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Experimental section

Materials 

All the chemicals and reagents used in this study were sourced from Sinopharm 

Chemical Reagent Co., Ltd. and used without further purification. 

Anatase TiO2{001} Nanocrystals Synthesis 1,2,3

To synthesize anatase TiO2{001} nanocrystals, 3 mL of aqueous HF (40 wt%) and 

25 mL of Ti(OBu)4 were combined under magnetic stirring. The mixture was then 

transferred into a dried Teflon autoclave (50 mL) and heated at 180 °C for 24 hours. 

After the reaction, the resulting precipitate was washed several times with ethanol and 

water, then dried at 70 °C overnight. To remove F−, the powder was immersed in 0.1 

mol/L NaOH solution (700 mL) at room temperature for 24 hours, followed by washing 

with ultrapure water until the suspension reached a pH of 7-8. 

Anatase TiO2{100} and TiO2{101} Nanocrystals Synthesis 1,2,3 

For the preparation of Ti(OH)4 precursor. TiCl4 (6.6mL) was slowly added to 0.43 

mol/L aqueous HCl (20mL) while stirring at 0 °C. The resulting TiCl4 was then added 

dropwise to 50 mL of 5.5 wt% aqueous NH3 under stirring at room temperature. The 

pH of the suspension was adjusted to 6-7 using 4 wt% aqueous NH3. The mixture was 

stirred at room temperature for 2 hours, and the Ti(OH)4 precursor was filtered, washed 

multiple times with ultrapure water to remove Cl-, and dried at RT. Ti(OH)4 (2.0 g) and 

(NH4)2SO4 (0.5 g for TiO2{100}) or NH4Cl (0.2g for TiO2{101}) were added to a 

mixture of iPrOH (15 mL) and ultrapure H2O (15 mL) under stirring; The mixture was 

poured into a 50 mL dried Teflon autoclave and kept at 180 °C for 24 h. The obtained 

precipitate was centrifuged and washed with ultrapure H2O several times.



Synthesis of Ni/TiO2 Catalysts 

The preparation of Ni/TiO2 catalysts was carried out through a conventional 

incipient wetness impregnation approach. Typically, a calculated amount of 

Ni(NO3)2.6H2O was dissolved to form a solution. Then, 2 mL of the solution was 

impregnated onto 500 mg of pre-synthesized TiO2 nanocrystals with different facets, 

followed by drying at 30 °C. Subsequently, the sample was reduced in 5% H2/Ar at 420 

°C for 1 hour to obtain a fresh catalyst. The catalyst loaded with Ni on TiO2{001} was 

named Ni/TiO2{001}, the one on TiO2{100} was named Ni/TiO2{100}, and the one on 

TiO2{101} was named Ni/TiO2{101}. Ni/TiO2{100} was further impregnated with 0.5 

mol/L NaOH solution, dried at 30 °C, and then reduced with H2. The resulting catalyst 

was named Ni/TiO2{100}-OH. 

Catalyst Characterization 

Transmission electron microscopy (TEM) images of various representative 

Ni/TiO2 catalysts were acquired using a JEOL JEM-2100F microscope operating at 200 

kV. BET surface area measurements were performed on a Micromeritics ASAP 2460 

after the TiO2 was degassed at 300 °C under vacuum. X-ray diffraction (XRD) patterns 

were recorded on a multifunctional rotating anode X-ray diffractometer (Cu Kα 

radiation, λ = 0.15406 nm) operating at 40 kV and 15 mA. The loading of nickel was 

analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). 

Quasi in situ X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 

250Xi spectrometer with a reaction chamber, using monochromatic Al anode Kα 

radiation (hv = 1486.6 eV). The analysis pressure is 6.6*10-10 torr. Charging effects 

were corrected by aligning the C 1s binding energy of adventitious carbon to 284.8 eV. 



The specific operational procedure is as follows: the samples were pretreated in 5% 

H2/Ar at a flow rate of 20 mL/min at 420 °C for 1 hour, then cooled to RT and directly 

transferred to the analysis chamber without air exposure. In situ diffuse reflectance 

infrared Fourier transform spectroscopy (DRIFTS) was performed using a Nicolet 6700 

FTIR spectrometer equipped with a Harrick high-temperature reaction chamber with 

ZnSe windows. For in situ DRIFTS measurements of NO adsorption at room 

temperature, Ni/TiO2 catalysts were reduced in 5% H2/Ar at 420°C for 90 min, then 

cooled to room temperature RT and evacuated to 0.01 Pa to record the back-ground 

spectrum. Subsequently, NO was introduced into the sample through a leaking valve, 

and spectra were recorded until a steady state was achieved at a specific pressure. For 

in situ DRIFTS measurements of CO2 hydrogenation reactions, Ni/TiO2 catalysts were 

reduced at 420°C in 5% H2/Ar (20 mL/min) atmosphere for 60 min. After reduction, 

the catalysts were naturally cooled to room temperature in reducing atmosphere, then 

purged by pure Ar (20 mL/min) until a steady state. After the background spectrum was 

collected under Ar at 400℃, the mixed gas containing 25% CO2 and 25% H2, balanced 

with pure Ar, was introduced into the reaction cell at a flow rate of 20 mL/min at 400 

°C for 120 min, whose spectra were recorded regularly. The H2-TPR experiments were 

conducted on a Huasi chemisorption instrument equipped with a TCD detector to detect 

H2 consumption. 50 mg fresh Ni/TiO2 catalyst was first pretreated under Ar at 300 °C 

for 1 h and cooled to room temperature, and then was heated from room temperature to 

700 °C at a heating rate of 10 °C/min in 5% H2/Ar (30 mL/min). The CO2-TPD 

experiments were conducted on a Huasi adsorption instrument. 50mg of the fresh 



Ni/TiO2 catalyst was reduced at 420 °C in 5% H2/Ar (30 mL/min) atmosphere for 60 

min, followed by purging with pure He (30 mL/min) for another 30 min before cooling 

to room temperature. Subsequently, it was exposed to pure CO2 (30 mL/min) at room 

temperature for 60 min, followed by switching to pure He (30 mL/min). Finally, the 

sample was heated to 400 °C at a heating rate of 10 °C/min under pure He (30 mL/min). 

The CO2 desorption signal was recorded by an online mass spectrometer. 

Catalyst Performance Testing 

Catalytic performance was evaluated in a fixed-bed quartz reactor. Fresh catalysts 

(50 mg) diluted with 550 mg of SiC were reduced in 5%H2/Ar with a flow rate of 20 

mL/min at 420 °C for 60 min, followed by cooling to room temperature. A reaction gas 

mixture (25% CO2, 25% H2,50% Ar) was introduced at a flow rate of 20 mL/min for 

activity testing. The sample was directly heated to 400 °C at a rate of 10 ℃/min and 

maintained at this temperature for 120 min. The gas compositions were analyzed by 

online gas chromatography (GC9790 Plus, Fuli Instruments) equipped with a TCD 

detector and a flame ionization detector (FID). The CO2 conversion and product 

selectivity were calculated as following equations:

CO2 Conversion＝（nCO2,in-nCO2,out）/ nCO2,in

CO or CH4 selectivity＝nCH4 or CO/(nCH4 +nCO)

The hydrogenation performance of CO was tested under the same conditions as 

described above. A reaction gas containing 24% CO and 60% H2, balanced with Ar, 

was fed at a flow rate of 20 mL/min for activity testing. The apparent activation energy 

(Ea) for CO2 hydrogenation over the Ni/TiO2 catalysts was determined from Arrhenius 

plots by varying the reaction temperatures between 300 and 380 °C, with CO2 



conversions below 20%.



Table S1：Ni content measured by ICP-AES
Catalyst Ni content(wt.%)
Ni/TiO2{001} 1.78
Ni/TiO2{100} 1.32
Ni/TiO2{101} 3.14



Table S2: Catalytic activity and product selectivity of CO2 hydrogenation at 400°C of 
different TiO2 supports.
Catalyst Conv.CO2 Sel.CO
TiO2{001} 0.1% 100%
TiO2{100} 0.2% 100%
TiO2{101} 0.1% 100%



Table S3：Comparison of CO production rate for the reported catalysts and present 
catalysts

Catalyst T
(℃)

P
(MPa)

XCO2

%
SCO 
%

H2 : CO2 
ratio

WHSV
(ml gcat

-1h-1)
STY
(mol/gNi/h)

Ni/TiO2{001} 400 0.1 21.0 72.0 1:1 24000 2.38

Ni-SAs/N-CNTs4 400 0.1 16.0 100.0 3:1 12000 1.00

NiAlIn3
5 400 0.1 20.0 99.8 4:1 30000 0.12

7Ni-M16 400 0.1 14.0 79.0 1:1 15000 0.53

Ni5NC/CO7 400 0.1 19.0 95.0 1:1 40000 0.13

Ni5NC/CO7 450 0.1 45.0 85.0 4:1 40000 0.27

Ni/ZnO8 400 0.1 21.0 99.3 4:1 36000 1.34

Ni3Fe9/ZrO2
9 400 0.1 18.6 95.8 2:1 24000 1.58

Ni0.07/Ce0.9La010 700 0.1 57.0 99.0 2:1 300000 0.54

Pristine Ni11 519 0.1 54.7 20.1 1:1 600 0.13

NiIn(4)/CeO2
12 370 0.1 23.9 99.1 4:1 5000 0.62

Ni/SiO2
13 660 0.1 67.5 98.7 4:1 40000 9.91

10Ni/TiO2-OH14 400 0.1 20.0 90.0 3:1 400000 6.77



Table S4：Ni content measured by ICP-AES
Catalyst Ni content(wt.%)
1%Ni/TiO2{001} 0.87
2%Ni/TiO2{001} 1.78
5%Ni/TiO2{001} 4.83



Table S5: Activity, product selectivity, activation energy, pre-exponential factor, and 
the number of weak basic sites for CO2 hydrogenation catalyzed by Ni/TiO2{001} and 
Ni/TiO2{100} catalysts.

Sample Ni/TiO2{001} Ni/TiO2{100}

conv.CO2 (%) 21.5 1.9

Sel. CO (%) 71.5 99.7

Ea (kJ/mol) 44.3 ± 2.9 43.5 ± 1.3

A (mol/gcat/s) 95.6 ± 1.8 18.1 ± 1.3

S weakly alkaline sites(E-10) 26.7 6.5



Figure S1. TEM images of the (A1-A2) TiO2{001}, (A3) Ni/TiO2{001}, (B1-B2) 
TiO2{100}, (B3) Ni/TiO2{100}, (C1-C2) TiO2{101}, (C3) Ni/TiO2{101}



Figure S2. XRD patterns of the Ni/TiO2{001}, Ni/TiO2{100} and Ni/TiO2{101} 
catalysts



Figure S3. TEM images of the (A) Ni/TiO2{001}, (B) Ni/TiO2{100}, (C) 
Ni/TiO2{101}



Figure S4. Stability testing of (A)Ni/TiO2{001}, (B)Ni/TiO2{100}, (C)Ni/TiO2{101} 



Figure S5. Ni 2p XPS spectra under exposed air of Ni/TiO2{001} catalyst



Figure S6. H2-TPR spectra of various Ni/TiO2 catalysts.



Figure S7. In situ time-resolved DRIFTS spectra of Ni/TiO2{001} under the reaction 
atmosphere (CO2/H2 = 1:1) at 400 °C



Figure S8. TEM image and metal Ni particle size distribution of the 5%Ni/TiO2{001}



Figure S9. TEM image, magnified TEM image and metal Ni particle size distribution 
of the 1%Ni/TiO2{001}
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