Supporting information for

### High-rate performance of H<sub>x</sub>MoO<sub>3</sub> for aqueous aluminium-ion battery

Ritupurna Baishya<sup>a</sup>, Konica Roy<sup>a</sup>, Shyamal K. Das<sup>a\*</sup>

<sup>a</sup>Department of Physics, Tezpur University, Assam 784028, India

#### Experimental

A simple hydrothermal technique was used to prepare MoO<sub>3</sub> as outlined in reference [1 from ESI]. All the chemical reagents are analytical grade and they are used without further purification. In short, 0.6 g of ammonium heptamolybdate tetrahydrate (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>.4H<sub>2</sub>O) was firstly dissolved in 36 ml of deionized water followed by continuous stirring. Then, a small amount (1 ml) of hydrochloric acid (HCl) was added slowly in the previous solution followed by stirring for 5 minutes. The final solution mixture was then transferred to a 50 ml Teflon lined autoclave and heated for 160 °C for 15 h. After that the solution was cooled naturally followed by washing with DI water and ethanol. The obtained precipitate was dried at 90 °C for 24 hour and the final product was procured. A similar kind of procedure was followed to obtain the hydrogen doped H<sub>x</sub>MoO<sub>3</sub> wherein the volume of HCl was increased to 3.5 ml to facilitate enhanced doping keeping the other parameters same. For the full cell, commercially available LiMn<sub>2</sub>O<sub>4</sub> is utilized.

The phase identification and the purity assessment of the as prepared samples were performed using X- ray diffraction and Raman spectroscopy. The morphology of the two samples was comprehensively analyzed using FESEM and HRTEM. X-ray photoelectron spectroscopy is performed to understand the formation of hydrogen doped  $H_xMoO_3$ . High Score Plus 3.0d (3.0.4) software is used to index the crystallographic details.

The fabrication of the working electrode for electrochemical and morphological analysis was performed by preparing electrode slurries of active materials (MoO<sub>3</sub> and  $H_xMoO_3$ ), carbon black and polyvinylidene fluoride in a weight ratio of 7:2:1 using N-methyl-2-pyrrolidone as solvent. The obtained slurry was cast on a piece of graphite and it was dried for 12 hours at 90° C.

The electrochemical activities of the  $MoO_3$  and  $H_xMoO_3$  were evaluated using cyclic voltammetry and galvanostatic charge discharge experiments in a three-electrode glass cell set up where Pt electrode and the Ag/AgCl electrode was used as counter and reference electrode respectively. The cyclic voltammetry analysis was conducted within a potential

window of -0.6 V to 0.5 V (vs Ag/AgCl) at different scan rates. Similarly, the chargedischarge profiles for both the materials were obtained within the same voltage range as CV measurements in current densities ranging from 2 Ag<sup>-1</sup> to 20 Ag<sup>-1</sup>. The electrolytes used here were of various concentration of AlCl<sub>3</sub> and Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>. The EIS was performed for both the materials in the frequency range of 1 mHz to 200 kHz with a signal amplitude of 10 mV. Calculation of Diffusion coefficient

#### From EIS:

The Diffusion coefficient (D  $_{Al}^{3+}$ ) can be estimated from the following Equation (ref 22, 23 of main text):

$$D_{AI}^{3+} = 0.5 \left(\frac{RT}{An^2 F^2 C \sigma_w}\right)^2$$

where R is the gas constant (8.314 J mol<sup>-1</sup> K<sup>-1</sup>), T is the absolute temperature (298.15 K), A is the surface area of the electrode (0.25 cm<sup>2</sup>), n is the number of electrons transferred, F is Faraday constant (96500 C mol<sup>-1</sup>), C is the concentration of Al<sup>3+</sup> ion in the solution (1 M), and  $\sigma_w$  is the Warburg coefficient, calculated by the following Equation (at low-frequency region).

$$Z' = R_S + R_{CT} + \sigma_w \omega^{-0.5}$$

where  $R_S$  depicts electrolyte resistance,  $R_{CT}$  is the charge transfer resistance,  $\sigma_w$  can be obtained from the slope of linear fitting of the real part of impedance (Z') vs. the reciprocal square root of angular frequency ( $\omega^{-0.5}$ ). The linear fitting is shown in figure S18 in the ESI below. The calculated diffusion coefficient for MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub> are 1.25 x 10<sup>-21</sup> cm<sup>2</sup>S<sup>-1</sup> and 7.9 x 10<sup>-21</sup> cm<sup>2</sup>S<sup>-1</sup> respectively (Figure S18).

### From GITT:

The diffusion coefficient is estimated using the formula (ref 24 of main text):

$$D_{AI}^{3+} = \frac{4}{\tau\pi} (\frac{iV_m}{zFS})^2 (\frac{\Delta E_s}{\Delta E_t})^2$$

where i is the current (A),  $V_m$  is the molar volume of the electrode (cm<sup>3</sup>/mol), z is the charge number, F is the Faraday's constant (96485 C/mol), and S is the electrode area (cm<sup>2</sup>).  $\Delta E_s$ corresponds to steady state voltage change and  $\Delta E_s$  corresponds to voltage change during constant current pulse by single titration curve during discharge eliminating the iR drop. Here, the electrodes were discharged at a small constant current density of 0.1 mAcm<sup>-2</sup> followed by an open circuit relaxation of 1 minute to allow the cell in order to reach its steady state value (Figure 3e and S19). The operating voltage window was similar to the previous electrochemical measurements i.e from -0.6 V to 0.5 V.

Calculation of band gap from UV-visible data:

The Tauc's equation used here is (ref 7, 8 from ESI)

 $(\alpha h\nu)^{1/n} = A (h\nu - E_g)$ 

where,  $\alpha$  is the absorption co-efficient, h is the plank's constant, v is the frequency, A is a constant, Eg is the energy and n is the number that characterize the transition process (n=1/2 for direct and 2 for indirect transitions). Figure S3 shows the calculated band gap for MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub> from the plot of  $(\alpha hv)^{1/2}$  vs hv via extrapolation of the straight line to  $(\alpha hv)^{1/2} = 0$  considering indirect allowed transitions [ref 18 from main text]. The obtained band gap values for MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub> are 3.89 eV and 3.6 eV respectively.

# Calculation of energy density:

The calculation of energy density of the  $LiMn_2O_4$  //  $H_xMoO_3$  cell is based on following equations (ref 9 of ESI):

$$E = C \times V \times 1000 / m$$

Where E= energy density in Whkg<sup>-1</sup>, C = Discharge capacity in mAh, V= average discharge voltage and m= total mass of cathode and anode (g). The estimated energy density of the cell is 18 Whkg<sup>-1</sup>.

# **Supplementary figures**



Figure S1. XRD patterns of (a)  $MoO_3$  and  $H_xMoO_3$  with crystallographic indexing, (b,c) enlarged view of the XRD patterns in the range of  $11^\circ$  -14° and 48° -51°.

| S1. | Peak Position                                 | Designation of the band                                                         | References |
|-----|-----------------------------------------------|---------------------------------------------------------------------------------|------------|
| No. | (cm <sup>-1</sup> )                           |                                                                                 | (in ESI)   |
|     | 20.7 1                                        |                                                                                 | -          |
| 1   | 995 cm <sup>-1</sup>                          | corresponds to the terminal oxygen                                              | 2          |
|     | 336 cm <sup>-1</sup>                          | (Mo <sup>6+</sup> =O) stretching mode                                           |            |
| 2   | 897 cm <sup>-1</sup>                          | symmetric stretches of the terminal oxygen                                      | 3          |
| 3   | 818 cm <sup>-1</sup>                          | the doubly coordinated Mo <sub>2</sub> =O bridging<br>oxygen stretching modes   | 4          |
| 4   | 663 cm <sup>-1</sup> and 465 cm <sup>-1</sup> | the triply coordinated Mo <sub>3</sub> -O oxygen stretching mode                | 4          |
| 5   | $200 - 600 \text{ cm}^{-1}$                   | MoO <sub>3</sub> octahedral bending vibrations and lattice modes                | 5          |
| 6   | 236 cm <sup>-1</sup> and 280 cm <sup>-1</sup> | the bending mode of Mo <sub>2</sub> -O and the<br>double bond (Mo=O) vibrations | 5          |
| 7   | 373 cm <sup>-1</sup>                          | assigned to bending mode of Mo <sub>3</sub> -O and<br>Mo=O bending modes        | 5, 6       |

Table S1. Details of the characteristic Raman peaks observed in MoO<sub>3</sub>.



**Figure S2.** a) FTIR spectra, XPS spectra of b) Mo3d, c) O1s; d) Full XPS spectra of  $MoO_3$  and  $H_xMoO_3$ .



**Figure S3.** UV visible spectra of a) MoO<sub>3</sub>, b) H<sub>x</sub>MoO<sub>3</sub>, c) Tauc plot obtained from the UV visible data, d) PL spectra of MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub>.



Figure S4. CV profile of MoO<sub>3</sub> in 1 M AlCl<sub>3</sub> aqueous electrolyte at a scan rate of 2.5 mVs<sup>-1</sup>.

| Phases                          | Electrolyte           | Peaks | Peak      | Peak      |
|---------------------------------|-----------------------|-------|-----------|-----------|
|                                 |                       |       | positions | Separatio |
|                                 |                       |       | (V)       | ns (V)    |
| MoO <sub>3</sub>                | 1 M AlCl <sub>3</sub> | А     | 0.15      | 0.24      |
|                                 |                       | A'    | -0.09     |           |
|                                 |                       | В     | -0.31     | 0.27      |
|                                 |                       | B'    | -0.4      |           |
|                                 |                       | С     | -0.5      | 0.53      |
|                                 |                       | C'    | -0.58     |           |
| H <sub>x</sub> MoO <sub>3</sub> | 1 M AlCl <sub>3</sub> | Х     | -0.01     | 0.19      |
|                                 |                       | X'    | -0.2      |           |
|                                 |                       | Y     | -0.45     | 0.07      |
|                                 |                       | Y'    | -0.52     |           |
| MoO <sub>3</sub>                | 0.5 M                 | E     | 0.19      | 0.35      |
|                                 | $Al_2(SO_4)_3$        | E'    | -0.16     |           |
|                                 |                       | F     | -0.25     | 0.22      |
|                                 |                       | F'    | -0.47     |           |
| H <sub>x</sub> MoO <sub>3</sub> | 0.5 M                 | G     | 0.13      | 0.31      |
|                                 | $Al_2(SO_4)_3$        | G'    | -0.18     |           |
|                                 |                       | Н     | -0.31     | 0.17      |
|                                 |                       | H'    | -0.48     |           |

Table S2: Peak to peak separation from Cyclic Voltammetry



**Figure S5.** CV profile of a) MoO<sub>3</sub> and b)  $H_xMoO_3$ , c) Superimposition of the CV scan of MoO<sub>3</sub> and  $H_xMoO_3$  in Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> aqueous electrolyte at a scan rate of 2.5 mVs<sup>-1</sup>.



**Figure S6.** Galvanostatic charge-discharge measurements of MoO<sub>3</sub> at current density of a) 5 Ag<sup>-1</sup>, b) 10 Ag<sup>-1</sup>, c) 20 Ag<sup>-1</sup> in 1 M aqueous AlCl<sub>3</sub> electrolyte.



**Figure S7.** Rate performance of  $MoO_3$  at current density of a) 5 Ag<sup>-1</sup> and b) 10 Ag<sup>-1</sup> in 1 M aqueous AlCl<sub>3</sub> electrolyte.



**Figure S8.** Galvanostatic charge-discharge measurements of  $H_xMoO_3$  at current density of a) 5 Ag<sup>-1</sup>, b) 10 Ag<sup>-1</sup>, c) 20 Ag<sup>-1</sup> in 1 M aqueous AlCl<sub>3</sub> electrolyte.

| Electrolyte           | Current | Phases                          | 1 <sup>st</sup> D | 1 <sup>st</sup> C | 50 <sup>th</sup> D | 50 <sup>th</sup> C |
|-----------------------|---------|---------------------------------|-------------------|-------------------|--------------------|--------------------|
|                       | density |                                 | (mAhg-1)          | (mAhg-            | (mAhg-1)           | (V)                |
|                       |         |                                 |                   | 1)                |                    | (mAhg-             |
|                       |         |                                 |                   |                   |                    | 1)                 |
| 1 M AlCl <sub>3</sub> | 2 Ag-1  | MoO <sub>3</sub>                | 274               | 137               | 105                | 76                 |
|                       |         | H <sub>x</sub> MoO <sub>3</sub> | 417               | 196               | 132                | 120                |
|                       | 5 Ag-1  | MoO <sub>3</sub>                | 221               | 115               | 80                 | 73                 |
|                       |         | H <sub>x</sub> MoO <sub>3</sub> | 260               | 148               | 120                | 100                |
|                       | 10 Ag-1 | MoO <sub>3</sub>                | 180               | 103               | 80                 | 70                 |
|                       |         | H <sub>x</sub> MoO <sub>3</sub> | 247               | 140               | 119                | 100                |
|                       | 15 Ag-1 | MoO <sub>3</sub>                | 174               | 90                | 80                 | 74                 |
|                       |         | H <sub>x</sub> MoO <sub>3</sub> | 224               | 120               | 112                | 102                |
|                       | 20 Ag-1 | MoO <sub>3</sub>                | 97                | 50                | 50                 | 46                 |
|                       |         | H <sub>x</sub> MoO <sub>3</sub> | 193               | 119               | 107                | 102                |

Table S3- Specific Capacities after discharge and charge



**Figure S9.** Comparison of  $2^{nd}$  cycle of galvanostatic charge-discharge measurements of MoO<sub>3</sub> and H<sub>x</sub>MoO<sub>3</sub> at current density of a) 2 Ag<sup>-1</sup>, b) 5 Ag<sup>-1</sup>, c) 10 Ag<sup>-1</sup> and d) 20 Ag<sup>-1</sup> in 1 M aqueous AlCl<sub>3</sub> electrolyte.

| Electrolyte           | Current<br>density | Phases                          | Discharge(V) | Charge (V) | Peak<br>Separations<br>(V) |
|-----------------------|--------------------|---------------------------------|--------------|------------|----------------------------|
| 1 M AlCl <sub>3</sub> | 2 Ag-1             | MoO <sub>3</sub>                | -0.09        | 0.18       | 0.27                       |
|                       |                    | H <sub>x</sub> MoO <sub>3</sub> | -0.13        | -0.02      | 0.11                       |
|                       | 5 Ag-1             | MoO <sub>3</sub>                | -0.08        | 0.15       | 0.23                       |
|                       |                    | H <sub>x</sub> MoO <sub>3</sub> | -0.06        | 0.09       | 0.15                       |
|                       | 10 Ag-1            | MoO <sub>3</sub>                | -0.16        | 0.11       | 0.27                       |
|                       |                    | H <sub>x</sub> MoO <sub>3</sub> | -0.05        | 0.14       | 0.19                       |
|                       | 15 Ag-1            | MoO <sub>3</sub>                | -0.19        | 0.19       | 0.38                       |
|                       |                    | H <sub>x</sub> MoO <sub>3</sub> | -0.17        | 0.17       | 0.34                       |
|                       | 20 Ag-1            | MoO <sub>3</sub>                | -0.4         | 0.16       | 0.56                       |
|                       |                    | H <sub>x</sub> MoO <sub>3</sub> | -0.25        | 0.18       | 0.43                       |

Table S4: Plateau separation from GCD



Figure S10. CV profiles of H<sub>x</sub>MoO<sub>3</sub> in 1 M H<sub>2</sub>SO<sub>4</sub> aqueous electrolyte at different scan rates.



Figure S11. FESEM images of H<sub>x</sub>MoO<sub>3</sub>: a) 1<sup>st</sup> Discharge and b) 1<sup>st</sup> Charge



**Figure S12.** Galvanostatic charge-discharge measurements of MoO<sub>3</sub> at current density of a) 2 Ag<sup>-1</sup>, b) 5 Ag<sup>-1</sup> and c) 10 Ag<sup>-1</sup> in 0.5 M aqueous Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte.



**Figure S13.** Galvanostatic charge-discharge measurements of  $H_xMoO_3$  at current density of a) 2 Ag<sup>-1</sup>, b) 5 Ag<sup>-1</sup> and c) 10 Ag<sup>-1</sup> in 0.5 M aqueous Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte.



**Figure S14.** Rate performance of MoO<sub>3</sub> at current density of a) 2 Ag<sup>-1</sup>, b) 5 Ag<sup>-1</sup> and c) 10 Ag<sup>-1</sup> in 0.5 M aqueous Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte.



**Figure S15.** Rate performance of  $H_xMoO_3$  at current density of a) 2 Ag<sup>-1</sup>, b) 5 Ag<sup>-1</sup> and c) 10 Ag<sup>-1</sup> in 0.5 M aqueous Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> electrolyte.



**Figure S16.** a) CV profile of the  $LiMn_2O_4$  //  $H_xMoO_3$  cell at a scan rate of 2.5 mVs<sup>-1</sup>. Galvanostatic charge-discharge measurements at current density of b) 80 mAg<sup>-1</sup> and c) 250 mAg<sup>-1</sup>, Rate performance at d) 80 mAg<sup>-1</sup>, e) 250 mAg<sup>-1</sup> of the cell.

| SI/ | Phases                          | Discharge | R <sub>1</sub>       | R <sub>2</sub>       | R <sub>3</sub>       |
|-----|---------------------------------|-----------|----------------------|----------------------|----------------------|
| No  |                                 | State     | (Ohm.cm <sup>-</sup> | (Ohm.cm <sup>-</sup> | (Ohm.cm <sup>-</sup> |
|     |                                 | State     | <sup>2</sup> )       | <sup>2</sup> )       | <sup>2</sup> )       |
| 1   | MoO <sub>3</sub>                | 1D        | Const                | 29435                | 4976                 |
|     |                                 | 100D      | Const                | 10 683               | 1913                 |
| 2   | H <sub>x</sub> MoO <sub>3</sub> | 1D        | Const                | 14 170               | 2 968                |
|     |                                 | 100D      | Const                | 9 719                | 186.3                |

Table S5: Charge transfer resistance  $(R_3)$  values from EIS fitting

 $\mathbf{R}_{1}$ : Solution / Ohmic resistance ( $\mathbf{R}_{sol}$ )

 $R_2$ : Electrode Interface's resistance ( $R_{Interface}$ )

**R<sub>3</sub>:** Charge transfer resistance ( $R_{ct}$ )



Figure S17. The relationship between Z' and  $\omega^{-1/2}$  in the low-frequency region.



**Figure S18.** a) Demonstration of a single titration step during discharged state of  $H_xMoO_3$ , b) enlarged view of one portion of the discharge curve with measured titration step highlighted on it; c) GITT measurement of  $MoO_3$  for one complete cycle, d) demonstration of a single titration step during discharged state of  $MoO_3$ 



**Figure S19.** (a) XRD patterns of  $H_xMoO_3$  after cycling, enlarged view of the XRD patterns in the range of (b)  $10^{\circ} - 35^{\circ}$  and (b)  $33^{\circ} - 35^{\circ}$  of discharged state electrode



Figure S20. a,b) HRTEM images and fringe patterns (inset) of discharged state electrode of  $H_xMoO_3$ 

# References

1. X. Ju, P. Ning, X. Tong, X. Lin, X. Pan, Q. Li, X. Duan, and T. Wang. *Electrochim. Acta*, 2016, **213**, 641-647.

2. X. Guan, Y. Ren, S. Chen, J. Yan, G. Wang, H. Zhao, W. Zhao, Z. Zhang, Z. Deng, Y. Zhang, and Y. Dai, *J. Mater. Sci.*, 2020, **55** 5808-5822.

3. O. M, Ama, N. Kumar, F. Victoria Adams, and S. Sinha Ray. *Electrocatalysis*, 2018, **9**, 623-631.

4. X. K. Hu, X. Kai, Y. T. Qian, Z. T. Song, J. R. Huang, R. Cao, and J. Q. Xiao. Chem. Mater., 2008, **20** 1527-1533.

5. J. Ou, J Zhen, J. L. Campbell, D. Yao, W. Wlodarski, and K. Kalantar-Zadeh. J. of Phy. Chem. C, 2011, **115**, 10757-10763

6. K. Bramhaiah, K. K. Singh, and N. S. John. Nanoscale Adv., 2019, 1, 2426-2434.

7. S. K. Mehta, S. Kumar, S. Chaudhary, and K. K. Bhasin, Nanoscale, 2010, 2, 145-152.

8. P. Makuła, M. Pacia, and W. Macyk, J. Phys. Chem. Lett., 2018, 9, 6814-6817.

9. X. Chen, H. Su, B. Yang, G. Yin, and Q. Liu, Sustain. Energ. Fuels, 2022, 6, pp.2523-2531.