_{C0} cm⁻¹. ¹H NMR (600 MHz, CDCl₃): $\delta_{\rm H}$ = 7.37, 7.24 (m x 2, 5 H, C₆H₅), 5.03 (s, 5 H, C₅H₅) ppm. ¹³C NMR (150 MHz, CDCl₃): $\delta_{\rm C}$ = 213.5 (CO), 132.1 {C^{3,5}(C₆H₅)], 128.0 [C^{2,6}(C₆H₅)], 127.4 [C⁴(C₆H₅)], 124.6 [C¹(C₆H₅)], 99.7 (**C**=C-Te, ²J_{TeC} = 144 Hz), 84.7 (C₅H₅), 35.4 (C=**C**-Te, ¹J_{TeC} = 314 Hz) ppm. ¹²⁵Te NMR (126.2 MHz, CDCl₃): δ -506.2 ppm. MS (ESI, +ve ion, MeCN, *m*/*z*): Found: 408.91. Calcd for C₁₅H₁₁FeO₂Te [M+H]⁺: 408.91709. Satisfactory elemental microanalytical data not acquired due to instability.

Synthesis of [Fe(TeC=CPh)(CO)(PPh₃)(η^{5} -C₅H₅)] (2-Te) A solution of ethynylbenzene (0.33 mL, 3.00 mmol) in THF (20 mL) was treated dropwise with *n*-butyllithium (1.9 mL, 3.04 mmol, 1.6 M in hexanes) at 0°C under N₂. The solution was warmed to ambient temperature, whereupon tellurium powder (0.383 g, 3.00 mg.atom) was added to the mixture at 0°C resulting in a suspension. Stirring for 1 h allowed for complete consumption of tellurium. The mixture was cooled (dry-ice/propanone) before the addition of a solution comprised of $[FeCl(CO)_2(\eta^{5}-$ C₅H₅)] (0.63 g, 2.97 mmol) in THF (10 mL). Subsequent addition of PPh_3 (0.80 g, 3.04 mmol) at $-78^{\circ}C$ gave a brown mixture that was allowed to warm slowly to room temperature and was stirred for a further 2 hours. Volatiles were removed under reduced pressure resulting in a brown residue which was ultrasonically titrated with EtOH (10 mL) and hexanes (3 x 10 mL), before recrystallisation from a mixture of CH₂Cl₂ and npentane. The title compound was obtained as a green solid (0.67 g, 1.05 mmol, 35 % yield).

IR (CH₂Cl₂): 2120, 1939 v_{C0} cm⁻¹. ¹H NMR (400 MHz, 295 K, CDCl₃): δ_{H} 7.44 – 7.64 (m, 2 H, C₆H₅), 7.27 – 7.43 (m, 15H, aryl C– H), 7.07 – 7.18 (m, 3H, aryl C–H), 4.51 (s, 5H, Cp) ppm. ¹³C NMR (176 MHz, CDCl₃): δ 220.4 (d, CO, ²J_{PC} = 30 Hz), 135.4 [d, ¹J_{PC} = 44 Hz, C¹(PC₆H₅)], 133.1 [d, ²J_{PC} = 9 Hz, C^{3,5}(PC₆H₅)], 130.3 [d, ⁴J_{PC} = 2 Hz, C⁴(PC₆H₅)], 128.4 [d, ²J_{PC} = 10 Hz, C^{2,6}(PC₆H₅)] 96.8 (s, Te– C≡C), 84.2 (C₅H₅), 41.8 (d, ³J_{PC} = 9 Hz Te–C≡C). ³¹P NMR (283 MHz, CDCl₃): δ_{P} = 73.5 (²J_{PTe} = 139 Hz). ¹²⁵Te NMR (126.2 MHz, CDCl₃): δ_{Te} = –339.2. MS (ESI, m/z): Found: 642.0036. Calcd for C₃₂H₂₅FeOPTe [M]⁺: 642.0049.

Crystals for X-ray structure determination were grown by vapour diffusion of *n*-pentane into CH₂Cl₂ at -20 °C. Crystal Data for C₃₂H₂₅OPFeTe (*M* =639.94 g/mol): monoclinic, space group P2₁/n (no. 14), *a* = 7.6985(2) Å, *b* = 19.2903(5) Å, *c* = 17.9591(5) Å, *b* = 92.031(3)°, *V* = 2665.37(12) Å³, *Z* = 4, *T* = 149.97(18) K, μ (MoK α) = 1.722 mm⁻¹, *Dcalc* = 1.595 g/cm³, 33012 reflections measured (6.732° ≤ 2 Θ ≤ 52.738°), 5439 unique (R_{int} = 0.0363, R_{sigma} = 0.0259 (I > 2 σ (I)) and *wR*₂ was 0.0630 (all data)

Synthesis of $[Fe(SeC=CC_6H_4Me-4)(CO)(PPh_3)(\eta^5-C_5H_5)]$ (4-Se). A mixture of $[Fe(SeC=CC_6H_4Me-4)(CO)_2(\eta^5-C_5H_5)]$ (0.25 g,

0.67 mmol) and PPh₃ (0.18 g, 1 eq.) were dissolved together in diethyl ether (25mL). Irradiation with a tungsten lamp led to vigorous evolution of CO and a colour change to red/brown within 30 seconds. The solution was diluted with hexane then slowly concentrated under reduced pressure to give the title compound as a red/brown solid (0.30 g, 74%) after recrystallisation from dichloromethane/hexane.

IR (CH₂Cl₂): 2129 w v_{C=C}, 1945 vs v_{C0}. IR (Nujol): 2122 w v_{C=C}, 1945, 1933 vs v_{C0}, 816 m δ C₆H₄. NMR (CDCl₃, 270 MHz, 298 K): δ_{H} = 2.30 (s, 3 H, CH₃), 4.50 (s, 5 H, C₅H₅), 7.22, 7.40, 7.71 (m x 3, 20 H, PC₆H₅ and CC₆H₅). ¹³C{¹H} NMR (CDCl₃, 67 MHz, 298 K): δ_{C} = 219.8 (d, CO, ²*J*_{PC} = 34 Hz), 136.0 [C¹(C₆H₄]], 135.0 [d, C¹(C₆H₅), ¹*J*_{PC} = 44 Hz), 133.4 [d, C^{2,6}(C₆H₅), ²*J*_{PC} = 9.8 Hz], 131.6 [C³(C₆H₄]], 130.3 [C⁴(C₆H₅)], 128.8 [C²(C₆H₄)], 128.4 [d, C^{3,5}(C₆H₅)), ³*J*_{PC} = 9.9 Hz), 123.3 [C⁴(C₆H₄)], 84.7 (C₅H₅), 82.7 (C<u>C</u>=C), 79.4 (d, Se<u>C</u>=C, ³*J*_{PC} = 7.2 Hz), 21.6 (CH₃). ³¹P{¹H} NMR (CDCl₃, 109 MHz, 298 K): δ_{P} = 71.2. FAB MS (+ve ion) *m/z* 606 [M]⁺, 578 [M-CO]⁺, 513 [M-C₅H₅-CO]⁺, 463 [M-CO-CCTOI]⁺, 411 [M-SeCCTOI]⁺, 399 [M-C₅H₅-CCTOI-CO+H]⁺, 383 [M-SeCCTOI-CO]⁺, 316 [M-PPh₃-CO]⁺. Analysis found (S) (%) C; 65.51, H; 4.59. Calc for C₃₃H₂₇OPFeSe requires (%) C; 65.48, H; 4.50%.

Syntheses of [Re(EC=CSiMe₃)(CO)₃(bipy)] (E = Se 5-Se, Te 5-Te)

General procedure:

To a stirred solution of 0.15 mL HC=CSiMe₃ (1.08 mmol) in 25 mL THF cooled to 0 °C was added 0.65 mL n-BuLi solution (1.08 mmol, 1.6 M in hexanes). The mixture was allowed to warm to ambient temperature and stirred for a further 30 minutes, after which time either 0.090 g Se or 0.140 g Te (1.1 mg·atom, 1.1 equiv.) was added resulting in dark yellow-orange (Se) or dark yellow-green (Te) mixtures over 90 minutes. Separately, to 0.500 g [ReBr(CO)₃(bipy)] (0.99 mmol) suspended in 25 mL THF was added 0.255 g AgOTf (0.99 mmol) with rapid stirring, resulting in formation of a grey precipitate and a light yellow solution. To the flask containing the LiEC≡CSiMe₃ reagent was fitted an argon-filled Schlenk column containing a plug of ovendried diatomaceous earth (2.5 x 2.5 cm) and the receiving solution cooled to -78 °C; the solution of [Re(OTf)(CO)₃(bipy)] was then filtered through the plug directly into the chilled reaction mixture, rinsing with small portions of THF until washings were colourless. After stirring overnight at ambient temperature, the mixture was freed of volatile under reduced pressure, and the residue extracted into CH₂Cl₂, filtered, and absorbed onto a small quantity of silica gel under vacuum. Column chromatography on silica gel (30 x 2.5 cm) with 1:1 CH₂Cl₂/petroleum spirit afforded bright orange (Se) or red (Te) bands containing the products which were collected and dried, and then re-crystallised from CH₂Cl₂/n-hexane mixtures at 0 °C depositing orange (Se) or red (Te) needles.

[Re(SeC≡CSiMe₃)(CO)₃(bipy)] (5-Se)

Isolated yield: 0.210 g (0.36 mmol, 36% *w.r.t.* Re). The product is air stable and is readily soluble in polar organic and aromatic solvents, and poorly soluble in aliphatic hydrocarbons.

IR (CH₂Cl₂, 25 °C) v_{CC} 2057(w) cm⁻¹, v_{CO} 2019(vs), 1919(s), 1906(s) cm⁻¹; IR (ATR, 25 °C) v_{CC} 2055(m) cm⁻¹, v_{CO} 2021(s), 1911(vs), 1871(vs) cm⁻¹. ¹H (CDCl₃, 400 MHz, 25 °C) δ 9.06 (ddd, *J*_{HH} = 5.6, 1.6, 0.8 Hz, 2H, 3,3'-C₁₀*H*₈N₂), 8.20 (dt, *J*_{HH} = 8.2, 1.0 Hz, 2H, 6,6'-C₁₀*H*₈N₂), 8.03 (td, *J*_{HH} = 7.9, 1.6 Hz, 2H, 5,5'-C₁₀*H*₈N₂), 7.51 (ddd, *J*_{HH} = 7.5, 5.6, 1.3 Hz, 2H, 4,4'-C₁₀*H*₈N₂), -0.09 (s, 9H, SiC*H*₃) ppm; ¹³C{¹H} (CDCl₃, 176 MHz, 25 °C) δ 197.5 (*CO*_{eq}), 189.5 (*CO*_{ax}), 155.5 (2,2'-C₁₀*H*₈N₂), 153.6 (3,3'- C₁₀*H*₈N₂), 138.2 (5,5'- C₁₀*H*₈N₂), 126.9 (4,4'-C₁₀*H*₈N₂), 123.0 (6,6'-C₁₀*H*₈N₂), 94.4 (Se-C≡*C*-Si), 90.9 (Se-*C*≡C-Si), 0.73 (SiCH₃) ppm; ⁷⁷Se{¹H} (CDCl₃, 133 MHz, 25 °C) δ −190.7 ppm. HR-MS (ESI, MeCN, +ve ion) found 626.9610 (calc. for C₁₈H₁₇O₃N₂²³Na²⁸Si⁸⁰Se¹⁸⁷Re [*M* + Na]⁺: 626.9623). Analysis found: C, 35.99; H, 2.80%. Calc. for C₁₈H₁₇N₂O₃ReSeSi: C, 35.88; H, 2.84%.

[Re(TeC≡CSiMe₃)(CO)₃(bipy)] (5-Te)

Isolated yield: 0.270 g (0.41 mmol, 41% *w.r.t.* Re). The product is air stable and is readily soluble in polar organic and aromatic solvents, and poorly soluble in aliphatic hydrocarbons.

IR (CH₂Cl₂, 25 °C) v_{CC} 2051(w) cm⁻¹, v_{CO} 2016(vs), 1916(s), 1905(s) cm⁻¹; IR (ATR, 25 °C) v_{CC} 2044(w) cm⁻¹, v_{CO} 2011(s), 1893(vs), 1871(s) cm⁻¹. ¹H (CDCl₃, 400 MHz, 25 °C) δ 9.14 (ddd, *J*_{HH} = 5.6, 1.6, 0.8 Hz, 2H, 3,3'-C₁₀*H*₈N₂), 8.20 (dt, *J*_{HH} = 8.1, 1.0 Hz, 2H, 6,6'-C₁₀*H*₈N₂), 7.99 (td, *J*_{HH} = 7.9, 1.5 Hz, 2H, 5,5'-C₁₀*H*₈N₂), 7.48 (ddd, *J*_{HH} = 7.5, 5.6, 1.3 Hz, 2H, 4,4'-C₁₀*H*₈N₂), -0.08 (s, 9H, SiC*H*₃) ppm; ¹³C{¹H} (CDCl₃, 176 MHz, 25 °C) δ 197.8 (*C*O_{eq}), 189.4 (*C*O_{ax}), 155.3 (2,2'-C₁₀H₈N₂), 153.8 (3,3'- C₁₀H₈N₂), 137.8 (5,5'- C₁₀H₈N₂), 126.8 (4,4'-C₁₀H₈N₂), 123.1 (6,6'-C₁₀H₈N₂), 110.0 (Te-C≡*C*-Si), 55.0 (Te-*C*≡*C*-Si), 0.7 (SiCH₃) ppm; ¹²⁵Te{¹H} (CDCl₃, 220 MHz, 25 °C) δ -339.7 ppm. HR-MS (ESI, MeCN, +ve ion) found 676.9505 (calc. for C₁₈H₁₇O₃N₂²³Na²⁸Si¹³⁰Te¹⁸⁷Re [*M* + Na]⁺: 676.9520). Analysis found: C, 33.33; H, 2.52%. Calc. for C₁₈H₁₇N₂O₃ReSiTe: C, 33.20; H, 2.63%.

References

- 1 CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
- (a) G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112; (b) G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3.
- 3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallog.*, 2009, **42**, 339-341.
- 4 (a) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *J. Appl. Crystallogr.*, 2006, **39**, 453-457. (b) C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L.

This journal is © The Royal Society of Chemistry 2025

Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, **41**, 466-470.

- 5 T. S. Piper, F. A. Cotton and G. Wilkinson, *Inorg. Nucl. Chem.* 1955, **1**, 165.
- 6 B. D. Rossenaar, D. J. Stufkens and A. Vlček, A., Inorg. Chem. 1996, 35, 2902–2909
- 7 *Spartan 20*[®] (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
- 8 (a) J. D. Chai and M. Head-Gordon, *J. Chem. Phys.*, 2008, **128**, 084106. (b) J. D. Chai and M. Head-Gordon, *Phys. Chem. Chem. Phys.*, 2008, **10**, 6615-6620.
- 9 (a) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, 82, 270-283. (b) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, 82, 299-310. (c) W. R. Wadt and P. J. Hay, *J. Chem. Phys.*, 1985, 82, 284-298.
- W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261.
- (a) L. M. Caldwell, A. F. Hill, A. G. Hulkes, C. M. A. McQueen, A. J. P. White, D. J. Williams, *Organometallics*, 2010, **29**, 6350-6358. (b) A. G. Hulkes, Ph.D. Thesis, Imprial College of Science, Tecnology and Medicine, 1999.

ELECTRONIC SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2025

Chem. Commun.., 2025, **61**, 1-3 | **4**

Chemical Communications

COMMUNICATION

This journal is © The Royal Society of Chemistry 2025

Chem. Commun., 2025, 61, 1-3 | 5

COMMUNICATION

Chemical Communications

6 | Chem. Commun., 2025, 61, 1-3

This journal is © The Royal Society of Chemistry 2025

Chemical Communications

COMMUNICATION

Chem. Commun., 2025, 61, 1-3 | 7

COMMUNICATION

Chemical Communications

8 | Chem. Commun., 2025, 61, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S6. ³¹P{¹H} NMR Spectrum of [Fe(TeC≡CPh)(CO)(PPh₃)(η⁵-C₅H₅)] (2-Te, CDCl₃, 162 MHz, 25 °C, δ_P)

COMMUNICATION

Chemical Communications

10 | Chem. Commun., 2025, **61**, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S8. ¹H NMR Spectrum of [Re(TeC=CSiMe₃)(CO)₃(bipy)] (5-Te, CDCl₃, 400 MHz, 25 °C, δ_{H})

Chem. Commun., 2025, 61, 1-3 | 11

COMMUNICATION

Chemical Communications

12 | Chem. Commun., 2025, **61**, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S10. Infrared Spectrum of [Re(TeC=CSiMe₃)(CO)₃(bipy)] (5-Te, CH₂Cl₂)

Figure S11. Infrared Spectrum of [Re(TeC=CSiMe₃)(CO)₃(bipy)] (**5-Te**, ATR)

COMMUNICATION

Chemical Communications

14 | Chem. Commun., 2025, 61, 1-3

This journal is © The Royal Society of Chemistry 2025

This journal is © The Royal Society of Chemistry 2025

Chem. Commun., 2025, 61, 1-3 | 15

COMMUNICATION

Chemical Communications

16 | Chem. Commun., 2025, **61**, 1-3

This journal is © The Royal Society of Chemistry 2025

Figure S15. ⁷⁷Se{¹H} NMR Spectrum of [Re(SeC=CSiMe₃)(CO)₃(bipy)] (5-Se CDCl₃, 133 MHz, 25 °C, δ_{se})

COMMUNICATION

Chemical Communications

Figure S16 Infrared Spectrum of [Re(SeC=CSiMe3)(CO)₃(bipy)] (5-Se CH₂Cl₂)

Figure S17. Infrared Spectrum of [Re(SeC=CSiMe₃)(CO)₃(bipy)] (**5-Se** ATR)

18 | Chem. Commun., 2025, 61, 1-3

This journal is © The Royal Society of Chemistry 2025

COMMUNICATION

COMMUNICATION

Chemical Communications

Figure S19. ¹³C{¹H} NMR Spectrum of [Re(TeC=CSiMe₃)(CO)₃(phen)] (6-Te CDCl₃, 101 MHz, 25 °C, δ_c)

20 | Chem. Commun., 2025, **61**, 1-3

This journal is © The Royal Society of Chemistry 2025

Chemical Communications

COMMUNICATION

Chem. Commun., 2025, 61, 1-3 | 21

COMMUNICATION

Chemical Communications

22 | Chem. Commun., 2025, **61**, 1-3

This journal is © The Royal Society of Chemistry 2025

ROYAL SOCIETY OF CHEMISTRY

Chemical Communications

ELECTRONIC SUPPORTING INFORMATION

Optimised Geometries and Cartesian Coordinates

[OCα≡CβMe]⁻

Figure S22: Optimised structure of $[OC\alpha \equiv C\beta Me]^-$ ($\omega B97X$ -D/6-31G*/LANL2D ζ (W)/gas phase). Bond lengths (Å) and angles (°) of interest: OC α 1.327, C $\alpha \equiv C\beta$ 1.237

Infrared absorptions of interest (cm-1, scaled by 0.9297): 2185 $\nu_{\text{CCO}}.$

Natural atomic charges of note: C β (–0.533), C α (0.407), O(– 0.764).

Löwden bond orders of interest: C α -O (1.92), C α =C β (2.47).

Table	Table S1. Cartesian Coordinates for $[OC\alpha = C\beta Me]^-$					
Ato	Atom x y z					
С	-0.000073	-0.000313	1.833347			
С	0.000278	0.001701	0.409143			
С	0.000006	0.000445	-0.951102			
н	0.516804	-0.895346	-1.398759			
н	0.516878	0.895011	-1.400907			
н	-1.033909	-0.000518	-1.399449			
0	-0.000062	-0.000986	2.942355			
Table	S2: Thermodynan	nic Properties at 2	298.15 K			
Zero	Point Energy :	120.07 kJ/r	nol (ZPE)			
Temp	perature Correction	n: 13.98 kJ/m				
Entha	Nov Correction :	(VIDration +	e gas law + rotation + translation)			
LIILIIC	ipy correction.	(7PF + tem)	(7PE + temperature correction)			
Entha	alpv :	-191.17405	-191.174054 au			
		(Electronic	Energy + Enthalpy Correction)			
Entropy :		276.56 J,	/mol•K			
Gibbs	s Energy :	-191.20546	50 au			
_		(Enthalpy -	T*Entropy)			
с _v :	C _V : 59.23 J/mol•K					

[SCα≡CβMe][−]

Figure S23: Optimised structure of $[SC\alpha \equiv C\beta Me]^-$ ($\omega B97X$ -D/6-31G*/LANL2D ζ (W,S)/gas phase). Bond lengths (Å) and angles (°) of interest: SC α 1.683, C $\alpha \equiv C\beta$ 1.223

Infrared absorptions of interest (cm $^{\text{-}1}$, scaled by 0.9297): 2118 $\nu_{\text{CC}}.$

Natural atomic charges of note: $C\beta$ (-0.533), $C\alpha$ (-0.179), S (-0.256). Löwden bond orders of interest: $C\alpha$ -S (1.46), $C\alpha$ = $C\beta$ (2.68).

Table S3. Cartesian Coordinates for [SC α =C β Me]⁻

Ato	m x	у	z
С	-0.000534	0.000213	1.556780
С	-0.002876	0.000570	0.525891
С	-0.000059	-0.000033	-1.048955
Н	-0.515716	-0.867523	-1.468270
Н	1.009349	-0.013923	-1.467817
Н	-0.492444	0.880065	-1.470211
S	0.002338	0.000624	3.334926

Table S4: Thermodynamic Properties at 298.15 K

117.35 kJ/mol (ZPE)
14.81 kJ/mol
(vibration + gas law + rotation + translation)
132.16 kJ/mol
(ZPE + temperature correction)
-514.178469 au
(Electronic Energy + Enthalpy Correction)
288.30 J/mol•K
-514.211208 au
(Enthalpy - T*Entropy)
63.58 J/mol•K

COMMUNICATION

Chemical Communications

[TeCα≡CβMe][−]

[SeCα≡CβMe][−]

 Figure
 S24:
 Optimised
 structure
 of
 [SeC α =C β Me]⁻
 (ω B97X-D/6-31G*/LANL2D ζ (W,Se)/gas phase). Bond lengths (Å) and angles (°) of interest: SeC α

 1.833, C α =C β 1.220

Infrared absorptions of interest (cm $^{\text{-}1}$, scaled by 0.9297): 2127 $\nu_{\text{CC}}.$

Natural atomic charges of note: $C\beta$ (-0.230), $C\alpha$ (-0.221), Se (-0.505). Löwden bond orders of interest: $C\alpha$ -Se (1.34), $C\alpha$ = $C\beta$ (2.74).

Table S5. Cartesian Coordinates for $[SeC\alpha \equiv C\beta Me]^-$				
Atom x y z			Z	
С	0.000055	-0.000937	1.622944	
С	-0.001307	-0.000683	0.402899	
С	-0.000371	0.000136	-1.057217	
Н	-0.508275	-0.882793	-1.475843	
Н	1.019021	0.001412	-1.473880	
н	-0.510477	0.882063	-1.475072	
Se	0.001353	0.000802	3.456169	

Table S6: Thermodynamic Properties at 298.15 K

Zero Point Energy :	116.40 kJ/mol (ZPE)
Temperature Correction :	15.19 kJ/mol
	(vibration + gas law + rotation + translation)
Enthalpy Correction :	131.59 kJ/mol
	(ZPE + temperature correction)
Enthalpy :	-2517.337121 au
	(Electronic Energy + Enthalpy Correction)
Entropy :	300.14 J/mol•K
Gibbs Energy :	-2517.371205 au
	(Enthalpy - T*Entropy)
C _v :	65.34 J/mol•K

Figure S25: Optimised structure of $[SC\alpha\equiv C\beta Me]^-$ ($\omega B97X$ -D/6-31G*/LANL2D ζ (W,Te)/gas phase). Bond lengths (Å) and angles (°) of interest: Te–C α 2.047, $C\alpha\equiv C\beta$ 1.219

Infrared absorptions of interest (cm $^{\text{-1}}$, scaled by 0.9297): 2125 $\nu_{\text{CC}}.$

Natural atomic charges of note: $C\beta$ (-0.201), $C\alpha$ (-0.324), Te (-0.441). Löwden bond orders of interest: $C\alpha$ -Te (1.21), $C\alpha$ = $C\beta$ (2.81).

Table S7. Cartesian Coordinates for $[TeC\alpha = C\beta Me]^{-}]$

Ato	m x	У	z
С	-0.000707	-0.000000	1.589938
С	-0.001264	-0.000000	0.370945
С	-0.000205	-0.000000	-1.089947
Н	1.019932	0.000000	-1.501582
Н	-0.509498	0.883081	-1.503329
Н	-0.509498	-0.883080	-1.503330
Те	0.001239	0.000000	3.637305

Table S8: Thermodynamic Properties at 298.15 K

Zero Point Energy :	115.36 kJ/mol (ZPE)
Temperature Correction :	15.64 kJ/mol
	(vibration + gas law + rotation + translation)
Enthalpy Correction :	130.99 kJ/mol
	(ZPE + temperature correction)
Enthalpy :	-124.074824 au
	(Electronic Energy + Enthalpy Correction)
Entropy :	309.16 J/mol•K
Gibbs Energy :	-124.109932 au
	(Enthalpy - T*Entropy)
C _v :	67.02 J/mol•K

COMMUNICATION

$[Fe(TeC\alpha = C\beta H)(CO)_2(\eta^5 - C_5 H_5)]$

Figure S26: Optimised structure of $[Fe(TeC\alpha \equiv C\beta H)(CO)_2(\eta^5-C_5H_5)]$ (ω B97X-D/6-31G*/LANL2D ζ (Fe,Te)/gas phase). Bond lengths (Å) and angles (°) of interest: Fe–Te 2.610, Te–C α 2.032, C α =C β 1.211, Fe–Te–C α 98.5.

Infrared absorptions of interest (cm⁻¹, scaled by 0.9297): 2015w v_{CC}. 2033s, 2008vs v_{CO} Natural atomic charges of note: C β (-0.252), C α (-0.449), Te (0.123), Fe (0.809). Löwden bond orders of interest: C α -Te (1.12), C α =C β (2.96), Fe-Te (1.03).

Table S9. Cartesian Coordinates for $[Fe(TeC\alpha \equiv C\beta H)(CO)_2(\eta^5-C_5H_5)]$				
Atom x y z				
Fe	0.013888	0.102457	-0.039532	
С	-1.214974	0.819990	1.016207	
0	-2.036549	1.322104	1.635502	
С	1.347778	0.277960	1.114921	
0	2.254478	0.419323	1.799270	
Н	2.087701	-0.889481	-1.728979	
С	1.160032	-0.335010	-1.723332	
С	1.019366	1.080086	-1.566156	
Н	-0.373766	-1.922601	-2.036236	
Н	1.826338	1.785178	-1.419750	
С	-0.357202	1.394130	-1.614375	
Н	-0.788628	2.380881	-1.514546	
С	-1.085322	0.177419	-1.804771	
Н	-2.158626	0.079272	-1.884635	
С	-0.140043	-0.875716	-1.890623	
Те	-0.517421	-2.197753	1.073371	
С	-0.425465	-1.619446	3.018665	
С	-0.366493	-1.265704	4.175849	
Н	-0.316670	-0.961971	5.197534	

Table S10: Thermodynamic Properties at 298.15 K				
Zero Point Energy :	306.77	kI/mol	(ZPE)	
Temperature Correction :	33.64	kJ/mol	(vibration + gas law + rotation + translation)	
Enthalpy Correction :	340.41	kJ/mol	(ZPE + temperature correction)	
Enthalpy :	-1768.345137	au	(Electronic Energy + Enthalpy Correction)	
Entropy :	450.95	J/mol•I	K	
Gibbs Energy :	-1768.396347	au	(Enthalpy - T*Entropy)	
C _v :	212.20	J/mol∙I	<	

$[Fe(TeC\alpha = C\beta H)(CO)(PMe_3)(\eta^5 - C_5H_5)]$

Figure S27: Optimised structure of $[Fe(TeC\alpha \equiv C\beta H)(CO)(PMe_3)(\eta-C_5H_5)]$ (ω B97X-D/6-31G*/LANL2D ζ (Fe,Te,P)/gas phase). Bond lengths (Å) and angles (°) of interest: Fe-Te 2.621, Te-C α 2.034, C α \equiv C β 1.213, Re-S-C α 102.7.

Infrared absorptions of interest (cm $^{-1}$, scaled by 0.9297): 2009w ν_{cc} , 1971vs $\nu_{co}.$

Natural atomic charges of note: C β (–0.281), C α (–0.438), Te (0.025), Fe (0.820).

Löwden bond orders of interest: C α -Te (1.12), C α =C β (2.95), Fe-Te (1.01).

Table S11. Cartesian Coordinates for $[Fe(TeC\alpha \equiv C\beta H)(CO)(PMe_3)(\eta - C_5H_5)]$

Ato	m x	у	z
Fe	-0.673638	-0.133081	-0.743092
н	1.777202	-0.913074	-1.992203
С	0.731912	-0.702558	-2.177335
С	0.184646	0.575336	-2.490981
Н	-0.214264	-2.703218	-1.929528
Н	0.736966	1.497595	-2.604614
С	-1.215951	0.395378	-2.680596
Н	-1.923533	1.176588	-2.924838
С	-1.533999	-0.961999	-2.456519
Н	-2.520511	-1.400986	-2.494965
С	-0.318491	-1.647652	-2.142851
С	-1.615177	1.186558	-0.086134
0	-2.232115	2.093299	0.264361
Те	-1.883954	-1.862296	0.811331

COMMUNICATION

С	-2.695316	-0.675876	2.250939
С	-3.164878	0.027050	3.120664
н	-3.600110	0.647264	3.871760
Р	0.946962	0.161959	0.735635
С	2.240402	1.349434	0.192268
н	3.004477	1.481439	0.965249
н	1.775871	2.317932	-0.015259
н	2.725076	0.999239	-0.723486
С	0.479620	0.852536	2.362518
н	1.357996	0.953718	3.007938
н	-0.259244	0.208432	2.845704
н	0.022665	1.836443	2.221830
С	1.932658	-1.312686	1.193273
н	2.745494	-1.044850	1.875977
н	2.358579	-1.776605	0.298620
н	1.272619	-2.037618	1.676490
Lig	-0.430377	-0.468299	-2.389656

Table S12: Calculated Electronic Transitions (gas phase)					
nm 🔻	strength	MO Component	%		
318.53	0.0117	HOMO-3 -> LUMO	64%		
		HOMO-4 -> LUMO	22%		
325.12	0.0549	HOMO-2 -> LUMO	72%		
334.36	0.0010	HOMO -> LUMO+2	85%		
349.36	0.0028	HOMO -> LUMO+1	97%		
360.31	0.0455	HOMO-1 -> LUMO	93%		
525.46	0.0001	HOMO -> LUMO	98%		
318.53	0.0117	HOMO-3 -> LUMO	64%		

Table S13: Thermodynamic Properties at 298.15 K					
Zero Point Energy :	574.42	kJ/mol	(ZPE)		
Temperature Correction :	46.01	kJ/mol	(vibration + gas law + rotation + translation)		
Enthalpy Correction :	620.43	kJ/mol	(ZPE + temperature correction)		
Enthalpy :	-2116.013829	au	(Electronic Energy + Enthalpy Correction)		
Entropy :	533.35	J/mol∙ŀ	K		
Gibbs Energy :	-2116.074396	au	(Enthalpy - T*Entropy)		
C _v :	301.39	J/mol∙ŀ	K		

Chemical Communications

Figure S28. Optimised structure of anti-[Re(TeCα=CβMe)(CO)₃(bipy)] (ωB97X-D/6- $31G^*/LANL2D\zeta(Re,Te)/gas$ phase). Bond lengths (Å) and angles (°) of interest: Re–Te 2.840, Te−Cα 2.033, Cα≡Cβ 1.211, Re−Te−Cα 99.1.

Infrared absorptions of interest (cm⁻¹, scaled by 0.9297): 2015w ν_{CC} 1998s, 1929vs, 1914vs. $\nu_{\text{CO}}.$

Natural atomic charges of note: C β (–0.275), C α (–0.416), Te (0.003), Re (0.452).

Löwden bond orders of interest: Ca-Te (1.12), Ca=C\beta (2.97), Re-Te (1.06).

Table	Table S14. Cartesian Coordinates for <i>anti</i> -[Re(TeC α =C β Me)(CO) ₃ (bipy)					
Ato	m x	у	z			
Re	-1.030262	1.081774	0.346992			
Ν	1.149159	0.769763	0.335529			
С	3.879587	0.260449	0.368171			
С	1.601599	-0.502867	0.345443			
С	2.037106	1.776286	0.321714			
С	3.405140	1.566790	0.337683			
С	2.967331	-0.782849	0.368653			
Н	1.619002	2.774737	0.293020			
Н	4.077849	2.416076	0.325739			
Н	3.320489	-1.806786	0.386001			
Н	4.944977	0.055398	0.386303			
Ν	-0.715405	-1.097437	0.301697			
С	-0.199464	-3.824671	0.191006			
С	-1.719077	-1.985151	0.232450			
С	0.557136	-1.548316	0.306725			
С	0.841366	-2.911805	0.252554			
С	-1.506311	-3.351982	0.179161			
Н	-2.718359	-1.569473	0.212420			
Н	1.865737	-3.262073	0.250091			
Н	-2.353850	-4.024978	0.123904			
Н	0.007644	-4.888406	0.147318			
С	-1.115933	1.142515	2.262655			
0	-1.175929	1.190104	3.419406			
С	-1.031874	2.995729	0.213808			
0	-0.977730	4.146980	0.127962			

anti-[Re(TeCα≡CβMe)(CO)₃(bipy)]

С	-2.944152	1.074807	0.195090
0	-4.093912	1.012245	0.101950
Те	-0.816880	0.931213	-2.480812
С	-2.390248	2.116197	-2.985699
С	-3.328682	2.814591	-3.299266
н	-4.156053	3.431140	-3.567668

Table S15: Calculated Electronic Transitions (gas phase)

nm 🔻	strength	MO Component	%
349.53	0.0026	Homo-4 \rightarrow Lumo	50%
		$HOMO-2 \rightarrow LUMO$	26%
		$HOMO-3 \rightarrow LUMO$	17%
351.40	0.0021	$HOMO-3 \rightarrow LUMO$	66%
		$HOMO-2 \rightarrow LUMO$	14%
364.34	0.0061	$\rm HOMO {\rightarrow} \rm LUMO{+}2$	95%
380.55	0.0018	$\rm HOMO \rightarrow \rm LUMO+1$	95%
400.51	0.1180	$\rm HOM0-1 {\rightarrow} \rm LUM0$	84%
618.27	0.0001	$\rm HOMO \rightarrow \rm LUMO$	96%

Table S16: Thermodynamic Properties at 298.15 K

Zero Point Energy :	517.15	kJ/mol	(ZPE)
Temperature Correction :	49.64	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	566.79	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-998.906401	au	(Electronic Energy + Enthalpy Correction)
Entropy :	565.02	J/mol•K	(
Gibbs Energy :	-998.970564	au	(Enthalpy - T*Entropy)
C _V :	336.50	J/mol∙k	

syn-[Re(TeCα≡CβMe)(CO)₃(bipy)]

Figure S29: Optimised structure of *syn*-[Re(TeC α =C β Me)(CO)₃(bipy)] (ω B97X-D/6-31G*/LANL2D ζ (Re,Te)/gas phase). Bond lengths (Å) and angles (°) of interest: Re–Te 2.852, Te–C α 2.037, C α =C β 1.214, Re–Te–C α 98.8.

Infrared absorptions of interest (cm $^{-1}$, scaled by 0.9297): 1990w ν_{CC} , 1998s, 1921vs, 1916vs. $\nu_{\text{CO}}.$

Natural atomic charges of note: C β (–0.319), C α (–0.409), Te (0.038), Re (0.464).

Löwden bond orders of interest: Ca–Te (1.13), Ca=C β (2.93), Re–Te (1.03).

Table S17. Cartesian Coordinates for	r <i>syn</i> -[Re(TeCα≡CβMe)(CO)₃(bipy)
--------------------------------------	---

Ato	m x	У	z
Re	-1.477970	1.473495	0.273756
Ν	0.698130	1.162501	0.274888
С	3.425190	0.647791	0.329009
С	1.146374	-0.107809	0.317399
С	1.588894	2.165702	0.232962
С	2.955126	1.954358	0.255433
С	2.510643	-0.391011	0.358988
Н	1.175097	3.164572	0.175296
Н	3.630138	2.801048	0.216207
Н	2.859029	-1.415207	0.399387
Н	4.489818	0.440751	0.354461
Ν	-1.167945	-0.702718	0.233959
С	-0.653326	-3.430473	0.223538
С	-2.169611	-1.591467	0.142879
С	0.101286	-1.152603	0.291988
С	0.384027	-2.517521	0.303010
С	-1.958095	-2.957922	0.132174
Н	-3.166798	-1.175356	0.073863
н	1.407219	-2.867137	0.356582
н	-2.803099	-3.631645	0.053911
Н	-0.446452	-4.495457	0.224190
С	-1.560907	1.515209	2.190597
0	-1.616001	1.546794	3.346982
С	-1.461786	3.388855	0.185414
0	-1.398936	4.542739	0.126479
С	-3.390878	1.464890	0.140940
0	-4.543268	1.405841	0.054986

COMMUNICATION

Atom x		У	z
Те	-1.325333	1.382031	-2.572788
С	0.106325	-0.054270	-2.760488
С	0.958519	-0.909285	-2.893089
Н	1.704588	-1.656695	-3.042909

Table S18: Calcu	lated Electronic	Transitions (gas phase)		
nm 🔻	strength	MO Component	%	
337.51	0.0014	HOMO-4 -> LUMO	34%	
351.77	0.0014	HOMO-4 -> LUMO+1	42%	
		HOMO-2 -> LUMO	15%	
		HOMO -> LUMO	12%	
		HOMO-4 -> LUMO	10%	
379.74	0.0002	HOMO-2 -> LUMO+1	60%	
438.06	0.0004	HOMO-2 -> LUMO	43%	
		HOMO-4 -> LUMO	25%	
		HOMO-3 -> LUMO	12%	
59	0.0045	HOMO -> LUMO+1	39%	
		HOMO-3 -> LUMO+1	38%	
623.19	0.0005	HOMO -> LUMO	44%	
		HOMO-3 -> LUMO	27%	

Table S19: Thermodyn	amic Properties	at 298.15	5 K
Zero Point Energy :	574.42	kJ/mol	(ZPE)
Temperature Correction :	46.01	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	620.43	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-2116.013829	au	(Electronic Energy + Enthalpy Correction)
Entropy :	533.35	J/mol∙ŀ	<
Gibbs Energy :	-2116.074396	au	(Enthalpy - T*Entropy)
C _V :	301.39	J/mol∙ŀ	< compared by the second s

syn-[Re(SeCα≡CβMe)(CO)₃(bipy)]

Figure S30: Optimised structure of *syn*-[Re(SeC α =C β Me)(CO)₃(bipy)] (ω B97X-D/6-31G*/LANL2D ζ (Re,Se)/gas phase). Bond lengths (Å) and angles (°) of interest: Re–Se 2.668, Se–C α 1.833, C α =C β 1.214, Re–Se–C α 102.2.

Chemical Communications

Infrared absorptions of interest (cm $^{-1}$, scaled by 0.9297): 2003w ν_{CC} , 2000s, 1924vs, 1915vs. $\nu_{\text{CO}}.$

Natural atomic charges of note: C β (-0.341), C α (-0.289), Se (-0.127), Re (0.498).

Löwden bond orders of interest: C α -Se (1.22), C α =C β (2.87), Re-Se (0.95).

Table	\$20. Cartesian Co	ordinates for syn-	[Re(SeCα≡CβMe)(CO)₃(bipy)	
Ato	m x	У	Z	
Re	1.452491	1.450892	0.344176	
С	1.442605	3.367014	0.284096	
0	1.380977	4.521143	0.237391	
С	3.368088	1.442832	0.269372	
0	4.521901	1.383327	0.213143	
С	1.480205	1.463780	2.262036	
0	1.498700	1.472022	3.420398	
Ν	-0.724539	1.141788	0.276697	
С	-3.450037	0.626981	0.200166	
С	-1.172785	-0.128875	0.271267	
С	-1.611760	2.145762	0.211740	
С	-2.978377	1.934314	0.169269	
С	-2.537030	-0.412898	0.250713	
Н	-1.196142	3.145441	0.193124	
Н	-3.651794	2.781443	0.114735	
Н	-2.886704	-1.437489	0.257190	
Н	-4.514664	0.419545	0.176726	
Ν	1.143877	-0.725721	0.263208	
С	0.629750	-3.451001	0.176289	
С	-0.126638	-1.174552	0.264329	
С	2.147777	-1.612037	0.186464	
С	1.936626	-2.978524	0.138285	
С	-0.410174	-2.538801	0.239042	
Н	3.147085	-1.195718	0.163195	
Н	2.783604	-3.651283	0.074207	
Н	-1.434515	-2.889032	0.251849	
Н	0.422652	-4.515605	0.149166	
Se	1.393589	1.412344	-2.323268	
С	0.118722	0.139978	-2.664316	
С	-0.721636	-0.702091	-2.906762	
Н	-1.451855	-1.434977	-3.163925	

Table S21: Calcu	able S21: Calculated Electronic Transitions (gas phase)				
nm 🔻	strength	MO Component	%		
316.73	0.0162	HOMO-3 -> LUMO	73%		
		HOMO-2 -> LUMO	20%		
322.89	0.0334	HOMO-2 -> LUMO	65%		
		HOMO-3 -> LUMO	21%		
336.71	0.0027	HOMO -> LUMO+2	94%		
353.05	0.0025	HOMO -> LUMO+1	97%		
357.21	0.0609	HOMO-1 -> LUMO	89%		
532.01	0.0002	HOMO -> LUMO	98		

Table S22: Thermodynamic Properties at 298.15 K

Zero Point Energy :	519.22	kJ/mol	(ZPE)
Temperature	49.17	kJ/mol	(vibration + gas law + rotation +
Correction :			translation)
Enthalpy Correction :	568.39	kJ/mol	(ZPE + temperature correction)
Enthalpy :	-3392.178811	au	(Electronic Energy + Enthalpy Correction)
Entropy :	558.66	J/mol•K	
Gibbs Energy :	-3392.242251	au	(Enthalpy - T*Entropy)
C _v :	334.69	J/mol•K	

syn-[Re(SCα≡CβMe)(CO)₃(bipy)]

Figure S31: Optimised structure of *syn*-[Re(SC α =C β Me)(CO)₃(bipy)] (α B97X-D/6-31G*/LANL2D ζ (Re,Te)/gas phase). Bond lengths (Å) and angles (°) of interest: Re–S 2.559, S-C α 1.688, C α =C β 1.215, Re–S-C α 105.1.

Infrared absorptions of interest (cm $^{-1}$, scaled by 0.9297): 2011w ν_{CC} , 2002s, 1924vs, 1915vs. $\nu_{CO}.$

Natural atomic charges of note: C β (–0.353), C α (–0.228), S (–0.215), Re (0.515).

Löwden bond orders of interest: Ca–S (1.30), Ca=C $\beta\,$ (2.83), Re–S (0.94).

Table S23. Cartesian Coordinates for <i>syn</i> -[Re(SC α =C β Me)(CO) ₃ (bipy)				
Atom x		У	z	
Re	1.441948	1.441583	0.319906	
С	1.439728	3.357387	0.240990	
0	1.383391	4.510977	0.183294	
С	3.357166	1.435803	0.226378	
0	4.510268	1.378470	0.160368	
С	1.488450	1.476143	2.235897	
0	1.512415	1.493727	3.394283	
Ν	-0.733442	1.134039	0.273451	
С	-3.458580	0.618811	0.207169	
С	-1.181138	-0.136864	0.264200	
С	-1.620905	2.137966	0.221538	

С	-2.987853	1.926514	0.183905	
С	-2.545162	-0.421391	0.247886	
Н	-1.205619	3.137926	0.209400	
Н	-3.661891	2.773699	0.139259	
Н	-2.894761	-1.445979	0.250348	
Н	-4.523217	0.410981	0.186649	
Ν	1.136167	-0.734153	0.261330	
С	0.622857	-3.459306	0.180735	
С	-0.134371	-1.182861	0.257294	
С	2.140409	-1.620496	0.197112	
С	1.929970	-2.987319	0.152063	
С	-0.417782	-2.547044	0.234066	
Н	3.140027	-1.204579	0.181490	
Н	2.777513	-3.660220	0.097855	
Н	-1.442007	-2.897614	0.241081	
Н	0.415899	-4.523988	0.154852	
S	1.351980	1.367803	-2.236255	
С	0.183791	0.205653	-2.602183	
С	-0.653124	-0.629418	-2.882164	
Н	-1.372129	-1.356249	-3.182197	

Table S24: Calculated Electronic Transitions (gas phase)					
nm 🔻	strength	MO Component	%		
318.53	0.0117	HOMO-3 -> LUMO	64%		
		HOMO-4 -> LUMO	22%		
325.12	0.0549	HOMO-2 -> LUMO	72%		
334.36	0.0010	HOMO -> LUMO+2	85%		
349.36	0.0028	HOMO -> LUMO+1	97%		
360.31	0.0455	HOMO-1 -> LUMO	93%		
525.46	0.0001	HOMO -> LUMO	98%		
318.53	0.0117	HOMO-3 -> LUMO	64%		

Table S25: Thermodynamic Properties at 298.15 K

Zero Point Energy :	521.05	kJ/mol	(ZPE)
Temperature Correction :	48.87	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	569.92	kJ/mol	(ZPE + temperature correction)
Enthalpy :	- 1389.022397	au	(Electronic Energy + Enthalpy Correction)
Entropy :	553.72	J/mol∙K	
Gibbs Energy :	- 1389.085277	au	(Enthalpy - T*Entropy)
C _v :	332.63	J/mol•K	

COMMUNICATION

ELECTRONIC SUPPORTING INFORMATION

Figure 32. LL'CT electronic transitions of interest between occupied (solid) and virtual (mesh) orbitals for [Re(SeCCH)(CO)3(bipy). (a) HOMO-LUMO; (b) HOMO-1-LUMO; (c) HOMO-LUMO+1; (d) Spin density for excited LL'CT triplet state.

This journal is © The Royal Society of Chemistry 2025

Chem. Commun., 2025, 61, 1-3 | 30