Supplementary Information (SI) for ChemComm. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Direct Hydroacylation of Arylacrylonitriles toward β-Ketonitriles Assisted by EDA Complex

Zhenhui Wang, ‡^a Shiqing Huang, ‡^b Hao Hou, ^c Wei Liu*^a and Wei Ou*^c

^a College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, PR China

^b School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, People's Republic of China

^c International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China

* E-mail: ouwei2012@163.com, 407963040@qq.com

[‡] These authors contributed equally to this work

Contents

1. General considerations	2
2. Experiment procedures for hydroacylation of arylacrylonitriles	3
3. Gram-scale synthesis	20
4. Synthetic applications	20
5. Mechanism studies	23
6. Computational details	26
7. References	52
8. Copies of ¹ H and ¹³ C NMR spectra	54

1. General considerations

All manipulations were conducted in sealed tubes under nitrogen atmosphere. Reactions that require heating were carried out in the oil bath.¹H and ¹³C NMR spectra were recorded on a Bruker 400 or 500 MHz spectrometer, and the chemical shifts were reported in parts per million (δ) relative to the internal standard TMS (0 ppm) for ¹H, and referenced to the internal solvent signals for ¹³C (77.16 ppm for CDCl₃). The peak patterns are indicated as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet; q, quartet. The coupling constants, *J*, are reported in Hertz (Hz). An APEX II (Bruker Inc.) spectrometer was used for ESI-MS and EI-MS. Flash column chromatography was performed over silica gel 200-300 mesh. All chemical reagents and deuterated solvents were purchased from Alfa, Acros, Aldrich, or J&K and used without further purification, unless otherwise stated.

2. Experiment procedures for hydroacylation of arylacrylonitriles

2.1. Preparation of arylacrylonitriles¹

A 50 mL round-bottom flask was charged with aryl aldehyde (10 mmol), KOH (0.80 g, 20 mmol) and anhydrous CH₃CN (25 mL) under nitrogen atmosphere. Then, the reaction mixture was stirred at 40 °C and the reaction was monitored by TLC. After the reaction was completed, the mixture was filtered and washed by AcOEt. The combined organic volatiles were removed in vacuo and the crude product was purified by silica gel chromatography to give arylacrylonitriles **2**.

Scheme S1. The molecular structure of arylacrylonitriles

2.2. General procedure for hydroacylation of arylacrylonitriles

To an oven-dried glass tube equipped with a stir bar was added aryl aldehyde 1 (1.0 mmol), arylacrylonitrile 2 (0.5 mmol) and NaOH (20.0 mg, 0.5 mmol). The tube was sealed with a septum, evacuated and refilled with argon three times. Then, anhydrous DMSO (2 mL) was added to the reaction system and the mixture was stirred at room temperature for 12 h. The mixture was added H₂O (10 mL) and extracted with ethyl

acetate (3 x 15 mL). The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel chromatography: PE/AcOEt $\rightarrow 6/1 - 20/1$ to give the product **3**.

2-Benzyl-3-(4-methoxyphenyl)-3-oxopropanenitrile² (**3a**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 12:1) as yellow liquid (108.8 mg, 82% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.9 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.33 – 7.26 (m, 3H), 6.99 (d, *J* = 8.9 Hz, 2H), 4.52 (dd, *J* = 8.9, 5.8 Hz, 1H), 3.90 (s, 3H), 3.36 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.25 (dd, *J* = 14.0, 9.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 188.4, 164.7, 136.2, 131.3, 129.1, 128.9, 127.6, 127.0, 117.4, 114.4, 55.7, 41.5, 35.7. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₅NO₂Na 288.0995; found 288.1004.

3-(4-Methoxyphenyl)-2-(4-methylbenzyl)-3-oxopropanenitrile (**3b**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2b** (71.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 12:1) as yellow liquid (68.4 mg, 49% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 6.96 (d, *J* = 9.0 Hz, 2H), 4.45 (dd, *J* = 8.9, 5.8 Hz, 1H), 3.87 (s, 3H), 3.29 (dd, *J* = 14.0, 5.7 Hz, 1H), 3.18 (dd, *J* = 14.0, 8.9 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 188.5, 164.6, 137.3, 133.1, 131.3, 129.6, 128.9, 127.0, 117.4, 114.4, 55.7, 41.7, 35.3, 21.1. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₇NO₂Na 302.1151; found 302.1162.

2-(4-Methoxybenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (3c). The

compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2c** (79.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow solid (32.5 mg, 22% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.5 Hz, 2H), 4.44 (dd, *J* = 8.7, 5.9 Hz, 1H), 3.89 (s, 3H), 3.78 (s, 3H), 3.28 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.18 (dd, *J* = 14.0, 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.5, 164.6, 159.0, 131.3, 130.2, 128.1, 127.1, 117.4, 114.4, 114.3, 55.7, 55.3, 41.8, 35.0. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₇NO₃Na 318.1101; found 318.1105.

2-(4-Chlorobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3d**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2c** (81.8 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as yellow liquid (85.4 mg, 57% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 8.8 Hz, 2H), 7.27 (t, *J* = 7.9 Hz, 2H), 7.21 (d, *J* = 8.2 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 4.46 (dd, *J* = 8.6, 6.0 Hz, 1H), 3.87 (s, 3H), 3.30 (dd, *J* = 14.1, 5.9 Hz, 1H), 3.19 (dd, *J* = 14.0, 8.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 188.0, 164.8, 134.6, 133.5, 131.3, 130.5, 129.0, 126.8, 117.2, 114.4, 55.7, 41.1, 34.8. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄ClNO₂Na 322.0605; found 322.0618.

2-(4-Bromobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3e**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2e** (104.0 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 6:1) as yellow solid (117.0 mg, 68% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 4.45 (dd, *J* = 8.5, 6.0 Hz, 1H), 3.88 (s, 3H), 3.29 (dd, *J* = 14.0, 5.9 Hz, 1H), 3.18 (dd, *J* = 14.0, 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.9, 164.8, 135.2,

132.0, 131.3, 130.9, 126.8, 121.6, 117.2, 114.4, 55.7, 41.0, 34.8. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+ Na]⁺ Calcd. for C₁₇H₁₄BrNO₂Na 366.0100; found 366.0093.

2-(4-Iodobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3f**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2f** (127.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow solid (95.8 mg, 49% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 4.43 (dd, *J* = 8.6, 6.0 Hz, 1H), 3.89 (s, 3H), 3.28 (dd, *J* = 14.1, 5.9 Hz, 1H), 3.17 (dd, *J* = 14.0, 8.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.9, 164.8, 138.0, 135.8, 131.4, 131.1, 126.8, 117.1, 114.5, 93.2, 55.8, 41.0, 34.9. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄INO₂Na 413.9961; found 413.9968.

3-(4-Methoxyphenyl)-2-(3-methylbenzyl)-3-oxopropanenitrile (3g). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2g** (71.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 10:1) as yellow liquid (78.2 mg, 56% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.08 (d, *J* = 8.1 Hz, 3H), 6.96 (d, *J* = 8.8 Hz, 2H), 4.50 (dd, *J* = 9.0, 5.7 Hz, 1H), 3.86 (s, 3H), 3.28 (dd, *J* = 13.9, 5.6 Hz, 1H), 3.17 (dd, *J* = 13.9, 9.1 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 188.6, 164.7, 138.6, 136.1, 131.3, 129.8, 128.8, 128.4, 127.0, 126.1, 117.5, 114.4, 55.7, 41.5, 35.6, 21.4. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₇NO₂Na 302.1151; found 302.1155.

2-(3-Methoxybenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (3h). The compound was prepared according to the general procedure using *p*-anisaldehyde 1b

(121.5 µL, 1.0 mmol), **2h** (79.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow liquid (112.2 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 8.9 Hz, 2H), 7.24 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 2H), 6.88 (d, *J* = 7.5 Hz, 1H), 6.85 – 6.79 (m, 2H), 4.52 (dd, *J* = 8.9, 5.8 Hz, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 3.31 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.20 (dd, *J* = 14.0, 9.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 188.4, 164.7, 159.9, 137.7, 131.3, 129.9, 127.0, 121.3, 117.5, 114.8, 114.4, 113.0, 55.7, 55.2, 41.3, 35.7. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₇NO₃Na 318.1101; found 318.1105.

2-(3-Fluorobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3i**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 µL, 1.0 mmol), **2i** (73.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as yellow liquid (83.6 mg, 59% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.7 Hz, 2H), 7.32 – 7.26 (m, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 11.7 Hz, 4H), 4.48 (dd, *J* = 8.5, 6.1 Hz, 1H), 3.88 (s, 3H), 3.33 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.22 (dd, *J* = 14.0, 8.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.9, 164.8, 162.9 (d, *J* = 246.8 Hz), 138.6 (d, *J* = 7.4 Hz), 131.3, 130.5 (d, *J* = 8.3 Hz), 126.8, 124.8 (d, *J* = 2.8 Hz), 117.1, 116.1 (d, *J* = 21.5 Hz), 114.6 (d, *J* = 20.9 Hz), 114.4, 55.7, 40.9, 35.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.34 (s) ppm. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄FNO₂Na 306.0901; found 306.0901.

2-(3-Chlorobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3j**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2j** (81.8 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as yellow liquid (136.4 mg, 91% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 8.9 Hz, 2H), 7.21 – 7.10 (m, 3H), 7.10 – 7.04 (m, 1H), 6.86 (d, *J* = 8.9 Hz, 2H), 4.40 (dd, *J* = 8.8, 5.9 Hz, 1H), 3.77 (s, 3H), 3.20 (dd, *J* = 14.1, 5.8 Hz, 1H),

3.08 (dd, J = 14.0, 8.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.9, 164.8, 138.2, 134.6, 131.4, 130.2, 129.2, 127.8, 127.4, 126.8, 117.2, 114.4, 55.7, 40.9, 34.9. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄ClNO₂Na 322.0605; found 322.0605.

2-(3-Bromobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile³ (3k). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2k** (104.0 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 10:1) as yellow liquid (111.9 mg, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.9 Hz, 2H), 7.41 (s, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.22 (d, *J* = 7.7 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 1H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.47 (dd, *J* = 8.9, 5.9 Hz, 1H), 3.86 (s, 3H), 3.28 (dd, *J* = 14.1, 5.9 Hz, 1H), 3.16 (dd, *J* = 14.1, 8.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 187.9, 164.8, 138.5, 132.1, 131.4, 130.8, 130.5, 127.9, 126.8, 122.8 117.1, 114.4, 55.7, 41.0, 34.9. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+ Na]⁺ Calcd. for C₁₇H₁₄BrNO₂Na 366.0100; found 366.0100.

2-(3-Iodobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3l**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2l** (127.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow liquid (80.2 mg, 41% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.9 Hz, 2H), 7.62 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 7.06 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 8.9 Hz, 2H), 4.45 (dd, *J* = 8.9, 5.9 Hz, 1H), 3.88 (s, 3H), 3.27 (dd, *J* = 14.0, 5.9 Hz, 1H), 3.15 (dd, *J* = 14.0, 8.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.8, 164.8, 138.6, 137.9, 136.7, 131.4, 130.6, 128.5, 126.8, 117.1, 114.4, 94.7, 55.7, 40.9, 34.8. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄INO₂Na 413.9961; found 413.9974.

3-(4-Methoxyphenyl)-2-(2-methylbenzyl)-3-oxopropanenitrile (**3m**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2m** (71.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow liquid (72.6 mg, 52% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 7.24 (dd, *J* = 9.0, 4.3 Hz, 1H), 7.20 – 7.12 (m, 3H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.46 (dd, *J* = 9.2, 6.0 Hz, 1H), 3.87 (s, 3H), 3.34 (dd, *J* = 14.3, 6.0 Hz, 1H), 3.25 (dd, *J* = 14.3, 9.2 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 188.6, 164.7, 136.2, 134.4, 131.3, 130.8, 129.7, 127.7, 127.0, 126.5, 117.4, 114.4, 55.7, 40.0, 32.8, 19.5. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₇NO₂Na 302.1151; found 302.1161.

2-(2-Methoxybenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (3n). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2n** (79.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as white solid (38.4 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.9 Hz, 2H), 7.23 (d, *J* = 7.4 Hz, 2H), 6.96 – 6.81 (m, 4H), 4.72 (dd, *J* = 9.7, 5.4 Hz, 1H), 3.85 (s, 3H), 3.85 (s, 3H), 3.40 (dd, *J* = 13.4, 5.3 Hz, 1H), 3.04 (dd, *J* = 13.4, 9.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 164.5, 157.3, 131.5, 131.3, 129.2, 127.1, 124.2, 121.0, 117.6, 114.2, 110.4, 55.7, 55.3, 39.9, 32.2. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₈H₁₇NO₃Na 318.1101; found 318.1107.

2-(2-Chlorobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3o**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2o** (81.8 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous

DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as yellow liquid (54.0 mg, 36% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, J = 8.2 Hz, 2H), 7.37 – 7.28 (m, 2H), 7.19 – 7.12 (m, 2H), 6.88 (d, J = 8.2 Hz, 2H), 4.64 (dd, J = 9.5, 6.0 Hz, 1H), 3.80 (s, 3H), 3.44 (dd, J = 13.8, 5.7 Hz, 1H), 3.15 (dd, J = 13.5, 10.1 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 188.3, 164.8, 133.8, 133.7, 132.2, 131.4, 129.8, 129.3, 127.4, 126.9, 117.0, 114.4, 55.7, 38.9, 33.9. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄ClNO₂Na 322.0605; found 322.0612.

2-(2-Bromobenzyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3p**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2p** (104.0 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow solid (108.4 mg, 63% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.9 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.27 (t, *J* = 7.1 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 8.9 Hz, 2H), 4.75 (dd, *J* = 9.7, 5.9 Hz, 1H), 3.85 (s, 3H), 3.49 (dd, *J* = 13.8, 5.9 Hz, 1H), 3.23 (dd, *J* = 13.8, 9.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 188.3, 164.8, 135.4, 133.1, 132.3, 131.4, 129.6, 128.1, 127.0, 124.3, 117.0, 114.4, 55.7, 39.0, 36.2. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₄BrNO₂Na 366.0100; found 366.0101.

3-(4-Methoxyphenyl)-2-(naphthalen-2-ylmethyl)-3-oxopropanenitrile (**3q**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2q** (139.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 12:1) as yellow solid (113.5 mg, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.9 Hz, 2H), 7.78 (dd, *J* = 8.5, 4.8 Hz, 3H), 7.71 (s, 1H), 7.51 – 7.41 (m, 2H), 7.37 (dd, *J* = 8.4, 1.6 Hz, 1H), 6.91 (d, *J* = 8.9 Hz, 2H), 4.57 (dd, *J* = 7.9, 4.8 Hz, 1H), 3.81 (s, 3H), 3.46 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.35 (dd, *J* = 14.0, 8.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 188.4, 164.7, 133.7, 133.5, 132.7, 131.4, 128.7, 128.0, 127.8, 127.7, 126.9, 126.4, 126.1, 117.5, 114.4, 114.0, 55.7, 41.4, 35.8. HRMS

(ESI, Xevo G2-XS Tof) m/z: $[M+Na]^+$ Calcd. for C₂₁H₁₇NO₂Na 338.1151; found 338.1151.

2-(Anthracen-9-ylmethyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3r**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2r** (114.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 7:1) as yellow liquid (84.0 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 8.22 (d, *J* = 8.7 Hz, 2H), 7.99 (d, *J* = 8.3 Hz, 2H), 7.73 (d, *J* = 8.7 Hz, 2H), 7.60 – 7.50 (m, 2H), 7.50 – 7.42 (m, 2H), 6.76 (d, *J* = 8.7 Hz, 2H), 4.76 (dd, *J* = 8.3, 6.5 Hz, 1H), 4.40 (dd, *J* = 14.8, 8.8 Hz, 1H), 4.28 (dd, *J* = 14.9, 6.2 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 164.6, 131.5, 131.2, 130.1, 129.5, 127.9, 127.8, 127.1, 126.7, 126.6, 125.2, 123.6, 114.1, 55.6, 39.7, 27.2. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₂₅H₁₉NO₂Na 388.1308; found 388.1321.

2-(Furan-2-ylmethyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (3s). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2s** (59.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as brown liquid (66.4 mg, 52% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 9.0 Hz, 2H), 7.36 (dd, *J* = 1.8, 0.7 Hz, 1H), 6.99 (d, *J* = 9.0 Hz, 2H), 6.31 (dd, *J* = 3.1, 1.9 Hz, 1H), 6.25 (d, *J* = 3.2 Hz, 1H), 4.66 (dd, *J* = 8.6, 6.1 Hz, 1H), 3.90 (s, 3H), 3.39 (dd, *J* = 15.3, 6.1 Hz, 1H), 3.32 (dd, *J* = 15.2, 8.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.8, 164.8, 149.6, 142.4, 131.4, 126.8, 117.1, 114.4, 110.7, 108.4, 55.7, 38.4, 28.3. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₃NO₃Na 278.0788; found 278.0796.

3-(4-Methoxyphenyl)-3-oxo-2-(thiophen-2-ylmethyl)propanenitrile (**3t**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2t** (67.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 7:1) as yellow liquid (109.9 mg, 81% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 8.9 Hz, 2H), 7.18 (dd, *J* = 5.1, 0.8 Hz, 1H), 6.99 – 6.94 (m, 3H), 6.93 (dd, *J* = 5.0, 3.5 Hz, 1H), 4.53 (dd, *J* = 8.1, 6.2 Hz, 1H), 3.86 (s, 3H), 3.55 (dd, *J* = 15.1, 6.1 Hz, 1H), 3.46 (dd, *J* = 15.0, 8.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 187.9, 164.8, 137.9, 131.4, 127.4, 127.2, 126.9, 125.2, 117.2, 114.4, 55.8, 41.4, 29.7. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₅H₁₃NO₂SNa 294.0559; found 294.0572.

2-(Benzo[b]thiophen-3-ylmethyl)-3-(4-methoxyphenyl)-3-oxopropanenitrile (**3u**). The compound was prepared according to the general procedure using *p*-anisaldehyde **1b** (121.5 μ L, 1.0 mmol), **2u** (92.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as red solid (65.9 mg, 41% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.6 Hz, 2H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.44 – 7.34 (m, 3H), 6.93 (d, *J* = 8.7 Hz, 2H), 4.60 (dd, *J* = 8.3, 6.2 Hz, 1H), 3.86 (s, 3H), 3.62 (dd, *J* = 14.8, 6.1 Hz, 1H), 3.49 (dd, *J* = 14.8, 8.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 188.1, 164.8, 140.5, 137.9, 131.3, 130.4, 127.0, 125.1, 124.7, 124.4, 123.2, 121.0, 117.4, 114.4, 55.7, 39.1, 28.3. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₉H₁₅NO₂SNa 344.0716, found 344.0718.

2-Benzyl-3-oxo-3-phenylpropanenitrile⁴ (**3v**). The compound was prepared according to the general procedure using benzaldehyde **1a** (101.6 μ L, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 15:1)

as faint yellow liquid (91.8 mg, 78% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 7.4 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.37 – 7.32 (m, 2H), 7.31 – 7.27 (m, 3H), 4.55 (dd, J = 8.9, 5.8 Hz, 1H), 3.36 (dd, J = 14.0, 5.7 Hz, 1H), 3.25 (dd, J = 14.0, 8.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 190.1, 135.9, 134.6, 134.1, 129.2, 129.1, 129.0, 128.9, 127.7, 117.1, 41.9, 35.5. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+H]⁺ Calcd. for C₁₆H₁₄NO 236.1070; found 236.1079.

2-Benzyl-3-oxo-3-(*p*-tolyl)**propanenitrile**² (**3w**). The compound was prepared according to the general procedure using *p*-tolualdehyde **1c** (118.0 µL, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 20:1) as yellow liquid (51.1 mg, 41% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 2H), 7.41 – 7.27 (m, 7H), 4.54 (dd, *J* = 8.9, 5.7 Hz, 1H), 3.37 (dd, *J* = 14.0, 5.5 Hz, 1H), 3.26 (dd, *J* = 13.8, 9.1 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 189.6, 145.9, 136.1, 131.6, 129.9, 129.1, 129.0, 128.9, 127.7, 117.2, 41.7, 35.6, 21.8. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₅NONa 272.1046; found 272.1057.

2-Benzyl-3-(4-(methylthio)phenyl)-3-oxopropanenitrile (**3x**). The compound was prepared according to the general procedure using 4-(methylthio)benzaldehyde **1d** (133.0 µL, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow liquid (102.7 mg, 73% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.5 Hz, 2H), 7.44 – 7.31 (m, 7H), 4.55 (dd, *J* = 8.8, 5.8 Hz, 1H), 3.39 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.28 (dd, *J* = 13.9, 8.9 Hz, 1H), 2.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 148.5, 136.1, 130.1, 129.2, 129.1, 128.9, 127.7, 125.1, 117.2, 41.6, 35.6, 14.6. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₅NOSNa 304.0767; found 304.0774.

2-Benzyl-3-oxo-3-(4-phenoxyphenyl)propanenitrile (**3y**). The compound was prepared according to the general procedure using 4-(benzyloxy)benzaldehyde **1e** (106.1 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as yellow liquid (157.0 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 9.0 Hz, 2H), 7.51 – 7.44 (m, 4H), 7.44 – 7.29 (m, 6H), 7.07 (d, *J* = 9.0 Hz, 2H), 5.18 (s, 2H), 4.52 (dd, *J* = 8.9, 5.8 Hz, 1H), 3.37 (dd, *J* = 14.0, 5.8 Hz, 1H), 3.26 (dd, *J* = 14.0, 8.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.4, 163.8, 136.2, 135.8, 131.4, 129.1, 128.9, 128.8, 128.5, 127.6, 127.6, 127.2, 117.4, 115.2, 70.4, 41.5, 35.7. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₂₃H₁₉NO₂Na 364.1308; found 364.1322.

2-Benzyl-3-(4-chlorophenyl)-3-oxopropanenitrile (3z). The compound was prepared according to the general procedure using 4-chlorobenzaldehyde **1f** (140.6 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as faint yellow solid (48.6 mg, 36% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.6 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.37 – 7.24 (m, 5H), 4.46 (dd, *J* = 8.7, 6.0 Hz, 1H), 3.35 (dd, *J* = 14.0, 5.9 Hz, 1H), 3.24 (dd, *J* = 14.0, 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.9, 141.3, 135.8, 132.4, 130.2, 129.5, 129.1, 129.0, 127.8, 116.8, 41.8, 35.4. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₆H₁₃ClNO 270.0680; found 270.0682.

2-Benzyl-3-(4-bromophenyl)-3-oxopropanenitrile (**3aa**). The compound was prepared according to the general procedure using 4-bromobenzaldehyde **1g** (185.0 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel

(PE/AcOEt 8:1) as faint yellow solid (62.8 mg, 40% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 7.41 – 7.19 (m, 5H), 4.45 (dd, J = 8.6, 6.0 Hz, 1H), 3.35 (dd, J = 14.0, 5.9 Hz, 1H), 3.24 (dd, J = 14.0, 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.2, 135.7, 132.8, 132.5, 130.2, 130.1, 129.1, 129.0, 127.8, 116.7, 41.8, 35.4. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₆H₁₃BrNO 314.0175; found 314.0179.

2-Benzyl-3-(3-methoxyphenyl)-3-oxopropanenitrile (**3ab**). The compound was prepared according to the general procedure using 3-methoxybenzaldehyde **1h** (136.2 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as yellow liquid (67.7 mg, 51% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 7.8 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.39 – 7.33 (m, 2H), 7.33 – 7.28 (m, 3H), 7.21 (dd, J = 8.0, 2.3 Hz, 1H), 4.56 (dd, J = 8.9, 5.8 Hz, 1H), 3.87 (s, 3H), 3.37 (dd, J = 14.0, 5.7 Hz, 1H), 3.25 (dd, J = 14.0, 8.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 160.2, 136.0, 135.4, 130.1, 129.1, 129.0, 127.70, 121.3, 121.2, 117.1, 113.1, 55.6, 42.0, 35.7. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₅NO₂Na 288.0995; found 288.1007.

2-Benzyl-3-(3-fluorophenyl)-3-oxopropanenitrile (**3ac**). The compound was prepared according to the general procedure using 3-fluorobenzaldehyde **1i** (124.1 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as white solid (49.4 mg, 39% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 7.7 Hz, 1H), 7.60 (d, J = 9.3 Hz, 1H), 7.42 – 7.24 (m, 6H), 7.20 (t, J = 8.0 Hz, 1H), 4.80 (t, J = 7.2 Hz, 1H), 3.08 (dd, J = 16.8, 6.7 Hz, 1H), 2.87 (dd, J = 16.8, 7.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 162.8 (d, J = 248.7 Hz), 137.1 (d, J = 6.4 Hz), 136.0, 130.4 (d, J = 7.6 Hz), 129.8, 128.7, 127.9, 124.8 (d, J = 2.9 Hz), 120.7 (d, J = 21.3 Hz), 118.1, 115.7 (d, J = 22.6 Hz), 50.7, 22.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.15 (s) ppm. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₆H₁₃FNO

254.0976; found 254.0975.

2-Benzyl-3-(3-chlorophenyl)-3-oxopropanenitrile (**3ad**). The compound was prepared according to the general procedure using 3-chlorobenzaldehyde **1j** (140.6 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as white solid (56.6 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 7.9 Hz, 1H), 7.39 – 7.24 (m, 5H), 4.47 (dd, J = 8.5, 6.1 Hz, 1H), 3.35 (dd, J = 14.0, 5.9 Hz, 1H), 3.25 (dd, J = 13.9, 8.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.0, 135.6, 135.6, 135.6, 134.5, 130.4, 129.0, 129.0, 128.9, 127.8, 126.8, 116.6, 41.9, 35.4. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₆H₁₃ClNO 270.0680; found 270.0683.

2-Benzyl-3-(3-iodophenyl)-3-oxopropanenitrile (**3ae**). The compound was prepared according to the general procedure using 3-iodobenzaldehyde **1k** (232.0 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as yellow solid (54.2 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.41 – 7.27 (m, 6H), 4.48 (dd, *J* = 8.5, 6.0 Hz, 1H), 3.38 (dd, *J* = 14.0, 6.0 Hz, 1H), 3.28 (dd, *J* = 14.0, 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 188.8, 143.3, 137.7, 135.8, 135.7, 130.7, 129.1, 129.0, 127.8, 127.8, 116.6, 94.8, 41.8, 35.5. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₆H₁₃INO 362.0036; found 362.0037.

2-Benzyl-3-oxo-3-(3-(trifluoromethyl)phenyl)propanenitrile (**3af**). The compound was prepared according to the general procedure using 3-(trifluoromethyl)benzalde-hyde **11** (174.1 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on

silica gel (PE/AcOEt 8:1) as white solid (81.9 mg, 54% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.05 (d, J = 7.7 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.43 – 7.24 (m, 5H), 4.86 (t, J = 7.1 Hz, 1H), 3.11 (dd, J = 16.8, 6.7 Hz, 1H), 2.90 (dd, J = 16.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 194.7, 135.7, 135.5, 132.1, 131.4 (q, J = 32.9 Hz), 130.0 (q, J = 3.6 Hz), 129.9, 129.4, 128.8, 127.9, 125.9 (q, J = 3.8 Hz), 123.5 (q, J = 273.0 Hz), 118.0, 50.7, 22.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.01 (s) ppm. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₇H₁₃F₃NO 304.0944; found 304.0946.

2-Benzyl-3-(3-fluoro-4-methoxyphenyl)-3-oxopropanenitrile (3ag). The compound prepared according to the general procedure using 3-fluoro-4was methoxybenzaldehyde 1m (154.1 mg, 1.0 mmol), 2a (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 7:1) as white solid (79.3 mg, 56% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.6 Hz, 1H), 7.68 (dd, J = 11.6, 2.1 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.30 – 7.22 (m, 3H), 7.01 (t, J = 8.3 Hz, 1H), 4.44 (dd, J = 8.7, 6.0 Hz, 1H), 3.96 (s, 3H), 3.33 (dd, J = 14.0, 5.9 Hz, 1H), 3.23 (dd, J = 14.0, 8.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.7, 153.3 (d, J = 16.3 Hz), 152.0 (d, J =222.8 Hz), 135.9, 129.1, 129.0, 127.7, 127.1 (d, *J* = 5.4 Hz), 126.5 (d, *J* = 3.3 Hz), 117.1, 116.4 (d, J = 19.3 Hz), 112.7, 56.5, 41.4, 35.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.61 (s) ppm. HRMS (ESI-quadrupole) m/z: $[M+H]^+$ Calcd. for C₁₇H₁₅FNO₂ 284.1081; found 284.1082.

2-Benzyl-3-(3-iodo-4-methoxyphenyl)-3-oxopropanenitrile (**3ah**). The compound was prepared according to the general procedure using 3-iodo-4-methoxybenzaldehyde **1n** (262.0 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 7:1) as white solid (90.0 mg, 46% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 2.2 Hz, 1H), 7.92 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.36 – 7.30 (m, 2H), 7.30 – 7.23 (m, 3H), 6.85 (d, *J* = 8.7 Hz, 1H), 4.44 (dd, *J* = 8.6, 6.0 Hz, 1H), 3.95 (s,

3H), 3.32 (dd, J = 14.0, 6.0 Hz, 1H), 3.22 (dd, J = 14.0, 8.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 162.9, 140.6, 135.9, 131.2, 129.1, 129.0, 128.6, 127.7, 117.1, 110.4, 86.6, 56.9, 41.4, 35.6. HRMS (ESI-quadrupole) m/z: [M+H]⁺ Calcd. for C₁₇H₁₅INO₂ 392.0142; found 392.0142.

2-Benzyl-3-(6-methoxynaphthalen-2-yl)-3-oxopropanenitrile (**3ai**). The compound was prepared according to the general procedure using 6-methoxynaphthalene-2-carbaldehyde **1o** (186.2 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 9:1) as white solid (140.4 mg, 89% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.95 (dd, J = 8.7, 1.6 Hz, 1H), 7.81 (d, J = 9.0 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.42 – 7.32 (m, 4H), 7.32 – 7.25 (m, 1H), 7.22 (dd, J = 9.0, 2.4 Hz, 1H), 7.14 (d, J = 2.2 Hz, 1H), 4.73 (dd, J = 8.8, 5.8 Hz, 1H), 3.94 (s, 3H), 3.41 (dd, J = 14.0, 5.8 Hz, 1H), 3.30 (dd, J = 14.0, 8.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 160.5, 138.0, 136.2, 131.5, 131.0, 129.3, 129.2, 128.9, 127.8, 127.7, 127.6, 124.6, 120.3, 117.6, 105.9, 55.6, 41.7, 35.8. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₂₁H₁₇NO₂Na 338.1151; found 338.1164.

2-Benzyl-3-(furan-2-yl)-3-oxopropanenitrile⁵ (**3aj**). The compound was prepared according to the general procedure using furfural **1p** (82.8 μ L, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 8:1) as red solid (65.3 mg, 58% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 1.0 Hz, 1H), 7.40 (d, *J* = 3.7 Hz, 1H), 7.38 – 7.25 (m, 5H), 6.63 (dd, *J* = 3.7, 1.6 Hz, 1H), 4.44 (dd, *J* = 8.8, 6.0 Hz, 1H), 3.36 (dd, *J* = 13.8, 6.0 Hz, 1H), 3.25 (dd, *J* = 13.8, 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 150.3, 148.0, 135.7, 129.1, 128.9, 127.7, 120.1, 116.6, 113.4, 42.1, 35.5. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₄H₁₁NO₂Na 248.0682; found 248.0693.

2-Benzyl-3-(9-ethyl-9*H***-carbazol-3-yl)-3-oxopropanenitrile (3ak)**. The compound was prepared according to the general procedure using 9-ethyl-9*H*-carbazole-3-carbaldehyde **1q** (223.3 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 7:1) as yellow liquid (125.1 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.10 (dd, *J* = 16.4, 8.2 Hz, 2H), 7.67 – 7.47 (m, 1H), 7.47 – 7.23 (m, 8H), 4.78 (dd, *J* = 8.6, 5.7 Hz, 1H), 4.29 (q, *J* = 8.6 Hz, 2H), 3.47 (dd, *J* = 13.9, 5.5 Hz, 1H), 3.36 (dd, *J* = 12.9, 9.8 Hz, 1H), 1.43 (t, *J* = 8.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 143.3, 140.7, 136.5, 129.2, 128.9, 127.6, 127.0, 126.8, 125.2, 123.1, 122.9, 122.5, 120.8, 120.5, 118.0, 109.3, 108.6, 41.7, 37.9, 35.9, 13.8. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₂₄H₂₀N₂ONa 375.1468; found 375.1476.

2-Benzyl-3-(imidazo[1,2-a]pyridin-3-yl)-3-oxopropanenitrile (**3al**). The compound was prepared according to the general procedure using imidazo[1,2-*a*]pyridine-3-carbaldehyde **1r** (146.1 mg, 1.0 mmol), **2a** (64.6 mg, 0.5 mmol) and NaOH (20.0 mg, 0.5 mmol) in 2 mL anhydrous DMSO. The crude product was purified by column chromatography on silica gel (PE/AcOEt 10:1) as faint yellow solid (110.1 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.56 (d, *J* = 6.9 Hz, 1H), 8.39 (s, 1H), 7.79 (d, *J* = 8.9 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.35 – 7.26 (m, 4H), 7.26 – 7.21 (m, 1H), 7.17 (t, *J* = 6.9 Hz, 1H), 4.43 (dd, *J* = 8.3, 6.7 Hz, 1H), 3.41 (dd, *J* = 13.8, 6.7 Hz, 1H), 3.34 (dd, *J* = 13.8, 8.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 149.7, 144.4, 135.8, 130.6, 129.0, 128.9, 127.7, 121.9, 118.0, 117.4, 116.1, 42.7, 36.5. HRMS (ESI, Xevo G2-XS Tof) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₃N₃ONa 298.0951; found 298.0958.

3. Gram-scale synthesis

To an oven-dried 50 mL round-bottom flask equipped with a stir bar was added *p*anisaldehyde **1b** (0.60 mL, 10 mmol), cinnamonitrile **2a** (0.65 g, 5 mmol), NaOH (200.0 mg, 5 mmol) and 10 mL anhydrous DMSO. The round-bottom flask was sealed with a septum, evacuated and refilled with argon three times. Then the mixture was stirred at room temperature for 12 h. The mixture was added 50 mL H₂O and extracted with ethyl acetate (3 x 60 mL). The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel chromatography (PE/AcOEt 12:1) as yellow solid **3a** (1.06 g, 80%).

4. Synthetic applications

Water (0.4 mL) was added dropwise into the mixture of IBX (80.3 mg, 0.8 mmol) and DMSO (1.6 mL). Then, the resulting solution was added to 2-benzyl-3-(4-methoxyphenyl)-3-oxopropanenitrile **3a** (132.7 mg, 0.5 mmol) and the mixture was stirred at room temperature for 12 h. Then, the mixture was added water (4 mL) and extracted with ethyl acetate (3 x 15 mL). The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel column chromatography (PE/AcOEt 12:1) to afford the desired product **4**⁶ (114.5 mg, 87%) as a brown oil. ¹H NMR (600 MHz, CDCl₃) δ 8.08 – 8.03 (m, 3H), 7.98 (d, *J* = 8.9 Hz, 2H), 7.59 (t, *J* = 7.3 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.03 (d, *J* = 8.9 Hz, 2H), 3.92 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 187.2, 164.1, 154.9, 133.2, 132.1, 132.0, 130.9, 129.3, 128.3, 117.3, 114.0, 110.2, 55.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₁₇H₁₃NO₂Na 286.0838; found 286.0851.

Water (0.4 mL) was added dropwise into the mixture of IBX (80.3 mg, 0.8 mmol) and DMSO (1.6 mL). Then, the resulting solution was added to a solution of 2-benzyl-3-(4-methoxyphenyl)-3-oxopropanenitrile **3a** (132.7 mg, 0.5 mmol) in ethyl vinyl ether (239.4 μ L, 2.5 mmol), and the mixture was stirred at room temperature for 12 h. Following, the mixture was added water (4 mL) and extracted with ethyl acetate (3 x 15 mL). The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel gel column chromatography (PE/AcOEt 10:1) to afford the desired product **5** (87.2 mg, 52%) as a faint yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, *J* = 8.9 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.34 – 7.27 (m, 3H), 6.94 (d, *J* = 8.9 Hz, 2H), 5.29 (dd, *J* = 8.7, 1.8 Hz, 1H), 4.16 – 4.04 (m, 1H), 3.90 – 3.85 (m, 1H), 3.84 (s, 3H), 3.79 – 3.63 (m, 1H), 2.48 – 2.35 (m, 1H), 2.12 – 2.05 (m, 1H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.8, 161.7, 141.2, 129.9, 128.9, 127.8, 127.6, 125.3, 119.9, 113.8, 101.3, 86.6, 65.3, 55.5, 40.7, 36.7, 15.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd. for C₂₁H₂₁NO₃Na 358.1414; found 358.1426.

A 25 mL sealed tube was charged with NH₂OH·HCl (104.3 mg, 1.5 mmol), NaOAc (123.0 mg, 1.5 mmol), 2-benzyl-3-(4-methoxyphenyl)-3-oxopropanenitrile **3a** (132.7 mg, 0.5 mmol) and MeOH (2 mL) at 50 °C for 12 h. Then the mixture was quenched with water and extracted with ethyl acetate (3 x 15 mL). The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel column chromatography (PE/AcOEt 1:1) to afford the desired product **6** (116.3 mg, 83%) as a brown oil. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.8 Hz, 2H), 7.29 (t, *J* = 7.4 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H),

7.18 (d, J = 7.3 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.34 (s, 2H), 3.79 (s, 3H), 3.71 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 163.6, 160.5, 138.9, 129.4, 128.8, 128.1, 126.6, 122.3, 114.2, 89.0, 55.3, 27.9. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₇N₂O₂ 281.1285; found 281.1294.

A 25 mL sealed tube was charged with NH₂NH₂·H₂O (55.1 mg, 1.1 mmol), AcOH (114.5 μ L, 2.0 mmol), 2-benzyl-3-(4-methoxyphenyl)-3-oxopropanenitrile **3a** (132.7 mg, 0.5 mmol) and EtOH (1.5 mL) and the mixture was heated to reflux overnight. The mixture was evaporated to move violate and adjusted to Ph 8 with a saturated NaHCO₃ solution. Then, the mixture was extracted with ethyl acetate (3 x 50 mL). The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel column chromatography (PE/AcOEt 9:1) to afford the desired product **7** (90.8 mg, 65%) as a faint yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 7.35 (d, *J* = 8.8 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.22 – 7.17 (m, 3H), 6.88 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 2H), 3.78 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 153.8, 142.6, 140.2, 128.8, 128.7, 128.1, 126.3, 123.3, 114.4, 101.5, 55.3, 28.6. HRMS (ESI) m/z: [M+H]⁺ Calcd. for C₁₇H₁₈N₃O 280.1444; found 280.1454.

5. Mechanism studies

5.1 NMR titration experiments

Figure S1. ¹H NMR Spectroscopy Experiments of *p*-Anisaldehydes 1b

¹H NMR spectra experiments were conducted on a Bruker 500 MHz spectrometer in DMSO- d_6 (0.1 M) at room temperature. DMSO- d_6 ($\delta = 2.500$ ppm) was used as internal standard. The total volume of the mixture was 1 mL. ¹H NMR spectra experiments were conducted on a Bruker 500 MHz spectrometer (Figure S1). The aryl C-H signal in the ¹H NMR spectrum of **1b**, when present in the mixture containing both benzaldehyde **1b** and cinnamonitriles **2a**, exhibited a migration phenomenon compared to the individual. The result indicated that there has an interaction force between **1b** and **2a** speculated to be π -- π interaction. It was noteworthy that when NaOH was necessary, the substrates (**1b** and/or **2a**), NaOH, and DMSO- d_6 were added into the reaction bottle and stirred at 20 °C for 15 minutes under N₂ atmosphere, preceding the execution of nuclear magnetic titration experiments.

Figure S2. ¹H NMR Spectroscopy Experiments of Cinnamonitriles 2a

¹H NMR spectra experiments were conducted on a Bruker 500 MHz spectrometer in DMSO- d_6 (0.1 M) at room temperature. DMSO- d_6 ($\delta = 2.500$ ppm) was used as internal standard. The total volume of the mixture was 1 mL. ¹H NMR spectra experiments were conducted on a Bruker 500 MHz spectrometer. The ¹H NMR signal of cinnamonitriles **2a** on α C-H of cyanogroup (CH-CN) was exhibited distinctly migration compared with the mixture of benzaldehyde **1b** and cinnamonitriles **2a** (Figure S2a). Furthermore, when NaOH was added to the mixture (**1b** and **2a**), the α C-H signal of CH-CN was slightly shift to downfield (Figure S2b). We speculate that sodium ion may act as a chelating bridge with CN group. It was noteworthy that when NaOH was necessary, the substrates (**1b** and/or **2a**), NaOH, and DMSO- d_6 were added into the reaction bottle and stirred at 20 °C for 15 minutes under N₂ atmosphere, preceding the execution of nuclear magnetic titration experiments.

In a word, the NMR titration experiments have showed that there have π -- π interaction between 1b and 2a and a coordination bond forces of sodium cation with CN of 2a under the standard reaction conditions in the mixture (1b, 2a, and NaOH).

Under standard reaction conditions, different kinds of cation trapping agents, 15crown-5 and 18-crown-6, were added to the reaction system and the yield of **3a** was decreased significantly compared to without trapping agents. When sodium ions trapping reagents (15-Crow-5) were added to the reaction, the yield of **3a** was distinctly decrease to 31%. The reaction in the presence of 18-crown-6, potassium ions trapping agents, resulted **3a** in 47% yields. The result indicated the contribution of sodium ions in reaction system. We speculated that sodium ions may play an indispensable bridging role in the formation of activated intermediate.

5.3 UV/vis studies

Figure S3. UV/vis Absorption Spectra of Individual Reaction Components and The Mixture. All spectra experiments were measured in DMSO and with a concentration of 10^{-3} M. The visual appearance of substrates and mixtures was placed in the picture (10^{-2} M in DMSO)

UV-vis absorption spectra were measured in a 1 cm quartz cuvette using a cary series UV-Vis-NIR spectrophotometer from Agilent Technologies. As shown in Figure S3, the mixture of **1b**, **2a** and NaOH in DMSO (10^{-3} M) exhibits a bathochromic shift compared to the individual reaction components (purple band). The mixture solution visual appearance was changed to distinct brown. These phenomena have indicated the formation of a mutual interacted electron donor-acceptor (EDA) complex between **1b**, **2a** and NaOH. (Tip: when NaOH was used, the mixture should be stirred at 20 °C for 15 minutes under N₂ atmosphere prior to conducting spectra experiments.)

5.4 Radical trapping experiments

The reaction was conducted under standard reaction conditions and a series of different molar quantities of TEMPO were added to the reaction system. Significantly, as the amount of TEMPO was increase, the yield of **3a** was decrease rapidly. Furthermore, The TEMPO-aldehyde and -OH adducted products were detected by HRMS, TEMPO-aldehyde: HRMS (ESI, Xevo G2-XS Tof) m/z: $[M+H]^+$ Calcd. for C₁₇H₂₆NO₃ 292.1907; found 292.1906, TEMPO-OH: HRMS (ESI-quadrupole) m/z: $[M+H]^+$ Calcd. for C₉H₂₀NO₂ 174.1489; found 174.1488. In conclusion, these phenomena indicated that the reaction was conducted in a free radical mechanism model under standard reaction conditions. The yield was determined by ¹H NMR using mesitylene as an internal standard.

The reaction was conducted under standard reaction conditions and BHT (220.4 mg, 1.0 mmol) was added to the reaction system. The yield was determined by ¹H NMR using mesitylene as an internal standard. BHT capture products **9** was detected by HRMS, HRMS (ESI, Xevo G2-XS Tof) m/z: $[M+Na]^+$ Calcd for C₂₄H₃₁NONa 372.2298; found 372.2296.

6. Computational details

All the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were done with GAUSSIAN 16⁷. Geometry optimization was performed using density functional of M06-2X⁸ in combination with basis set of def2-SVP.⁹ Frequency analysis was performed at the same level to confirm that we have obtained stable structures in the potential energy surfaces. All vibrational modes are

positive. When the solvent effect (in dimethyl sulfoxide) was applicable, it was accounted for using the solvation model based in the density (SMD) model.¹⁰

Scheme S2. The optimized geometry of the ground state (S0) and the triplet state (T1) of Int 1' and Int 1.

Scheme S3. The frontier molecular orbitals of S0 and T1 of Int 1

To better understand the reaction mechanism, DFT calculations at the SMD^{DMSO}-M06-2X/def2-SVP level were performed (Scheme S4). The process initiates with the formation of the EDA complex **Int 1** at 5.5 kcal mol⁻¹ relative to the reactants. Upon thermal excitation at room temperature, as consistent with experimental conditions, a single electron transfer (SET) generates the high-energy radical anionic species **Int 1*** at 22.9 kcal mol⁻¹. The subsequent elimination of water furnishes the key radical intermediate **Int 2**, which is nearly thermoneutral (0.1 kcal mol⁻¹).

The radical Int 2 then undergoes radical cross-coupling via two potential transition states. Among then, TS-A, which involves the coupling site at the α C, is identified as

the productive pathway with a barrier of only 0.8 kcal mol⁻¹. In contrast, **TS-B**, where the coupling site the β C, exhibits a slightly higher barrier (2.2 kcal mol⁻¹) and is thus disfavored. This computational observation aligns well with the experimental results, where the cross-coupling is selectively achieved via the lower-energy **TS-A** pathway.

Finally, the system proceeds to sodium salt intermediate **3'** ($-16.3 \text{ kcal mol}^{-1}$) and subsequent protonation leads to the target product **3** ($-8.4 \text{ kcal mol}^{-1}$), completing the reaction. Overall, the computational data support a thermally induced radical generation step and a regioselective cross-coupling via **TS-A**.

Scheme S4. The potential energy surface of the proposed mechanism

Scheme S5. Spin density plot of single-electron reductive 2a

Cartesian Coordinates

Int 1	'-S 0		
Zero-	point correction=		0.309090 (Hartree/Particle)
The	rmal correction to Ene	rgy=	0.335800
The	rmal correction to Entl	halpy=	0.336745
The	rmal correction to Gib	bs Free Energy=	0.249575
Sum	of electronic and zero	o-point Energies=	-1744.890174
Sum	of electronic and ther	mal Energies=	-1744.863463
Sum	of electronic and ther	mal Enthalpies=	-1744.862519
Sum	of electronic and ther	mal Free Energies=	-1744.949688
6	-5.275328000	-0.470594000	-0.970241000
6	-5.437971000	-1.303215000	0.141672000
6	-4.511369000	-1.263978000	1.184158000
6	-3.424805000	-0.394226000	1.112637000
6	-3.249630000	0.442899000	-0.001746000
6	-4.189666000	0.396497000	-1.044545000
6	-2.064698000	1.305238000	-0.004560000
6	-1.671107000	2.115189000	-1.008456000
11	1.442559000	1.488144000	0.879541000
8	0.939433000	-0.030745000	-0.676923000
8	-0.130229000	1.101748000	2.232846000
6	5.543222000	-0.836295000	0.437046000
16	3.792352000	-0.549239000	0.135991000
6	3.873915000	-0.347138000	-1.648637000
8	3.544294000	0.851771000	0.704352000
6	-0.440386000	2.824496000	-0.837748000

7	0.570507000	3.360020000	-0.654465000
1	-6.001959000	-0.500846000	-1.784078000
1	-6.290941000	-1.982393000	0.193218000
1	-4.636615000	-1.911233000	2.053915000
1	-2.686604000	-0.347836000	1.918327000
1	-4.072235000	1.041282000	-1.917905000
1	-1.417597000	1.247988000	0.903507000
1	-2.198639000	2.251071000	-1.955400000
1	5.674520000	-0.897385000	1.524822000
1	5.841770000	-1.783555000	-0.031779000
1	6.112191000	0.009273000	0.028182000
1	2.852906000	-0.105038000	-1.967168000
1	4.210086000	-1.290418000	-2.101332000
1	4.571747000	0.471428000	-1.872015000
16	-0.036082000	-1.200376000	-0.483037000
6	0.790333000	-2.595003000	-1.267173000
1	0.214169000	-3.510001000	-1.073101000
1	0.822618000	-2.391922000	-2.345422000
1	1.805563000	-2.672282000	-0.854316000
6	0.134955000	-1.701980000	1.233705000
1	1.162115000	-2.059392000	1.397411000
1	-0.068503000	-0.775604000	1.819831000
1	-0.594336000	-2.498829000	1.439031000
1	-0.555050000	1.396293000	3.044452000

Int 1'-T1

Zero-point correction=		0.304556 (Hartree/Particle)	
Thermal correction to Energy=		0.331758	
Thermal correction to Enthalpy=		0.332702	
The	rmal correction to Gibl	os Free Energy=	0.244477
Sun	n of electronic and zero	-point Energies=	-1744.805094
Sun	n of electronic and ther	mal Energies=	-1744.777892
Sun	n of electronic and ther	mal Enthalpies=	-1744.776948
Sum of electronic and thermal Free Energies=		-1744.865173	
6	-3.993582000	-0.775616000	-1.459977000
6	-4.320326000	-1.619325000	-0.391330000
6	-3.905072000	-1.290218000	0.905658000
6	-3.168251000	-0.137560000	1.132705000
6	-2.834544000	0.734203000	0.061409000
6	-3.266964000	0.387899000	-1.244280000
6	-2.074948000	1.900526000	0.351584000
6	-1.597120000	2.848502000	-0.653714000
11	1.018574000	1.104012000	0.968378000
8	0.325409000	-0.377627000	-0.543569000
8	-0.408652000	1.231170000	2.525273000
6	5.241771000	-0.751043000	-0.165882000
16	3.443807000	-0.708163000	-0.129948000
6	3.165137000	-0.183766000	-1.826857000
8	3.117768000	0.501238000	0.751617000
6	-0.241833000	2.805363000	-1.019909000
7	0.904378000	2.738566000	-1.224010000
1	-4.315162000	-1.032249000	-2.471488000
1	-4.895588000	-2.529575000	-0.569204000
1	-4.152807000	-1.949932000	1.740123000
1	-2.795885000	0.120348000	2.127161000
1	-3.017040000	1.043315000	-2.082604000
1	-1.650239000	1.966314000	1.382539000
1	-2.195552000	3.688536000	-1.022677000
1	5.574948000	-0.972204000	0.855997000
1	5.573224000	-1.543195000	-0.850461000

1	5.607276000	0.233923000	-0.485723000
1	2.077191000	-0.097666000	-1.939411000
1	3.567400000	-0.950705000	-2.503342000
1	3.666727000	0.782200000	-1.977085000
16	-0.518874000	-1.599148000	-0.146639000
6	0.452920000	-3.006177000	-0.711074000
1	-0.007213000	-3.932553000	-0.340681000
1	0.435660000	-2.991750000	-1.808702000
1	1.479781000	-2.893854000	-0.338375000
6	-0.261457000	-1.781393000	1.625391000
1	0.792224000	-2.042546000	1.805223000
1	-0.496674000	-0.792315000	2.074163000
1	-0.926389000	-2.571526000	2.002690000
1	-0.454516000	1.327804000	3.481630000

Int 1-S0

Zero-po	oint correction=		0.421861 (Hartree/Particle))
Thermal correction to Energy=		0.456529		
Thermal correction to Enthalpy=		0.457473		
Thern	nal correction to Gibb	os Free Energy=	0.352059	
Sum o	of electronic and zero	-point Energies=	-2089.969413	
Sum o	of electronic and them	mal Energies=	-2089.934745	
Sum o	of electronic and them	nal Enthalpies=	-2089.933801	
Sum o	of electronic and them	mal Free Energies=	-2090.039216	
6	5.391329000	0.667378000	-1.028330000	
6	5.410697000	1.748482000	-0.140545000	
6	4.213805000	2.338071000	0.263273000	

6	3.000389000	1.845659000	-0.216374000
6	2.967804000	0.755895000	-1.099692000
6	4.182335000	0.172525000	-1.503609000
6	1.661337000	0.260693000	-1.544338000
6	1.462674000	-0.815456000	-2.331249000
11	-2.386503000	-0.776520000	-1.100284000
8	-4.544223000	-0.374059000	-0.887184000
6	4.037979000	-1.088398000	1.965411000
6	3.306922000	-0.192167000	2.754605000
6	1.912051000	-0.166645000	2.691244000
6	1.237606000	-1.040610000	1.836525000
6	1.972587000	-1.937995000	1.052718000
6	3.371413000	-1.963755000	1.112779000
6	1.224790000	-2.835328000	0.136823000
8	1.742994000	-3.664985000	-0.575576000
6	-0.965178000	3.712511000	-0.420285000
16	-1.882519000	2.194916000	-0.127182000
6	-0.980657000	1.587777000	1.302584000
8	-1.480008000	1.265791000	-1.282646000
8	-1.761642000	-1.393552000	0.854647000
6	0.133722000	-1.236127000	-2.646108000
7	-0.943959000	-1.589098000	-2.877808000
1	6.327689000	0.207327000	-1.348385000
1	6.362617000	2.130990000	0.232094000
1	4.222921000	3.183632000	0.953013000
1	2.059914000	2.307059000	0.094442000
1	4.184747000	-0.674356000	-2.192254000
1	0.777760000	0.811406000	-1.197561000
1	2.267687000	-1.438967000	-2.725743000
1	0.120670000	-2.671811000	0.155842000
1	5.128556000	-1.095733000	2.017704000
1	3.833852000	0.495194000	3.419927000
1	1.350741000	0.539313000	3.307546000
1	0.141943000	-1.053694000	1.735752000

1	3.918666000	-2.668102000	0.482326000
1	-1.374290000	4.168523000	-1.330597000
1	-1.106874000	4.385817000	0.436111000
1	0.095586000	3.459861000	-0.555487000
1	-1.268026000	0.522314000	1.387672000
1	-1.279879000	2.167393000	2.187616000
1	0.097011000	1.689095000	1.111582000
16	-5.244716000	-0.734370000	0.428301000
6	-6.739176000	0.266449000	0.426106000
1	-7.257278000	0.145108000	1.386957000
1	-6.454948000	1.313564000	0.255592000
1	-7.372041000	-0.099535000	-0.392377000
6	-4.335968000	0.125825000	1.718631000
1	-3.336371000	-0.349571000	1.698462000
1	-4.292117000	1.193490000	1.460081000
1	-4.845522000	-0.032033000	2.679684000
1	-1.863736000	-2.233907000	1.314933000

Int 1-T1

Zero-point correction=	0.415232 (Hartree/Particle)
Thermal correction to Energy=	0.448407
Thermal correction to Enthalpy=	0.449351
Thermal correction to Gibbs Free Energy=	0.348167
Sum of electronic and zero-point Energies=	-2089.890041
Sum of electronic and thermal Energies=	-2089.856866
Sum of electronic and thermal Enthalpies=	-2089.855922
Sum of electronic and thermal Free Energies=	-2089.957107

6	-5.532226000	-0.773381000	-0.983313000
6	-5.618173000	-1.907737000	-0.159145000
6	-4.437417000	-2.540386000	0.284571000
6	-3.204263000	-2.051108000	-0.078405000
6	-3.081344000	-0.878384000	-0.912531000
6	-4.306259000	-0.259608000	-1.358127000
6	-1.822018000	-0.393218000	-1.217504000
6	-1.593175000	0.843588000	-2.000147000
11	2.337050000	0.660786000	-0.954374000
8	4.522972000	0.365810000	-1.026125000
6	-3.944352000	1.635443000	1.482535000
6	-3.434418000	0.594647000	2.269796000
6	-2.056643000	0.389564000	2.366598000
6	-1.177242000	1.220458000	1.669260000
6	-1.692185000	2.263770000	0.889016000
6	-3.074394000	2.473450000	0.792727000
6	-0.731994000	3.135780000	0.165466000
8	-1.054456000	4.078585000	-0.520224000
6	0.795885000	-3.797792000	-0.290310000
16	1.737716000	-2.304606000	0.049123000
6	0.833763000	-1.715010000	1.484208000
8	1.366761000	-1.346192000	-1.092642000
8	1.914952000	1.152068000	1.083424000
6	-0.301635000	1.223440000	-2.358716000
7	0.793385000	1.538502000	-2.616275000
1	-6.446492000	-0.288306000	-1.330340000
1	-6.592758000	-2.300012000	0.133704000
1	-4.504135000	-3.423755000	0.922225000
1	-2.287840000	-2.534993000	0.267899000
1	-4.267704000	0.624706000	-1.994708000
1	-0.926755000	-0.922204000	-0.880149000
1	-2.406536000	1.504163000	-2.303554000
1	0.334922000	2.841919000	0.309644000
1	-5.023402000	1.785096000	1.411599000

1	-4.121864000	-0.060374000	2.809655000
1	-1.669101000	-0.425038000	2.982794000
1	-0.083902000	1.088982000	1.688509000
1	-3.447177000	3.292681000	0.173939000
1	1.203825000	-4.236282000	-1.209729000
1	0.918102000	-4.497041000	0.547984000
1	-0.259181000	-3.523300000	-0.427388000
1	1.186486000	-0.673397000	1.621378000
1	1.083736000	-2.350866000	2.345549000
1	-0.243184000	-1.754901000	1.265172000
16	5.328379000	0.609263000	0.255361000
6	6.856037000	-0.305970000	0.001704000
1	7.459938000	-0.265188000	0.918282000
1	6.600975000	-1.341130000	-0.262248000
1	7.389740000	0.182308000	-0.823492000
6	4.583248000	-0.438905000	1.511331000
1	3.570628000	-0.013595000	1.644786000
1	4.551566000	-1.470185000	1.132719000
1	5.179120000	-0.368770000	2.432336000
1	2.113220000	1.902784000	1.654173000

1

Thermodynamic Data (given by Hartree):

Zero-point correction: 0.111049

Thermal correction to Energy: 0.117325

Thermal correction to Enthalpy: 0.118269

Thermal correction to Gibbs Free Energy: 0.080502

Sum of electronic and zero-point Energies: -345.066146

Sum of electronic and thermal Energies: -345.059870

Sum of electronic and thermal Enthalpies: -345.058926

Sum of electronic and thermal Free Energies: -345.096693

Optimized Coordinates:

С	-1.326737	-1.329527	0.000122
С	-2.212844	-0.246904	-0.000222
С	-1.730015	1.062675	-0.000307
С	-0.354882	1.292180	0.000052
---	-----------	-----------	-----------
С	0.532262	0.211329	0.000322
С	0.045476	-1.102294	0.000355
С	1.993737	0.467776	0.000443
0	2.834111	-0.397819	-0.000792
Η	2.278413	1.545802	0.001759
Η	-1.713274	-2.350040	0.000250
Η	-3.289349	-0.428233	-0.000400
Η	-2.426304	1.902721	-0.000470
Η	0.039160	2.311682	0.000032
Η	0.756482	-1.930794	0.000573
2			

Thermodynamic Data (given by Hartree): Zero-point correction: 0.134038 Thermal correction to Energy: 0.142333 Thermal correction to Enthalpy: 0.143277 Thermal correction to Gibbs Free Energy: 0.100202 Sum of electronic and zero-point Energies: -401.300282 Sum of electronic and thermal Energies: -401.291987 Sum of electronic and thermal Enthalpies: -401.291042 Sum of electronic and thermal Free Energies: -401.334118 Optimized Coordinates:

С	-2.278071	1.295712	0.000005
С	-3.140649	0.195032	0.000017
С	-2.617900	-1.097660	-0.000001
С	-1.237481	-1.289038	-0.000010
С	-0.362389	-0.191743	-0.000012
С	-0.900500	1.107038	-0.000008
С	1.080860	-0.453670	0.000006
С	2.051726	0.478810	-0.000006
С	3.432764	0.103169	0.000027
Ν	4.552573	-0.186144	-0.000004
Η	-2.685092	2.308202	-0.000007
Н	-4.221157	0.348987	0.000043

Η	-3.286346	-1.960159	-0.000006
Η	-0.824014	-2.299989	-0.000043
Η	-0.240874	1.976589	-0.000030
Η	1.370350	-1.508739	0.000025
Η	1.848966	1.552212	-0.000064

3

Thermodynamic Data (given by Hartree): Zero-point correction: 0.249320 Thermal correction to Energy: 0.264380 Thermal correction to Enthalpy: 0.265325 Thermal correction to Gibbs Free Energy: 0.204565 Sum of electronic and zero-point Energies: -746.399470 Sum of electronic and thermal Energies: -746.384409 Sum of electronic and thermal Enthalpies: -746.383465 Sum of electronic and thermal Free Energies: -746.444224 Optimized Coordinates:

С	3.899984	0.332588	0.301232
С	3.617630	1.664627	-0.009461
С	2.429067	1.984852	-0.664895
С	1.524836	0.977390	-1.006130
С	1.800014	-0.360203	-0.699491
С	2.995842	-0.671824	-0.040205
С	0.800202	-1.443225	-1.022639
С	0.059471	-1.914743	0.256311
С	-0.471685	-0.731311	1.092659
С	-1.472217	0.213543	0.505802
0	-0.000366	-0.547498	2.187919
С	-2.221000	-0.068292	-0.644690
С	-3.118904	0.876292	-1.140744
С	-3.266923	2.106578	-0.500618
С	-2.523023	2.392905	0.646920
С	-1.634532	1.449073	1.149939
С	-0.976896	-2.902173	-0.053871
Ν	-1.786078	-3.683896	-0.309269

Η	4.830512	0.075355	0.810708
Η	4.325588	2.451319	0.257407
Η	2.203070	3.023303	-0.913993
Η	0.593212	1.229403	-1.519847
Η	3.220021	-1.713851	0.202799
Η	1.304799	-2.321008	-1.450492
Η	0.779531	-2.418486	0.917424
Η	-2.128590	-1.023830	-1.161585
Η	-3.703859	0.648050	-2.032817
Η	-3.965293	2.845904	-0.896877
Η	-2.637360	3.355452	1.147866
Η	-1.044206	1.657210	2.043331
Η	0.076855	-1.078008	-1.763098
3,			

³

Thermodynamic Data (given by Hartree): Zero-point correction: 0.397489 Thermal correction to Energy: 0.428797 Thermal correction to Enthalpy: 0.429741 Thermal correction to Gibbs Free Energy: 0.331932 Sum of electronic and zero-point Energies: -2013.639927 Sum of electronic and thermal Energies: -2013.608619 Sum of electronic and thermal Enthalpies: -2013.607675 Sum of electronic and thermal Free Energies: -2013.705484 Optimized Coordinates:

С	-5.262404	0.204319	-0.532978
С	-5.422064	0.954540	-1.698429
С	-4.337306	1.740729	-2.125359
С	-3.144361	1.763779	-1.423476
С	-2.942531	0.992887	-0.232490
С	-4.068077	0.220198	0.188465
С	-1.690427	0.992226	0.437485
С	-1.577178	0.375143	1.812634
С	-1.733131	-1.171690	1.906516
С	-1.001464	-2.029501	0.910236

0	-2.377601	-1.662639	2.797827
С	-1.445192	-2.154393	-0.414817
С	-0.777750	-3.012292	-1.289558
С	0.333349	-3.736864	-0.853356
С	0.775574	-3.610275	0.461712
С	0.107470	-2.761829	1.346928
Na	0.253965	0.024986	-0.910383
С	-0.229116	0.637485	2.332240
Ν	0.854678	0.809549	2.692739
Η	-6.090560	-0.407652	-0.164632
Η	-6.358621	0.937312	-2.257249
Η	-4.432204	2.348663	-3.029386
Η	-2.318054	2.383387	-1.785854
Η	-4.010040	-0.370789	1.105624
Η	-1.038445	1.853722	0.263784
Η	-2.296213	0.748753	2.572184
Η	-2.325472	-1.599354	-0.747529
Η	-1.129061	-3.113504	-2.317907
Η	0.857449	-4.398743	-1.544843
Η	1.643882	-4.175474	0.805740
Н	0.448594	-2.663918	2.380357
S	1.700432	2.932928	0.429147
С	3.232410	2.779430	1.357953
Η	4.025010	2.473486	0.661315
Η	3.463275	3.746681	1.824815
Η	3.064100	2.019756	2.130882
С	2.233179	4.202266	-0.727614
Η	2.411321	5.138026	-0.180957
Η	3.142778	3.854583	-1.235324
Η	1.416328	4.337663	-1.447979
0	1.625668	1.657055	-0.418966
S	3.406148	-0.606956	-1.195631
С	3.372121	-0.789932	0.595579
Η	3.088481	-1.822202	0.841874

Η	4.366235	-0.547545	0.997274
Н	2.627226	-0.074468	0.965583
С	4.420731	-2.048044	-1.562125
Н	5.423488	-1.903318	-1.137508
Н	3.931971	-2.936305	-1.139293
Н	4.483151	-2.126707	-2.654943
0	2.009527	-1.012962	-1.680677

H₂O

Thermodynamic Data (given by Hartree): Zero-point correction: 0.021310 Thermal correction to Energy: 0.024146 Thermal correction to Enthalpy: 0.025090 Thermal correction to Gibbs Free Energy: 0.003649 Sum of electronic and zero-point Energies: -76.309185 Sum of electronic and thermal Energies: -76.306350 Sum of electronic and thermal Enthalpies: -76.305406 Sum of electronic and thermal Free Energies: -76.326846 Optimized Coordinates:

0.000000	0.000000	0.120541
0.000000	0.754342	-0.482165
0.000000	-0.754342	-0.482165
	0.000000 0.000000 0.000000	0.0000000.0000000.0000000.7543420.000000-0.754342

NaOH_2DMSO

Thermodynamic Data (given by Hartree): Zero-point correction: 0.174619 Thermal correction to Energy: 0.191141 Thermal correction to Enthalpy: 0.192085 Thermal correction to Gibbs Free Energy: 0.129007 Sum of electronic and zero-point Energies: -1343.572081 Sum of electronic and thermal Energies: -1343.55559 Sum of electronic and thermal Enthalpies: -1343.554615 Sum of electronic and thermal Free Energies: -1343.617693 Optimized Coordinates:

Na	0.085466	1.469642	0.000955
S	-2.982289	0.103450	-0.001711

С	-2.390650	-0.932409	-1.351324
Н	-1.318032	-1.119921	-1.195096
Н	-2.970389	-1.865773	-1.357772
Н	-2.571785	-0.374612	-2.279178
С	-2.391784	-0.916032	1.360834
Н	-2.971823	-1.849055	1.378347
Н	-1.319163	-1.106104	1.207721
Н	-2.573386	-0.346801	2.281644
0	-2.087249	1.346506	-0.008770
S	1.981720	-1.247320	0.000546
С	2.790843	-0.375479	-1.351946
Η	2.673165	0.705459	-1.121282
Η	3.843044	-0.692071	-1.388547
Η	2.278395	-0.678570	-2.274590
С	2.800239	-0.375165	1.347108
Η	3.852947	-0.690843	1.375803
Η	2.679887	0.705649	1.117179
Η	2.294852	-0.678764	2.273474
0	0.532640	-0.718545	0.005608
0	2.014920	2.218365	-0.001612
Н	2.636886	2.951158	0.000599

Int1

Thermodynamic Data (given by Hartree): Zero-point correction: 0.421861 Thermal correction to Energy: 0.456529 Thermal correction to Enthalpy: 0.457473 Thermal correction to Gibbs Free Energy: 0.352059 Sum of electronic and zero-point Energies: -2089.969413 Sum of electronic and thermal Energies: -2089.934745 Sum of electronic and thermal Enthalpies: -2089.933801 Sum of electronic and thermal Free Energies: -2090.039216 Optimized Coordinates:

С	5.391329	0.667378	-1.028330
С	5.410697	1.748482	-0.140545

С	4.213805	2.338071	0.263273
С	3.000389	1.845659	-0.216374
С	2.967804	0.755895	-1.099692
С	4.182335	0.172525	-1.503609
С	1.661337	0.260693	-1.544338
С	1.462674	-0.815456	-2.331249
Na	-2.386503	-0.776	520 -1.100284
0	-4.544223	-0.374059	-0.887184
С	4.037979	-1.088398	1.965411
С	3.306922	-0.192167	2.754605
С	1.912051	-0.166645	2.691244
С	1.237606	-1.040610	1.836525
С	1.972587	-1.937995	1.052718
С	3.371413	-1.963755	1.112779
С	1.224790	-2.835328	0.136823
0	1.742994	-3.664985	-0.575576
С	-0.965178	3.712511	-0.420285
S	-1.882519	2.194916	-0.127182
С	-0.980657	1.587777	1.302584
0	-1.480008	1.265791	-1.282646
0	-1.761642	-1.393552	0.854647
С	0.133722	-1.236127	-2.646108
Ν	-0.943959	-1.589098	-2.877808
Η	6.327689	0.207327	-1.348385
Η	6.362617	2.130990	0.232094
Η	4.222921	3.183632	0.953013
Η	2.059914	2.307059	0.094442
Η	4.184747	-0.674356	-2.192254
Η	0.777760	0.811406	-1.197561
Η	2.267687	-1.438967	-2.725743
Η	0.120670	-2.671811	0.155842
Η	5.128556	-1.095733	2.017704
Η	3.833852	0.495194	3.419927
Η	1.350741	0.539313	3.307546

Η	0.141943	-1.053694	1.735752
Η	3.918666	-2.668102	0.482326
Η	-1.374290	4.168523	-1.330597
Η	-1.106874	4.385817	0.436111
Η	0.095586	3.459861	-0.555487
Η	-1.268026	0.522314	1.387672
Η	-1.279879	2.167393	2.187616
Η	0.097011	1.689095	1.111582
S	-5.244716	-0.734370	0.428301
С	-6.739176	0.266449	0.426106
Η	-7.257278	0.145108	1.386957
Η	-6.454948	1.313564	0.255592
Η	-7.372041	-0.099535	-0.392377
С	-4.335968	0.125825	1.718631
Η	-3.336371	-0.349571	1.698462
Η	-4.292117	1.193490	1.460081
Η	-4.845522	-0.032033	2.679684
Η	-1.863736	-2.233907	1.314933

Int1*

Thermodynamic Data (given by Hartree): Zero-point correction: 0.417135 Thermal correction to Energy: 0.452495 Thermal correction to Enthalpy: 0.453439 Thermal correction to Gibbs Free Energy: 0.344162 Sum of electronic and zero-point Energies: -2089.878535 Sum of electronic and thermal Energies: -2089.843175 Sum of electronic and thermal Enthalpies: -2089.842231 Sum of electronic and thermal Free Energies: -2089.951508 Optimized Coordinates:

С	-5.532226	-0.773381	-0.983313
С	-5.618173	-1.907737	-0.159145
С	-4.437417	-2.540386	0.284571
С	-3.204263	-2.051108	-0.078405
С	-3.081344	-0.878384	-0.912531

С	-4.306259	-0.259608	-1.358127
С	-1.822018	-0.393218	-1.217504
С	-1.593175	0.843588	-2.000147
Na	2.337050	0.660786	-0.954374
0	4.522972	0.365810	-1.026125
С	-3.944352	1.635443	1.482535
С	-3.434418	0.594647	2.269796
С	-2.056643	0.389564	2.366598
С	-1.177242	1.220458	1.669260
С	-1.692185	2.263770	0.889016
С	-3.074394	2.473450	0.792727
С	-0.731994	3.135780	0.165466
0	-1.054456	4.078585	-0.520224
С	0.795885	-3.797792	-0.290310
S	1.737716	-2.304606	0.049123
С	0.833763	-1.715010	1.484208
0	1.366761	-1.346192	-1.092642
0	1.914952	1.152068	1.083424
С	-0.301635	1.223440	-2.358716
Ν	0.793385	1.538502	-2.616275
Η	-6.446492	-0.288306	-1.330340
Η	-6.592758	-2.300012	0.133704
Η	-4.504135	-3.423755	0.922225
Η	-2.287840	-2.534993	0.267899
Η	-4.267704	0.624706	-1.994708
Η	-0.926755	-0.922204	-0.880149
Η	-2.406536	1.504163	-2.303554
Η	0.334922	2.841919	0.309644
Η	-5.023402	1.785096	1.411599
Η	-4.121864	-0.060374	2.809655
Η	-1.669101	-0.425038	2.982794
Η	-0.083902	1.088982	1.688509
Η	-3.447177	3.292681	0.173939
Н	1.203825	-4.236282	-1.209729

Η	0.918102	-4.497041	0.547984
Н	-0.259181	-3.523300	-0.427388
Η	1.186486	-0.673397	1.621378
Η	1.083736	-2.350866	2.345549
Η	-0.243184	-1.754901	1.265172
S	5.328379	0.609263	0.255361
С	6.856037	-0.305970	0.001704
Η	7.459938	-0.265188	0.918282
Η	6.600975	-1.341130	-0.262248
Η	7.389740	0.182308	-0.823492
С	4.583248	-0.438905	1.511331
Η	3.570628	-0.013595	1.644786
Η	4.551566	-1.470185	1.132719
Η	5.179120	-0.368770	2.432336
Η	2.113220	1.902784	1.654173

Int2

Thermodynamic Data (given by Hartree):

Zero-point correction: 0.396137

Thermal correction to Energy: 0.428366

Thermal correction to Enthalpy: 0.429310

Thermal correction to Gibbs Free Energy: 0.329609

Sum of electronic and zero-point Energies: -2013.612837

Sum of electronic and thermal Energies: -2013.580607

Sum of electronic and thermal Enthalpies: -2013.579663

Sum of electronic and thermal Free Energies: -2013.679364

Optimized Coordinates:

С	-5.066060	-0.426391	0.198996
С	-5.346511	0.460068	-0.845144
С	-4.480824	1.522638	-1.107082
С	-3.336013	1.693474	-0.331249
С	-3.045439	0.809269	0.720051
С	-3.925670	-0.255270	0.977876
С	-1.798934	0.997627	1.466486
С	-1.452566	0.340627	2.591278

Na	2.249719	0.190097	1.625414
0	4.187793	-0.229168	0.725015
С	-2.670069	-3.105013	-1.105789
С	-2.593128	-2.056597	-2.027192
С	-1.630497	-1.055079	-1.864088
С	-0.737720	-1.116128	-0.793568
С	-0.806021	-2.161876	0.138499
С	-1.794816	-3.139814	-0.018287
С	0.106655	-2.186622	1.370733
0	1.217907	-1.662493	1.146894
С	0.941058	4.086370	-0.644020
S	1.599736	2.432581	-0.887867
С	0.447815	1.886760	-2.157934
0	1.206139	1.671782	0.385807
С	-0.158782	0.552089	3.158769
Ν	0.903647	0.722129	3.587314
Η	-5.737500	-1.263159	0.399664
Η	-6.239578	0.318242	-1.456349
Η	-4.695123	2.216798	-1.921375
Η	-2.649966	2.518858	-0.537162
Η	-3.707190	-0.968689	1.775012
Η	-1.073833	1.696933	1.035694
Η	-2.089119	-0.390939	3.093178
Η	-3.423749	-3.885716	-1.230951
Η	-3.291659	-2.012684	-2.865659
Η	-1.588336	-0.222600	-2.572168
Η	0.010237	-0.333935	-0.626872
Η	-1.867853	-3.936442	0.729246
Η	1.476675	4.515572	0.212092
Η	1.129472	4.684958	-1.545200
Н	-0.134288	4.011485	-0.431817
Η	0.736948	0.870611	-2.456450
Н	0.530496	2.565618	-3.017880
Η	-0.566602	1.901702	-1.733924

S	4.286739	-1.339146	-0.327907
С	5.742659	-0.913524	-1.292720
Η	5.828942	-1.607543	-2.139729
Η	5.644102	0.125544	-1.634385
Η	6.608483	-1.021244	-0.627282
С	3.033112	-0.940578	-1.555808
Η	2.069391	-1.080782	-1.045105
Η	3.188358	0.098545	-1.878870
Η	3.121439	-1.635194	-2.402658

TS-A

Thermodynamic Data (given by Hartree):

Zero-point correction: 0.395645

Thermal correction to Energy: 0.426850 Thermal correction to Enthalpy: 0.427794

Thermal correction to Gibbs Free Energy: 0.329162

Sum of electronic and zero-point Energies: -2013.611617

Sum of electronic and thermal Energies: -2013.580412

Sum of electronic and thermal Enthalpies: -2013.579468

Sum of electronic and thermal Free Energies: -2013.678100

Optimized Coordinates:

С	5.199467	1.653230	-0.941569
С	6.139323	0.622435	-0.848289
С	5.739571	-0.689099	-1.118714
С	4.420181	-0.966787	-1.465923
С	3.452862	0.057853	-1.541280
С	3.878120	1.378832	-1.281413
С	2.069039	-0.282090	-1.824170
С	1.001361	0.486486	-1.417148
С	0.507507	-0.592519	0.530811
С	1.866642	-0.810712	1.194903
0	-0.227757	-1.574907	0.445947
С	2.343528	-2.099639	1.465762
С	3.588686	-2.281780	2.064346
С	4.362307	-1.170548	2.415806

С	3.885476	0.118117	2.167852	
С	2.642975	0.292903	1.556273	
С	-0.329717	0.211289	-1.863111	
N	-1.419469	-0.032643	-2.175078	
Н	5.501336	2.684733	-0.747436	
Н	7.173572	0.840516	-0.576831	
Н	6.463233	-1.504620	-1.054326	
Н	4.115026	-1.997348	-1.664876	
Н	3.162947	2.201252	-1.354933	
Н	1.872092	-1.276153	-2.234495	
Н	1.137668	1.500068	-1.033349	
Н	1.718878	-2.952524	1.188148	
Н	3.963516	-3.289337	2.257878	
Н	5.338237	-1.311081	2.885027	
Н	4.487768	0.986342	2.443744	
Н	2.268700	1.298193	1.339715	
Na	-2.325124	-1.059581	-0.139163	
S	-5.552539	-1.401199	-0.873356	
С	-6.064475	-0.896509	0.777030	
Н	-5.264449	-0.274361	1.203880	
Η	-7.013821	-0.348794	0.701733	
Н	-6.208187	-1.816714	1.357629	
С	-5.228132	0.242319	-1.537882	
Η	-6.181935	0.781548	-1.620988	
Η	-4.533582	0.756106	-0.857811	
Н	-4.789060	0.104746	-2.534523	
0	-4.181493	-2.058992	-0.689833	
S	-2.717462	1.968007	1.577042	
С	-1.617929	1.568525	2.942240	
Η	-0.815850	0.915899	2.567275	
Η	-1.211401	2.502064	3.354587	
Η	-2.222327	1.053192	3.699322	
С	-1.473383	2.578247	0.431528	
Н	-1.067606	3.521866	0.821827	

0	-3.160799	0.610484	1.010182
Н	-1.975103	2.752243	-0.529347
Η	-0.692185	1.806454	0.349784

TS-B

Thermodynamic Data (given by Hartree): Zero-point correction: 0.395597 Thermal correction to Energy: 0.426940 Thermal correction to Enthalpy: 0.427884 Thermal correction to Gibbs Free Energy: 0.330076 Sum of electronic and zero-point Energies: -2013.610422 Sum of electronic and thermal Energies: -2013.579079 Sum of electronic and thermal Enthalpies: -2013.578135 Sum of electronic and thermal Free Energies: -2013.675943 Optimized Coordinates:

С	4.128806	-2.349407	0.028821
С	5.109953	-1.472330	-0.439757
С	4.757137	-0.449026	-1.322290
С	3.430632	-0.298380	-1.718015
С	2.432947	-1.165571	-1.243118
С	2.802312	-2.203185	-0.372653
С	1.039978	-0.937875	-1.657334
С	0.041556	-1.883505	-1.583178
С	0.880809	1.134788	-0.211417
0	0.186995	2.007312	-0.742803
С	2.158685	1.608060	0.460383
С	2.739700	0.829923	1.468501
С	3.967878	1.190656	2.022136
С	4.637812	2.323096	1.551215
С	4.065545	3.106086	0.544555
С	2.826478	2.754541	0.010621
С	-1.228279	-1.556691	-2.109550
Ν	-2.257634	-1.194588	-2.516005
Η	4.399497	-3.154407	0.714592
Η	6.146980	-1.588520	-0.119629

Η	5.517599	0.238525	-1.697601
Н	3.150539	0.514223	-2.393154
Н	2.047603	-2.892418	0.011341
Η	0.886974	-0.092697	-2.331010
Η	0.144082	-2.832397	-1.054701
Η	2.224284	-0.073208	1.807231
Η	4.413762	0.581870	2.811503
Η	5.609463	2.595367	1.968250
Η	4.591222	3.990820	0.178445
Η	2.361396	3.353500	-0.776698
Na	-1.720209	0.802296	-0.789439
S	-1.832157	-1.968703	1.171916
С	-0.176071	-1.779534	1.840317
Η	-0.223301	-1.122099	2.719258
Η	0.220861	-2.770087	2.102512
Η	0.418010	-1.310881	1.042128
С	-2.694724	-2.384217	2.692213
Η	-2.316069	-3.345076	3.066425
Η	-2.526488	-1.578223	3.418851
Η	-3.760782	-2.470781	2.445674
0	-2.295678	-0.537808	0.853111
S	-4.969610	1.597284	-0.407321
С	-5.211700	-0.169885	-0.660063
Η	-4.349224	-0.693528	-0.224283
Η	-6.154554	-0.466155	-0.179822
Η	-5.274769	-0.335347	-1.743187
С	-4.754591	1.556242	1.380377
Η	-5.708280	1.272112	1.846109
Η	-3.955844	0.837332	1.613574
Η	-4.477383	2.573162	1.686738
0	-3.586408	1.921216	-0.977908

7. References

- (a) Andreou, D.; Essien, N. B.; Pubill-Ulldemolins, C.; Terzidis, M. A.; Papadopoulos, A. N.; Kostakis, G. E.; Lykakis, I. N. Skeletally Tunable Seven-Membered-Ring Fused Pyrroles. Org. Lett. 2021, 23, 6685–6690. (b) Ishitani, H.; Saito, Y.; Nakamura, Y.; Yoo, W.-J.; Kobayashi, S. Knoevenagel Condensation of Aldehydes and Ketones with Alkyl Nitriles Catalyzed by Strongly Basic Anion Exchange Resins under Continuous-Flow Conditions. Asian J. Org. Chem. 2018, 7, 2061–2064. (c) DiBiase, S. A.; Lipisko, B. A.; Haag, A.; Wolak, R. A.; Gokel, G. W. Direct Synthesis of α,β-Unsaturated Nitriles from Acetonitrile and Carbonyl Compounds: Survey, Crown Effects, and Experimental Conditions. J. Org. Chem. 1979, 44, 4640–4649.
- Kiyokawa, K.; Nagata, T.; Minakata, S. Electrophilic Cyanation of Boron Enolates: Efficient Access to Various β-Ketonitrile Derivatives. *Angew. Chem., Int. Ed.* 2016, 55, 10458–10462.
- Dotzauer, S.; Hadaf, G. B.; Kamounah, F. S.; Kadziola, A., A. CO₂-Mediated Conjugate Cyanide Addition to Chalcones. *Catalysts* 2020, *10*, 1481–1489.
- Gu, Y.; Norton, J. R.; Salashi, F.; Lisnyak, V. G.; Zhou, Z.; Snyder, S. A. Highly Selective Hydrogenation of C=C Bonds Catalyzed by a Rhodium Hydride. *J. Am. Chem. Soc.* 2021, 143, 9657–9663.
- 5. Klahn, P.; Kirsch, S. F. IBX-Mediated Dehydrogenation of Substituted β-Oxonitriles. *Eur. J. Org. Chem.* **2014**, *2014*, 3149–3155.
- Wang, N.; Yan, X.; Hu, Z.-T.; Zhu, L.; Chen, Z.-H.; Wang, H.; Wang, Q.-L.; Ouyang, Q.; Zheng, P.-F. Intramolecular H-Bonds in an Organocatalyst Enabled an Asymmetric Michael/Alkylation Cascade Reaction to Construct Spirooxindoles Incorporating a Densely Substituted Cyclopropane Motif. Org. Lett. 2022, 24, 8553–8558.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.;

Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 rev. C.01.

- 8. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.
- Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. *Phys. Chem. Chem. Phys.* 2006, *8*, 1057-1065.
- Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. *J. Phys. Chem. B* 2009, *113*, 6378-6396.

8. Copies of ¹H and ¹³C NMR spectra

Figure S4. ¹H NMR (600 MHz, CDCl₃) of Compound 3a

Figure S5. ¹³C NMR (150 MHz, CDCl₃) of Compound 3a

Figure S6. ¹H NMR (500 MHz, CDCl₃) of Compound 3b

Figure S7. ¹³C NMR (125 MHz, CDCl₃) of Compound 3b

Figure S8. ¹H NMR (400 MHz, CDCl₃) of Compound 3c

Figure S9. ¹³C NMR (100 MHz, CDCl₃) of Compound 3c

Figure S10. ¹H NMR (600 MHz, CDCl₃) of Compound 3d

Figure S11. ¹³C NMR (150 MHz, CDCl₃) of Compound 3d

Figure S12. ¹H NMR (400 MHz, CDCl₃) of Compound 3e

Figure S13. ¹³C NMR (100 MHz, CDCl₃) of Compound 3e

Figure S14. ¹H NMR (600 MHz, CDCl₃) of Compound 3f

Figure S15. ¹³C NMR (150 MHz, CDCl₃) of Compound 3f

Figure S16. ¹H NMR (500 MHz, CDCl₃) of Compound 3g

Figure S17. ¹³C NMR (125 MHz, CDCl₃) of Compound 3g

Figure S18. ¹H NMR (500 MHz, CDCl₃) of Compound 3h

Figure S19. ¹³C NMR (125 MHz, CDCl₃) of Compound 3h

Figure S20. ¹H NMR (600 MHz, CDCl₃) of Compound 3i

Figure S21. ¹³C NMR (150 MHz, CDCl₃) of Compound 3i

Figure S22. ¹⁹F NMR (376 MHz, CDCl₃) of Compound 3i

Figure S23. ¹H NMR (600 MHz, CDCl₃) of Compound 3j

Figure S24. ¹³C NMR (150 MHz, CDCl₃) of Compound 3j

Figure S25. ¹H NMR (500 MHz, CDCl₃) of Compound 3k

Figure S26. ¹³C NMR (125 MHz, CDCl₃) of Compound 3k

Figure S27. ¹H NMR (600 MHz, CDCl₃) of Compound 31

Figure S28. ¹³C NMR (150 MHz, CDCl₃) of Compound 31

Figure S29. 1 H NMR (500 MHz, CDCl₃) of Compound 3m

Figure S30. ¹³C NMR (125 MHz, CDCl₃) of Compound 3m

Figure S31. ¹H NMR (400 MHz, CDCl₃) of Compound 3n

Figure S32. ¹³C NMR (100 MHz, CDCl₃) of Compound 3n

Figure S33. ¹H NMR (600 MHz, CDCl₃) of Compound 30

Figure S34. ¹³C NMR (150 MHz, CDCl₃) of Compound 30

Figure S35. ¹H NMR (500 MHz, CDCl₃) of Compound 3p

Figure S36. ¹³C NMR (125 MHz, CDCl₃) of Compound 3p

Figure S37. ¹H NMR (500 MHz, CDCl₃) of Compound 3q

Figure S38. ¹³C NMR (125 MHz, CDCl₃) of Compound 3q

Figure S39. ¹H NMR (400 MHz, CDCl₃) of Compound 3r

Figure S40. ¹³C NMR (100 MHz, CDCl₃) of Compound 3r

Figure S41. ¹H NMR (600 MHz, CDCl₃) of Compound 3s

Figure S42. ¹³C NMR (150 MHz, CDCl₃) of Compound 3s

Figure S43. ¹H NMR (600 MHz, CDCl₃) of Compound 3t

Figure S44. ¹³C NMR (150 MHz, CDCl₃) of Compound 3t

Figure S45. ¹H NMR (500 MHz, CDCl₃) of Compound 3u

Figure S46. ¹³C NMR (125 MHz, CDCl₃) of Compound 3u

Figure S47. ¹H NMR (600 MHz, CDCl₃) of Compound 3v

Figure S48. ¹³C NMR (150 MHz, CDCl₃) of Compound 3v

Figure S49. ¹H NMR (600 MHz, CDCl₃) of Compound 3w

Figure S50. ¹³C NMR (150 MHz, CDCl₃) of Compound 3w

Figure S51. ¹H NMR (400 MHz, CDCl₃) of Compound 3x

Figure S52. ¹³C NMR (100 MHz, CDCl₃) of Compound 3x

Figure S53. ¹H NMR (400 MHz, CDCl₃) of Compound 3y

Figure S54. ¹³C NMR (100 MHz, CDCl₃) of Compound 3y

Figure S55. ¹H NMR (400 MHz, CDCl₃) of Compound 3z

Figure S56. ¹³C NMR (100 MHz, CDCl₃) of Compound 3z

Figure S57. ¹H NMR (400 MHz, CDCl₃) of Compound 3aa

Figure S58. ¹³C NMR (100 MHz, CDCl₃) of Compound 3aa

Figure S59. ¹H NMR (400 MHz, CDCl₃) of Compound 3ab

Figure S60. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ab

Figure S61. ¹H NMR (400 MHz, CDCl₃) of Compound 3ac

Figure S62. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ac

Figure S63. ¹⁹F NMR (376 MHz, CDCl₃) of Compound 3ac

Figure S64. ¹H NMR (400 MHz, CDCl₃) of Compound 3ad

Figure S65. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ad

Figure S66. ¹H NMR (400 MHz, CDCl₃) of Compound 3ae

Figure S67. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ae

Figure S68. ¹H NMR (400 MHz, CDCl₃) of Compound 3af

Figure S69. ¹³C NMR (100 MHz, CDCl₃) of Compound 3af

Figure S70. ¹⁹F NMR (376 MHz, CDCl₃) of Compound 3af

Figure S71. ¹H NMR (400 MHz, CDCl₃) of Compound 3ag

Figure S72. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ag

Figure S73. ¹⁹F NMR (376 MHz, CDCl₃) of Compound 3ag

Figure S74. ¹H NMR (400 MHz, CDCl₃) of Compound 3ah

Figure S75. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ah

Figure S76. ¹H NMR (400 MHz, CDCl₃) of Compound 3ai

Figure S77. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ai

Figure S78. ¹H NMR (400 MHz, CDCl₃) of Compound 3aj

Figure S79. ¹³C NMR (100 MHz, CDCl₃) of Compound 3aj

Figure S80. ¹H NMR (400 MHz, CDCl₃) of Compound 3ak

Figure S81. ¹³C NMR (100 MHz, CDCl₃) of Compound 3ak

Figure S82. ¹H NMR (400 MHz, CDCl₃) of Compound 3al

Figure S83. ¹³C NMR (400 MHz, CDCl₃) of Compound 3al

Figure S84. ¹H NMR (600 MHz, CDCl₃) of Compound 4

Figure S85. ¹³C NMR (150 MHz, CDCl₃) of Compound 4

Figure S86. ¹H NMR (600 MHz, CDCl₃) of Compound 5

Figure S87. ¹³C NMR (150 MHz, CDCl₃) of Compound 5

Figure S88. ¹H NMR (500 MHz, CDCl₃) of Compound 6

Figure S89. ¹³C NMR (125 MHz, CDCl₃) of Compound 6

Figure S90. ¹H NMR (600 MHz, CDCl₃) of Compound 7

Figure S91. ¹³C NMR (150 MHz, CDCl₃) of Compound 7