Supporting Information

for

Peptide catalyzed regio- and enantioselective ϵ -alkylation of γ -branched

2,4-dienals via trienamine activation

1	+	BDAB	20 r	nol% H-Pro-D-Pro-Aib- 1 equiv. PhCO ₂ H	Trp-AA ₅ -	Ar Ar	Ο ε-product
		2 equiv		CHCl ₃ , r.t., 48 h	-	Ar Ar	α -product
		-	Entry	AA ₅	yield ^[a] (%)	ε:α ^[a]	
		-	1	Trp(6-NO ₂)	16	81:19	
			2	Tyr	23	83:17	
			3	Tyr(Me)	10	52:48	
			4	Phe	2	<1:19	
			5	Phe(4-COOH)	9	78:22	
			6	Glu	5	79:21	

 Table S1. Screening of the peptide catalysts for the reaction of dienal 1.

[a] Determined from ¹H NMR spectra of the crude mixture.

Rel. Energy	γ-methylated	γ-unsubstituted	Rel. Energy
$\Delta G (kJ/mol)$	trienamines	trienamines	$\Delta G (kJ/mol)$
0			0
17.97			12.68
10.77		The second secon	12.88
19.31	The second secon		4.38

Table S2. Relative Gibbs free energy of formation for the model compounds of trienamines obtained by DFT calculation

2a +	BDAB	20 mol%	H-Pro-D-Pro-Ait 1 equiv. PhCO ₂ I	o-Trp-AA ₅ -(H		;-product
	2 equiv.		CHCl ₃ , r.t., 48 h	1	Ar Ar	α-product
	Entry	AA ₅	yield ^[a] (%)	ϵ : $\alpha^{[a]}$	ee of ε-product (%)	
	1	Ser	24	75:25	46	
	2	Tyr	38	87:13	34	
	3	His	8	50:50	n.d.	
	4	Tyr(Me)	10	40:60	46	
	5	Glu	8	88:12	n.d.	
	6	Phe	17	59:41	48	

Table S3. Screening of the peptide catalysts for the reaction of dienal 2a.

[a] Determined from ¹H NMR spectra of the crude mixture.

Fig. S1. Optimized structure for the complex of 3-methylindole and BDAB–derived cation.

Compound	Gibbs free energy of formation (Hartree/Particle)	Rel Energy (kJ/mol)
3-methylindole (1)	-402.9088153	-
BDAB -derived cation (2)	-769.2604681	-
	(sum of the above two)	0
	-1172.1692834	0
Complex of 1 and 2	-1172.1814671	-31.99

Table S4. Calculated energy for the species related to Fig. S1.

Determination of the absolute configuration of the ε-product

We synthesized γ -substituted enal (*R*)-**A** using the (*R*)-diphenylprolinol derived catalyst according to the procedure reported by Melchiorre's group.¹ Compound (*R*)-**A** was then converted to (*R*)-**B** via a Horner-Wadsworth-Emmons reaction, followed by DIBAL reduction to yield an alcohol (*R*)-**C** (route 1).

On the other hand, we synthesized the ε -substituted dienal **D** using a peptide catalyst having (*S*)-prolyl group at N-terminus. The product was reduced with NaBH₄ to give an alcohol **C** (route 2). Thus obtained **C** was proved to have (*R*)-configuration by comparison of chiral HPLC trace with that of (*R*)-**C** obtained by route 1.

Scheme S2. Determination of the absolute configuration of the ε -alkylated product.

HPLC traces of the compounds related to Scheme S2.

(*R*)-A

Chiralpak IA, hexane/2-propanol = 95:5, 1.0 mL min⁻¹

Racemic sample:

Chiralpak IA, hexane/2-propanol = 95:5, 1.0 mL min⁻¹ From route 1 ((*R*)-C):

Product from route 2:

Racemic sample:

General information

A part of chemicals and solvents were purchased from commercial suppliers and used as received: enals and dienals (TCI, Japan), BDAB (TCI, Japan), CHCl₃ and toluene (Wako, Japan). Products were purified by preparative TLC (PTLC).

NMR spectra were recorded on a JEOL JNM-ECZ600R (600 MHz for ¹H and 151 MHz for ¹³C). Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (chloroform δ 7.26 and TMS δ 0.00), carbon (chloroform δ 77.0). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), dq (doublet of quartet), dd (doublet of doublet), m (multiplet). Coupling constants were reported in Hertz (Hz). High-resolution MALDI-TOFMS measurements were performed on a JMS-S3000 Spiral-TOF mass spectrometer. HPLC charts were recorded on a Shimadzu CLASS-VP system using Chiralcel IA column (25 cm) and IA guard (1 cm).

DFT calculations on trienamine intermediates of at the has been conducted.

Theoretical calculation study

Calculation was performed based on density functional theory (DFT) using Gaussian 16 software. For the calculation of trienamine model compounds shown in Table S2, B3LYP/6-31G(d) level of theory was employed. The interaction of 3-methylindole with the **BDAB**-derived cation was calculated at M06-2X/6-311++G(d,p)//M06-2X/6-31G(d) level in toluene (smd) (Fig. S1 and Table S4).

Preparation of peptide catalysts.

Resin-supported peptides were synthesized according to the previous report.² As a resin, TentaGel S-NH2 (AnaSpec, Inc., product number: 22798, 0.24 mmol/g amine loading) was used. The coupling reaction of an amino acid was performed with 3.0 equiv each of an N- α -9-fluorenylmethoxycarbonyl (Fmoc) amino acid, *O*-(7-azabenzotriazol-1-yl)-*N*,*N*,*N*',*N*'-tetramethyluronium hexafluorophosphate (HATU), and 1-hydroxy-7-azabenzotriazole (HOAt) along with 6.0 equiv of diisopropylethylamine in N,N-dimethylformamide (DMF) for 60 min. After washing the resin with DMF, completion of the peptide bond formation was confirmed by the Kaiser test or the chloranil test. To remove the Fmoc group, the resin was soaked in 20% piperidine/DMF solution for 20 min and washed with DMF. This cycle, the coupling of an Fmoc-protected amino acid and removal of the Fmoc group, was repeated until an intended sequence was washed with DMF and dichloromethane (DCM), and dried under reduced pressure. To convert the supported peptide to the salt of trifluoroacetic acid (TFA), the resin was soaked in TFA for a few minutes. Then, the resin was washed successively with DCM, DMF, and DCM, and dried under reduced pressure.

Preparation of substrates 2a-2f.

Substrates **2a-2f** were synthesized according to the scheme shown below.^{3,4}

Scheme S1. Preparation of dienals

(2E,4E)-4-Methylhepta-2,4-dienal (2a)

¹H NMR (CDCl₃) δ = 9.56 (d, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 15.8 Hz, 1H), 6.11 (dd, *J* = 7.6 Hz, 15.8 Hz, 1H), 6.04 (t, *J* = 7.6 Hz, 1H), 2.26 (p, *J* = 7.6 Hz, 2H), 1.82 (s, 3H), 1.07 (t, *J* = 7.6 Hz, 3H).

(2E,4E)-4-Ethylocta-2,4-dienal (2b)

¹H NMR (CDCl₃) δ = 9.51 (d, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 15.8 Hz, 1H), 6.08 (dd, *J* = 7.6 Hz, 15.8 Hz, 1H), 5.93 (t, *J* = 7.6 Hz, 1H), 2.25 (q, *J* = 7.6 Hz, 1H), 2.16 (t, *J* = 7.6 Hz, 1H), 1.47-1.40 (m, 2H), 0.96 (t, *J* = 7.6 Hz, 3H), 0.90 (t, *J* = 7.6 Hz, 3H).

(2E,4E)-4-Propylnona-2,4-dienal (2c)

¹H NMR (CDCl₃) δ = 9.55 (d, *J* = 7.6 Hz, 1H), 7.04 (d, *J* = 15.8 Hz, 1H), 6.12 (dd, *J* = 7.6 Hz, 15.8 Hz, 1H), 6.02 (t, *J* = 7.6 Hz, 1H), 2.28-2.21 (m, 4H), 1.46-1.34 (m, 6H), 0.96-0.91 (m, 2H).

(2E,4E)-4-Benzyl-7-phenylhepta-2,4-dienal (2d)

Bn Bn

¹H NMR (CDCl₃) δ = 9.47 (d, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 6.5 Hz, 2H), 7.25-7.15 (m, 6H), 7.09 (d, *J* = 15.8 Hz, 1H), 7.04 (d, *J* = 6.9 Hz, 2H), 6.26 (t, *J* = 6.9 Hz, 1H), 6.02 (dd, *J* = 8.3 Hz, 15.8 Hz, 1H), 3.61 (s, 2H), 2.78 (d, *J* = 6.9 Hz, 2H), 2.64 (q, *J* = 7.6 Hz, 2H).

(2E,4E)-4-methyl-7-phenylhepta-2,4-dienal (2e)

¹H NMR (CDCl₃) δ = 9.54 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.6 Hz, 2H), 7.22-7.17 (m, 4H), 7.09 (d, J = 15.2)

Hz, 1H), 6.08 (dd, *J* = 7.6 Hz, 15.8 Hz, 1H), 6.04 (t, *J* = 7.6 Hz, 1H), 2.76 (t, *J* = 7.6 Hz, 2H), 2.57 (t, *J* = 7.6 Hz, 2H), 1.74 (s, 3H).

3-(Cyclohexen-1-yl)-2-propenal (2f)

¹H NMR (CDCl₃) δ = 9.56 (d, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 15.8 Hz, 1H), 6.32 (t, *J* = 3.4 Hz, 1H), 6.08 (dd, *J* = 7.6 Hz, 15.8 Hz, 1H), 2.29-2.25 (m, 2H), 2.21-2.16 (m, 2H), 1.75-1.70 (m, 2H), 1.68-1.63 (m, 2H).

General procedure for the alkylation of dienals.

Toluene (1.0 mL) was added to a round-bottomed flask containing dienal (0.10 mmol), BDAB (0.20 mmol), and benzoic acid (0.10 mmol), and resin-supported peptide (0.02 mmol). Then, the peptide catalyst was filtered off and washed with chloroform. After removal of the solvent, the residue was purified by preparative TLC using hexanes/ethyl acetate (7:3) as eluent to afford the alkylated product.

(R)-7,7-Bis(4-(dimethylamino)phenyl)-4,6-dimethylhepta-2,4-dienal (3a)

27.1 mg (yield 72%). yellow solid. ¹H NMR (CDCl₃, 600 MHz) δ 9.47 (d, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 8.3 Hz, 2H), 7.03 (d, *J* = 8.9 Hz, 2H), 6.98 (d, *J* = 8.3 Hz, 1H), 6.66 (d, *J* = 8.9 Hz, 2H), 6.59 (d, *J* = 8.9 Hz, 2H), 6.01 (dd, *J* = 7.6 Hz, 15.1 Hz, 1H), 5.86 (d, *J* = 9.6 Hz, 1H), 3.57 (d, *J* = 10.3 Hz, 1H), 3.35-3.27 (m, 1H), 2.89 (s, 6H), 2.85 (s, 6H), 1.80 (s, 3H), 0.96 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 151 MHz) δ 194.3, 158.4, 150.3, 149.0, 148.8, 132.4, 131.8, 128.6, 128.5, 126.4, 112.8, 112.6, 56.4, 40.7, 40.6, 38.0, 19.5, 12.5; HRMS (MALDI-TOF) m/z: calculated for C₂₅H₃₂N₂O[H]⁺: 377.2587, found 377.2592.

The enantiomeric excess was determined by chiral HPLC analysis of the corresponding alcohol obtained by NaBH₄ reduction of the aldehyde.

¹H NMR (CDCl₃, 600 MHz) δ 7.11 (d, *J* = 8.9 Hz, 2H), 7.04 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.9 Hz, 1H), 6.60 (d, *J* = 8.3 Hz, 2H), 6.12 (d, *J* = 15.2 Hz, 1H), 6.01 (dt, *J* = 15.8 Hz, 6.2 Hz, 1H), 5.31 (d, *J* = 8.9 Hz, 1H), 4.12 (d, *J* = 6.2 Hz, 2H), 3.51 (d, *J* = 9.6 Hz, 1H), 3.27-3.20 (m, 1H), 2.88 (s, 6H), 2.85 (s, 6H), 1.74 (s, 3.14), 3.27-3.20 (m, 2.14), 3.27-3.20 (m, 2.14), 3.28 (s, 2.14),

3H), 0.90 (d, J = 6.2 Hz, 3H); ¹³C NMR (CDCl₃, 151 MHz) δ 148.8, 148.6, 139.5, 139.5, 137.3, 131.2, 128.7, 124.5, 112.9, 112.7, 64.1, 56.7, 40.8, 37.0, 20.1, 12.6; HRMS (MALDI-TOF) m/z: calculated for C₂₅H₃₄N₂O[Na]⁺: 401.2563, found 401.2578.

Chiralcel IA and IA guard column (2-propanol/hexane = 5/95, 1 mL/min); t_R = 16.5 min (major), 24.2 min (minor).

(R)-6-(Bis(4-(dimethylamino)phenyl)methyl)-4-ethylocta-2,4-dienal (3b)

29.1 mg (yield 72%). yellow solid. ¹H NMR (CDCl₃, 600 MHz) δ 9.47 (d, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 6.2 Hz, 2H), 7.04 (d, *J* = 8.9 Hz, 2H), 6.91 (d, *J* = 15.8 Hz, 1H), 6.67 (d, *J* = 8.3 Hz, 2H), 6.57 (d, *J* = 8.9 Hz, 2H), 6.02 (dd, *J* = 8.3 Hz, 15.8 Hz, 1H), 5.72 (d, *J* = 10.3 Hz, 1H), 3.65 (d, *J* = 9.6 Hz, 1H), 3.13 (dq, *J* = 3.4 Hz, 10.3 Hz, 1H), 2.89 (s, 6H), 2.83 (s, 6H), 2.30-2.21 (m, 2H), 1.67-1.59 (m, 1H), 1.23-1.14 (m, 1H), 0.93 (t, *J* = 7.6 Hz, 3H), 0.80 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 151 MHz) δ 194.5, 157.5, 149.0, 148.9, 148.5, 139.4, 132.5, 132.1, 128.7, 128.5, 126.3, 112.8, 112.6, 55.0, 44.9, 40.7, 26.5, 20.2, 12.9, 11.6; HRMS (MALDI-TOF) m/z: calculated for C₂₇H₃₆N₂O[H]⁺: 405.2900, found 405.2901.

The enantiomeric excess was determined by HPLC analysis of the alcohol, obtained by NaBH₄ reduction of the aldehyde, using a Chiracel IA and IA guard column (2-propanol/hexane = 5:95, 1 mL/min); $t_R = 13.7$ min (major), 25.2 min (minor).

(R)-6-(Bis(4-(dimethylamino)phenyl)methyl)-4-propylnona-2,4-dienal (3c)

19.9 mg (yield 46%). yellow solid. ¹H NMR (CDCl₃, 600 MHz) δ 9.47 (d, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 9.0 Hz, 2H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.92 (d, *J* = 15.8 Hz, 1H), 6.68 (d, *J* = 9.0 Hz, 2H), 6.57 (d, *J* = 8.3 Hz, 2H), 5.99 (dd, *J* = 7.6 Hz, 15.4 Hz, 1H), 5.74 (d, *J* = 10.3 Hz, 1H), 3.65 (d, *J* = 9.6 Hz, 1H), 3.19 (dq, *J* = 3.4 Hz, 9.6 Hz, 1H), 2.90 (s, 6H), 2.83 (s, 6H), 2.20-2.08 (m, 2H), 1.59-1.49 (m, 1H), 1.33-1.11 (m, 5H), 0.92 (t, *J* = 7.6 Hz, 3H), 0.81 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 151 MHz) δ 194.5, 158.0, 149.3, 149.0, 148.9, 138.0, 132.5, 132.0, 128.8, 128.6, 126.3, 112.8, 112.6, 55.1, 43.4, 40.8, 40.7, 36.1, 29.5, 21.7, 20.4, 14.6, 14.3; HRMS (MALDI-TOF) m/z: calculated for C₂₉H₄₀N₂O[H]⁺: 433.3213, found 433.3209.

The enantiomeric excess was determined by HPLC analysis of the alcohol, obtained by NaBH₄ reduction of the aldehyde, using a Chiracel IA and IA guard column (2-propanol/hexane = 5:95, 1 mL/min); $t_R = 12.8$ min

(major), 26.1 min (minor).

(R)-4,6-Dibenzyl-7,7-(bis(4-dimethylamino)phenyl)hepta-2,4-dienal (3d)

42.3 mg (yield 80%). White solid. ¹H NMR (CDCl₃, 600 MHz) δ 9.36 (d, *J* = 7.6 Hz, 1H), 7.27-7.21 (m, 4H, containing the peak of CHCl₃), 7.10-7.00 (m, 7H), 6.93 (d, *J* = 15.8 Hz, 1H), 6.74 (d, *J* = 8.3 Hz, 2H), 6.56 (d, *J* = 7.6 Hz, 4H), 6.04 (d, *J* = 10.3 Hz, 1H), 5.68 (dd, *J* = 7.6 Hz, 15.8 Hz, 1H), 3.78 (d, *J* = 10.3 Hz, 1H), 3.50 (dq, *J* = 2.8 Hz, 10.3 Hz, 1H), 2.93 (s, 6H), 2.89 (s, 6H), 2.42 (dq, *J* = 10.3 Hz, 13.8 Hz, 1H); ¹³C NMR (CDCl₃, 151 MHz) δ 194.3, 156.8, 149.2, 149.0, 149.0, 136.2, 129.5, 128.8, 128.7, 128.2, 128.2, 128.0, 127.9, 126.1, 125.9, 113.0, 112.6, 55.3, 46.9, 40.7, 40.4, 32.2; HRMS (MALDI-TOF) m/z: calculated for C₃₇H₄₀N₂O[H]⁺: 529.3213, found 529.3189.

The enantiomeric excess was determined by HPLC analysis of the alcohol, obtained by NaBH₄ reduction of the aldehyde, using a Chiracel IA and IA guard column (2-propanol/hexane = 5:95, 1 mL/min); $t_R = 13.9$ min (major), 15.4 min (minor).

(R)-6-Benzyl-7,7-(bis(4-dimethylamino)phenyl)-4-methylhepta-2,4-dienal (3e)

32.1 mg (yield 71%). Green plate. ¹H NMR (CDCl₃, 600 MHz) δ 9.44 (d, *J* = 7.6 Hz, 1H), 7.23 (d, *J* = 9.0 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 2H), 7.13 (d, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 9.0 Hz, 2H), 6.98 (d, *J* = 6.9 Hz, 2H), 6.93 (d, *J* = 15.8 Hz, 1H), 6.72 (d, *J* = 9.0 Hz, 2H), 6.57 (d, *J* = 9.0 Hz, 2H), 5.83 (dd, *J* = 8.3 Hz, 15.8 Hz, 1H), 5.75 (d, *J* = 10.3 Hz, 1H), 3.74 (d, *J* = 10.3 Hz, 1H), 3.47 (dq, *J* = 3.4 Hz, 10.3 Hz, 1H), 2.95 (dd, *J* = 2.8 Hz, 13.1 Hz, 1H), 2.92 (s, 6H), 2.84 (s, 6H), 2.34 (dd, *J* = 10.3 Hz, 13.8 Hz, 1H), 1.20 (s, 3H); ¹³C NMR (CDCl₃, 151 MHz) δ 194.3, 158.0, 149.1, 147.2, 140.0, 124.2, 129.3, 128.6, 128.4, 128.0, 126.4, 125.8, 113.0, 112.6, 55.1, 46.3, 40.7, 40.7, 40.2, 12.2; HRMS (MALDI-TOF) m/z: calculated for C₃₁H₃₆N₂O[Na]⁺: 475.2720, found 475.2732.

The enantiomeric excess was determined by HPLC analysis of the alcohol, obtained by NaBH₄ reduction of the aldehyde, using a Chiracel IA and IA guard column (2-propanol/hexane = 5:95, 1 mL/min); $t_R = 23.0$ min (minor), 24.7 min (major).

3-(3-(Bis(4-(dimethylamino)phenyl)methyl)cyclohexen-1-yl)-2-propenal (3f)

19.0 mg (yield 49%). yellow solid. ¹H NMR (CDCl₃, 600 MHz) δ 9.47 (d, *J* = 7.6 Hz, 1H), 7.16 (d, *J* = 9.0 Hz, 2H), 7.12 (d, *J* = 9.0 Hz, 2H), 6.99 (d, *J* = 15.8 Hz, 1H), 6.69 (d, *J* = 9.0 Hz, 2H), 6.66 (d, *J* = 9.0 Hz, 2H), 6.15 (s, 1H), 6.06 (dd, *J* = 8.3 Hz, 15.8 Hz, 1H), 3.49 (d, *J* = 11.0 Hz, 1H), 3.10-3.04 (m, 1H), 2.91 (s, 6H), 2.89 (s, 6H), 2.23-2.17 (m, 1H), 2.14-2.07 (m, 1H), 1.89-1.83 (m, 1H), 1.71-1.65 (m, 1H), 1.62-1.52 (m, 1H), 1.20 (dq, *J* = 2.8 Hz, 9.0 Hz, 1H) ; ¹³C NMR (CDCl₃, 151 MHz) δ 194.4, 156.8, 149.1, 149.0, 144.9, 135.7, 131.8, 128.7, 128.3, 126.1, 112.9, 112.8, 56.3, 41.1, 40.7, 27.8, 24.5, 21.2; HRMS (MALDI-TOF) m/z: calculated for C₂₆H₃₂N₂O[H]⁺: 389.2587, found 389.2592.

The enantiomeric excess was determined by HPLC analysis of the alcohol, obtained by NaBH₄ reduction of the aldehyde, using a Chiracel IA and IA guard column (2-propanol/hexane = 10:90, 1 mL/min); $t_R = 8.9$ min (major), 19.3 min (minor).

¹H and ¹³C NMR spectra

(R)-7,7-Bis(4-(dimethylamino)phenyl)-4,6-dimethylhepta-2,4-dienal (3a)

0

¹H-NMR (600 MHz, CDCl₃):

¹³C-NMR (151 MHz, CDCl₃):

Alcohol prepared by the NaBH₄ reduction of **3a**

¹H-NMR (600 MHz, CDCl₃):

¹³C-NMR (151 MHz, CDCl₃):

(R)-6-(Bis(4-(dimethylamino)phenyl)methyl)-4-ethylocta-2,4-dienal (3b)

¹H-NMR (600 MHz, CDCl₃):

(*R*)-6-(Bis(4-(dimethylamino)phenyl)methyl)-4-propylnona-2,4-dienal (3c)

¹H-NMR (600 MHz, CDCl₃):

(R)-4,6-Dibenzyl-7,7-(bis(4-dimethylamino)phenyl)hepta-2,4-dienal (3d)

¹H-NMR (600 MHz, CDCl₃):

¹³C-NMR (151 MHz, CDCl₃):

(R)-6-Benzyl-7,7-(bis(4-dimethylamino)phenyl)-4-methylhepta-2,4-dienal (3e)

¹H-NMR (600 MHz, CDCl₃):

¹³C-NMR (151 MHz, CDCl₃):

3-(3-(Bis(4-(dimethylamino)phenyl)methyl)cyclohexen-1-yl)-2-propenal (3f)

¹H-NMR (600 MHz, CDCl₃):

¹³C-NMR (151 MHz, CDCl₃):

HPLC traces for the products / racemic samples Alcohol derived from 3a

Chiralpak IA, hexane/2-propanol = 95:5, 1.0 mL min⁻¹

Alcohol derived from 3b

Chiralpak IA, hexane/2-propanol = 95:5, 1.0 mL min⁻¹

500

0

10

1: 254 nm, 8 nm

12

14

(Retention time) 保持時間 13.676 25.239

Total

16

18

20 min 22

面積 44973843 43602205

88576049

(Area)

24

26

28

30

(Area%) <u>面積%</u> 50.77 49.23

100.00

Alcohol derived from 3c

Chiralpak IA, hexane/2-propanol = 90:10, 1.0 mL min⁻¹

Alcohol derived from 3d

Chiralpak IA, hexane/2-propanol = 95:5, 1.0 mL min⁻¹

Alcohol derived from 3e

Chiralpak IA, hexane/2-propanol = 95:5, 1.0 mL min⁻¹

Alcohol derived from 3f

Chiralpak IA, hexane/2-propanol = 90:10, 1.0 mL min⁻¹

4285052

100.00

Coordinates for DFT optimized species related to Fig S1 and Table S4

3-methylindole

С	0.17406900	-0.38846500	-0.00000600
С	1.60520500	-0.22236900	-0.00003600
С	-0.67100200	-1.50988400	0.00002200
С	-0.40178500	0.90576900	-0.00001100
С	-1.78665400	1.10530800	0.00001400
С	-2.04202700	-1.31774900	0.00005700
С	-2.59321100	-0.02034800	0.00005500
Н	-2.21126700	2.10490400	0.00001200
Н	-0.25183500	-2.51280800	0.00003200
Н	-2.70706000	-2.17597600	0.00008700
Н	-3.67246200	0.09907100	0.00008400
С	1.82941000	1.12624900	-0.00002600
С	2.62502700	-1.31704400	-0.00003300
Ν	0.63173000	1.80902800	-0.00006500
Н	2.76621300	1.66711200	-0.00006000
Н	0.53341400	2.81322200	0.00017900
Н	2.52387500	-1.95920400	0.88243000
Н	2.52320000	-1.95981300	-0.88197200
Н	3.63961200	-0.90850100	-0.00056400

BDAB-derived cation

С	-1.27667700	0.90510500	0.03920800
С	-0.00000100	1.49185000	-0.00001500
С	-2.40475200	1.72747600	-0.24548300
С	-1.54206700	-0.44926200	0.39408600
С	-2.81223700	-0.95436700	0.39865500
С	-3.67956100	1.23482900	-0.27294900
С	-3.93006900	-0.13859400	0.03299700
Н	-0.73219600	-1.08364300	0.73734900
Н	-2.96972800	-1.97700100	0.71626900
Н	-2.23513500	2.77570100	-0.47855000
Н	-4.49972600	1.89609500	-0.52075900
Ν	-5.17495800	-0.64043300	0.00902100
Н	-0.00000100	2.58318800	-0.00000800
С	1.27667700	0.90510600	-0.03923400
С	1.54207500	-0.44925800	-0.39411200
С	2.40474700	1.72747900	0.24547400
С	3.67955700	1.23483700	0.27295300
С	2.81224800	-0.95435800	-0.39867000

3.93007300	-0.13858300	-0.03300400
2.23512400	2.77570100	0.47855100
4.49971600	1.89610400	0.52078400
0.73221000	-1.08364900	-0.73737500
2.96974600	-1.97699600	-0.71627100
5.17496000	-0.64042900	-0.00901600
6.31003300	0.21939400	0.30588900
5.41487000	-2.04214800	-0.33238600
-5.41488500	-2.04215200	0.33238400
-6.31002900	0.21941200	-0.30582900
6.39497700	1.03675900	-0.41769300
6.21212800	0.64094700	1.31158100
7.22326400	-0.37162800	0.26805900
4.82890900	-2.69619600	0.32061400
5.15793800	-2.25551600	-1.37573700
6.46966600	-2.26442600	-0.18249900
-6.39495300	1.03675000	0.41778700
-6.21213700	0.64100300	-1.31150600
-7.22326400	-0.37160400	-0.26800600
-4.82890500	-2.69619900	-0.32059800
-5.15799200	-2.25552500	1.37574300
-6.46967600	-2.26442600	0.18245300
	3.93007300 2.23512400 4.49971600 0.73221000 2.96974600 5.17496000 6.31003300 5.41487000 -5.41488500 -6.31002900 6.39497700 6.21212800 7.22326400 4.82890900 5.15793800 6.46966600 -6.39495300 -6.21213700 -7.22326400 -4.82890500 -5.15799200 -6.46967600	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Complex of 3-methylindole and BDAB-derived cation

С	-2.07641900	1.50111000	1.02836400
С	-0.65168900	1.70815700	1.01277300
С	-2.96212800	0.93724000	1.96104000
С	-2.59515100	2.02630600	-0.18043300
С	-3.96574500	2.02697700	-0.46765600
С	-4.31711300	0.92246300	1.67661700
С	-4.81350100	1.46556600	0.47243100
Н	-4.34928800	2.46394500	-1.38543300
Н	-2.58680000	0.52644800	2.89483000
Н	-5.01526600	0.50415900	2.39585700
Н	-5.88376700	1.45589500	0.28592100
С	-0.37453500	2.32667000	-0.17775900
С	0.30638100	1.35880000	2.10654500
Ν	-1.53115600	2.50328500	-0.90655500
Н	0.57243300	2.68270700	-0.56131100
Н	-1.59827700	3.01818000	-1.77246500

Н	0.05123900	1.88268400	3.03482800
Н	0.29252600	0.28439300	2.32594700
Н	1.33124200	1.63324500	1.83993600
С	-0.04755200	-1.67833400	0.22433400
С	1.23772000	-1.82670700	0.75448400
С	-1.13989100	-2.25700500	0.94106100
С	-0.36085500	-1.03576500	-1.01318600
С	-1.64430000	-0.93699300	-1.46590200
С	-2.43165700	-2.14106400	0.52159500
С	-2.73831300	-1.45015100	-0.69532900
Н	0.44140600	-0.68393800	-1.65180000
Н	-1.82647400	-0.48364000	-2.43151100
Н	-0.92839900	-2.78838200	1.86574800
Н	-3.22593000	-2.58191100	1.10978600
Ν	-4.00149900	-1.33053300	-1.12121600
Н	1.31368800	-2.55180900	1.56666900
С	2.45872500	-1.19847100	0.41908800
С	2.57356700	0.00990300	-0.32073300
С	3.66613900	-1.77382600	0.89870600
С	4.89548400	-1.24880300	0.60104100
С	3.79323300	0.56421400	-0.60917600
С	5.00424000	-0.06444400	-0.18606100
Н	3.61104900	-2.67894100	1.49840600
Н	5.78541300	-1.74163300	0.97032200
Н	1.67523000	0.54868300	-0.60317400
Н	3.83082100	1.50593700	-1.14270700
Ν	6.20603300	0.45613000	-0.49861500
С	7.42669800	-0.16407400	-0.00095000
С	6.30007700	1.65228000	-1.32374800
С	-4.29769900	-0.72344700	-2.41215600
С	-5.10096400	-1.91291000	-0.36085700
Н	7.43762200	-0.18626200	1.09414100
Н	7.52907000	-1.18778000	-0.37726200
Н	8.28241900	0.41644100	-0.34076900
Н	5.78396300	1.50757700	-2.27827100
Н	5.86933500	2.52205200	-0.81469600
Н	7.34926300	1.85750200	-1.53056400
Н	-5.06464200	-3.00804800	-0.38512900
Н	-5.06779000	-1.57061800	0.67607500
Н	-6.04180900	-1.58360100	-0.79910500

Н	-3.80715600	0.24819700	-2.49846100
Н	-3.97005600	-1.36895600	-3.23538800
Н	-5.37321700	-0.57086400	-2.49050700

[References]

- ² K. Akagawa, J. Sen, K. Kudo, Angew. Chem. Int. Ed. 2013, **52**, 11585.
- ³ Z. J. Jia, Q. Zhou, Q. Q. Zhou, P. Q. Chen and Y. C. Chen, *Angew. Chem. Int. Ed.*, 2011, **50**, 8638.
- ⁴ J. P. Parikh, W. E. Doering, J. Am. Chem. Soc. 1967, 89, 5505

¹ M. Silvi, C. Cassani, A. Moran and P. Melchiorre, *Helv. Chim. Acta*, 2012, **95**, 1985.