Supporting information

The reaction between CO_2 and chloroform in anion-functionalized ionic

liquids with the formation of trichloroacetates

Mingzhe Chen, Congyi Wu, and Dezhong Yang *

School of Science, China University of Geosciences, Beijing 100083, China

Corresponding author:

Dezhong Yang, Email: yangdz@cugb.edu.cn

Experimental Sections

Materials and Characterization

N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bromide ([MOEN₂₁₁][Br], 99%) was purchased from Lanzhou Green Chemistry Co. Ltd. CHCl₃ (99%), imidazole (98%), pyrazole (98%), and 1,2,4-triazole (98%) were purchased from Innochem (Beijing) China. CO₂ (99.995%) and N₂ (\geq 99.99%) were supplied from Beijing ZG Special Gases Science Co. Ltd. (Beijing, China). Ambersep 900(OH) ion exchange resin was obtained from Alfa Aesar. FTIR spectra were collected on a Nicolet 6700 spectrometer with an attenuated total reflection (ATR) accessory. ¹H NMR (400 MHz) and ¹³C NMR (100.6 MHz) spectra were recorded on a Bruker spectrometer with DMSO-*d*₆ or CDCl₃ as the references. When DMSO-*d*₆ was used as the solvent, the chemical shift values were obtained using the peaks of DMSO-*d*₆ (H: 2.50 ppm; C:39.52 ppm) as references. When DMSO-*d*₆ and CDCl₃ were both contained in the samples, the peaks of DMSO-*d*₆ (H: 2.50 ppm; C:39.52 ppm) were used as references. CHCl₃ was dried at room temperature by 4Å molecular sieve prior to use.

Synthesis of ILs

Synthesis of $[MOEN_{211}][Triz]$ and $[N_{2222}][Triz]$: The synthesis of $[MOEN_{211}][Triz]$ was using the methods reported in the literature with some modifications.^{1, 2} At first, the aqueous solution of $[MOEN_{211}][OH]$ was obtained by flowing the solution of $[MOEN_{211}][Br]$ in water through a column containing the Ambersep 900(OH) ion exchange resin. After that, equimolar 1,2,4-triazole was added into the solution of $[MOEN_{211}][OH]$ ($[MOEN_{211}][OH]$: 1,2,4-triazole = 1:1), and above mixture was stirred at room temperature for about 2 hours. Then, $[MOEN_{211}][Triz]$ was obtained after removing water in the mixture using a rotary evaporator. $[MOEN_{211}][Triz]$ was further dried under vacuum at 70 °C prior to use. The method of synthesizing $[N_{2222}][Triz]$ was similar to that of $[MOEN_{211}][Triz]$.

The methods of synthesizing $[MOEN_{211}][Im]$ and $[MOEN_{211}][Pyr]$ were also similar to that of $[MOEN_{211}][Triz]$.

Absorption of CO₂

The CO₂ absorption procedures can be found in our previous work.^{3,4} CO₂ was bubbled by a long steel needle into the absorbents (IL or DMSO- d_6 solution of IL) contained in a glass tube, and another short needle was used for CO₂ outlet. The weight change of the glass tube before and after CO₂ capture was measured and used to calculate the capacity of absorbents.

The preparation of NMR and FTIR samples

The samples of IL+DMSO-*d*₆ and IL+DMSO-*d*₆+CO₂:

The DMSO- d_6 solutions of IL before and after CO₂ capture were used directly to record NMR and FTIR spectra. The concentration of [MOEN₂₁₁][Triz] and [N₂₂₂₂][Triz] in DMSO- d_6 before CO₂ capture was 40 wt% and 20 wt%, respectively.

The samples of [MOEN₂₁₁][Triz]+CO₂+CDCl₃:

After the absorption of CO_2 by $[MOEN_{211}][Triz]$ reached saturation, $CDCl_3$ was added into the mixture $[MOEN_{211}][Triz]+CO_2$ to obtain $[MOEN_{211}][Triz]+CO_2+CDCl_3$, which was stirred at room temperature for about 20 min. The concentration of $[MOEN_{211}][Triz]$ in $[MOEN_{211}][Triz]+CO_2+CDCl_3$ mixture was about 40 wt%.

The sample of [MOEN₂₁₁][Triz]+CDCl₃ was obtained by mixing [MOEN₂₁₁][Triz] and CDCl₃ at room temperature, and the concentration of [MOEN₂₁₁][Triz] was 40 wt%.

The samples of IL+DMSO-d₆+CHCl₃ and IL+DMSO-d₆+CO₂+CHCl₃:

The samples of IL+DMSO- d_6 +CHCl₃ were prepared by adding CHCl₃ into IL+DMSO- d_6 solutions, and the molar ratio of CHCl₃ to IL was 2:1.

After CO₂ absorption by IL+DMSO- d_6 solution reached saturation, CHCl₃ was added into the carbon-captured solution to obtain the mixture IL+DMSO- d_6 +CO₂+CHCl₃, which was stirred at room temperature for about 20 min. The molar ratio of added CHCl₃ to IL in IL+DMSO- d_6 +CO₂ was 2:1.

The method of preparing the sample of $[N_{2222}]$ [Triz] +DMSO- d_6 +CO₂+CDCl₃ was similar to that of $[N_{2222}]$ [Triz] +DMSO- d_6 +CO₂+CHCl₃.

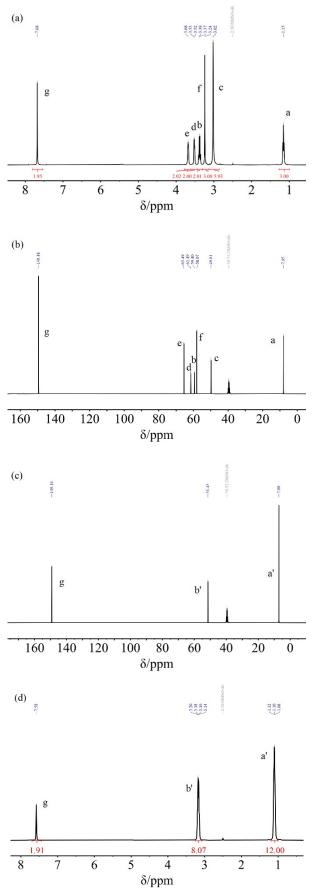


Fig. S1 The NMR spectra of $[MOEN_{211}]$ [Triz] (a and b) and $[N_{2222}]$ [Triz] (c and d) in DMSO- d_6 .

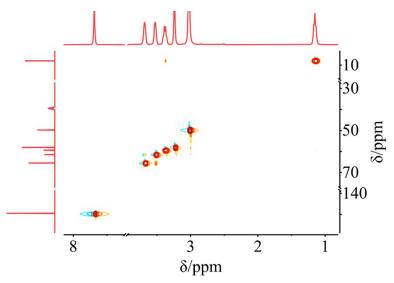


Fig. S2 The ¹H-¹³C HSQC NMR spectra of [MOEN₂₁₁][Triz] in DMSO-*d*₆.

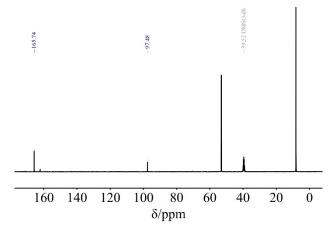


Fig. S3 The ¹³C NMR spectra of $[N_{2222}]$ [Cl]: CCl₃COONa (1:1) in the solvent containing D₂O and DMSO-*d*₆.

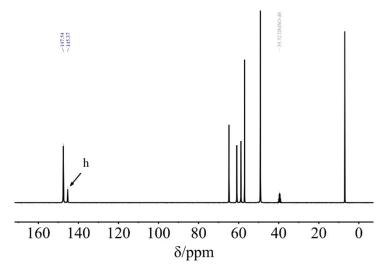


Fig. S4 The ¹³C NMR spectra of $[MOEN_{211}]$ [Triz]+CO₂ using DMSO- d_6 as the external solvent.

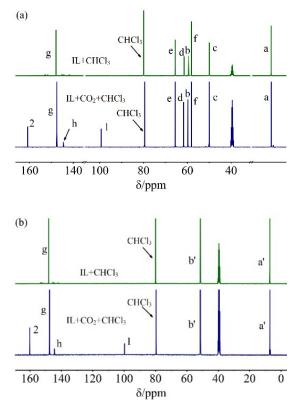
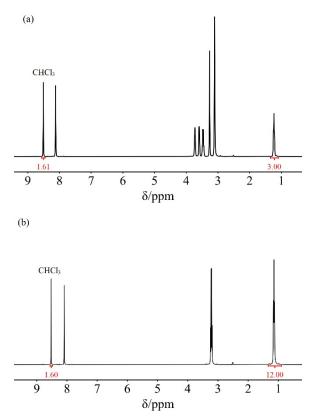



Fig. S5 The ¹³C NMR spectra of $[MOEN_{211}]$ [Triz]+CHCl₃ (a) and $[N_{2222}]$ [Triz] +CHCl₃ (b) with and without CO₂ in DMSO-*d*₆.

Fig. S6 The ¹H NMR spectra of $[MOEN_{211}]$ [Triz]+CO₂+CHCl₃ (a) and $[N_{2222}]$ [Triz]+CO₂+CHCl₃ (b) in DMSO- d_6 .

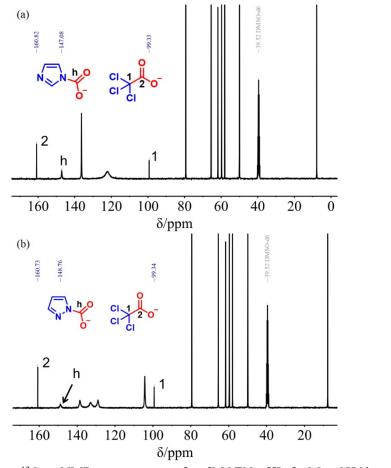


Fig. S7 The ${}^{13}C$ NMR spectra of $[MOEN_{211}][Im]+CO_2+CHCl_3$ (a) and $[MOEN_{211}][Pyr]+CO_2+CHCl_3$ (b).

References

- 1. C. Wang, X. Luo, H. Luo, D.-e. Jiang, H. Li and S. Dai, *Angew. Chem. Int. Ed.*, 2011, **50**, 4918-4922.
- 2. Y. Huang, G. Cui, Y. Zhao, H. Wang, Z. Li, S. Dai and J. Wang, *Angew. Chem. Int. Ed.*, 2017, **56**, 13293-13297.
- 3. D. Yang, M. Lv and J. Chen, *Chem. Commun.*, 2019, **55**, 12483-12486.
- 4. M. Chen, Y. Zhou, Q. Lu and D. Yang, Chem. Commun., 2024, 60, 7061-7064.