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General techniques: One- and two-dimensional NMR spectra were recorded on High field 500 MHz
Bruker ADVANCE III HD Nuclear Magnetic Resonance Spectrometer in the appropriate deuterated
solvents. Chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (0 ppm)
as the internal standard and coupling constants (J) are recorded in hertz (Hz). The multiplicities in the 'H
NMR spectra are reported as (br) broad, (s) singlet, (d) doublet, (dd) doublet of doublets, (ddd) doublet of
doublet of doublets, (t) triplet, (sp) septet and (m) multiplet. All spectra are recorded at ambient temperature.
UV-Vis experiments were performed on SHIMADZU UV/Vis Spectrophotometer. Fluorescence
experiments were carried out on HORIBA Scientific Fluorolog Spectrofluorometer.IR spectra were
recorded on a Buker Tensor 27 Fourier Transform Infrared Spectrometer with diamond ATR. The
characteristic functional groups are reported in wavenumbers (cm™'), and are described as weak (w),
medium (m), strong (s) and very strong (vs). Cyclic Voltammetry experiments were performed on a
VersaStudio electrochemistry system at 298K using a 2mm diameter gold electrode, a platinum wire
auxiliary electrode, and Ag/AgNO; reference electrode. The gold electrode was rinsed and dried with water
and methanol after polishing with 0.05 pM alumina immediately prior to use. A 0.05 M
tetrabutylammonium perchlorate is used as supporting electrolyte.
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Synthesis

2,6-dibromo-1,4,5,8-naphthalene tetracarboxylic dianhydride and N, N’-dioctyl-2,6-dibromo-1,4,5,8-
naphthalene tetracarboxylic diimide were prepared according to literature procedures. ! (Et;P),Pt. 20T{,
Pt(dppp).20Tf and Pd(dppp).20Tf were prepared following reported procedures.? 3

N, N’-dioctyl-2,6-bis (pyridinyl phenyl)-1,4,5,8- Naphthalene tetracarboxylic diimide (1)*

A 500 mL flask was charged with 2,6-dibromo-1,4,5,8-naphthalene tetracarboxylic dianhydride (1.34 g,
2.07 mmol), 4-Pyridinyl phenyl boronic acid (1.23 g, 6.21 mmol), Pd(PPh;),Cl, (0.308 g, 0.440 mmol),
Na,CO; (2.34 g, 22.0 mmol), and toluene/methanol/water (50 mL/30mL/20 mL). The reaction mixture was
then heated at 110°C under nitrogen for two days with stirring. After cooling down to room temperature,
water was added and organic layer separated. The aqueous solution was further extracted with
dichloromethane (3 x 50 mL). The combined organic layers were washed with brine (100 mL), dried over
MgSO,, and evaporated to dryness under vacuum. The residue was purified by silica gel chromatography
(chloroform /hexane, 9/1), to afford 1.24 g (1. 55 mmol) of compound 1 as a yellow solid in 75% yield.

H NMR (300 K, CDCl,, 500MHz): 58.74 (d, J=5.4 Hz 4H), 8.71 (s, 2H), 7.84 (d, J=8.0 Hz 4H),
7.65 (d, J=5.9Hz, 4H), 7.57 (d, J=8.6Hz, 4H), 4.11 (t, J=7.9Hz, 3H), 1.68 (m, 4H), 1.24-1.38 (m, 20H),
0.89 (t, J=7.0Hz, 6H),

13C NMR (300 K, CDCl;, 500MHz): 6162.36, 150.40, 147.63, 146.96, 141.37, 138.00, 135.75, 128.97,
127.35,127.08, 125.78, 123.02, 121.65, 41.12, 31.77, 29.29, 29.20, 28.04, 27.06, 22.62, 14.08

IR (ATR s0lid):2952 vy (W), 2927ver (W), 2854ves (W),1703veo (m), 1666vec (s) cm.

HRMS calculated for Cs,Hs3N,O4 [M+H]*: 797.4061 and found 797.4048
Cs,Hs53N,O4 [M+2H]?": 399.2067 and found 399.2066
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A mixture of (Et;P),Pt. 20T (29.18 mg, 0.04 mmol) and 1 (31.88 mg, 0.04 mmol) in a dry dichloromethane
(20.0 mL) was stirred under nitrogen at room temperature for 48 h. The solution was filtered to remove any
insoluble particles and reduced to half by degassing nitrogen gas. A slow vapor diffusion of diethyl ether
into the solution over 24 h yielded a yellow solid which was collected by centrifugation, washed twice with
diethyl ether (10 ml) and dried in vacuum to give the final product (146 mg, 0.032 mmol, 80% yield).

H NMR (300 K, CDCl,, 500MHz): 59.46(d, J=5.5 Hz 12H), 8.60 (s, 6H), 7.94 (d, J=6.0 Hz 12H),
7.89 (d, J=8.0Hz, 12H), 7.53 (d, J=8.0Hz, 12H), 4.03 (t, /=7.2 & 7.8 Hz, 12H),

1.94 (q, J=8.0, Hz, 36H), 1.59 (m, 12H), 1.39 (m, 54H), 1.16 (m, 26H), 1.27 (m, 34H), 0.77 (t, J=7.0Hz,
18H),

13C NMR (300 K, CDCl;, 500MHz): 56162.04, 151.40, 146.37, 143.70, 135.14, 133.94, 129.17, 127.31,
125.82,124.68, 123.11, 118.43, 41.09, 31.70, 29.24, 29.13, 78.96, 26.98, 22.56, 15.83, 14.03, 7.82

IR (ATR solid): 2926 vc.y (W), 2859vey (W),1704vc_o (m), 1662ve_c (m) cm™'.
ESI-MS: 614.2723 ([2-60Tf]"), 766.7163([2-50Tf]>"), 995.6369([2-40Tf]*")

Self-assembly with Pt(dppp).20Tf and Pd(dppp).20TT: It is carried out in a similar way as with
(Et;P),Pt. 20TH.
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Figure S7 : '"H NMR of Pd(dppt).20Tf in CDCls;.
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Figure S2 : 3'P NMR of Pd(dppt).20Tf in CDCl;.
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Figure S3 : '"H NMR of Pt(dppt).20Tf in CDCl;.
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Figure S4 : 3'P NMR of Pt(dppt).20Tf in CDCl;.
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Figure S5 : '"H NMR of (Et;P),Pt.20Tf in CDCl;.
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Figure S7 : '"H NMR stack plot of 1 and 2 in various solvents.
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Figure S8 : 3'P NMR stack plot of 1and 2 in various solvents.
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Figure §9: '"H NMR stack plot of 1 and with (Et;P),Pt.20Tf, Pt(dppp).20Tf and Pt(dppp).20Tf in
CDCl.
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Figure S10: 3'P NMR stack plot of (Et;P),Pt.20Tf, Pt(dppp).20Tf and Pt(dppp).20Tf and its complex
with 1 in CDCls.
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Computational Experimental

Calculations were carried out using Spartan '24.% Using the Build option, ligand 1 was created and
molecular mechanics methods (MMFF) were used to generate the lowest energy gas phase geometry. This
structure was used to create the trimeric metallocycle 2 which was also subject to geometry optimisation
by molecular mechanics. Ligand 1 was further investigated by density functional methods (DFT/B3LYP/6-
31G*) to generate orbital energies of -6.40 ev (HOMO) and -3.43 eV (LUMO).

Figure S714: DFT optimized structure, HOMO and LUMO of the ligand 1.

Due to the number of atoms involved, complex 2 was modelled by semiempirical methods (PM6) in the
gas phase using an approach developed for macrocycles.®

Effect of triflate on 1

NDIs are known to form anion-m adducts’ and, indeed when modelled at a simple molecular mechanic’s
level, it appears that two triflates can approach from either face of the 1 with two oxygen atoms of each
pointing to its surface. However, on more rigorous investigation (DFT/BLY3P/6-31G*), the anions
relocated to the periphery of 1.

Figure S15: Geometry of 1-(OTf), optimized by molecular mechanics (left) and DFT (right).
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Effect of triflate on 2

Similarly, a molecular mechanics geometry optimized calculation of 2 was carried out with six triflate
anions to determine any effect of triflate anions on complex structure. Very little structural difference was
found. All parameters such as bond angles and distances are almost same in both structures showing
virtually no effect of triflate anions in the structure.

Figure S16: Original structure (left) and structure after minimizing with six triflate anions (right).
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AFM and TEM Imaging

Atomic force microscopy (AFM) was performed in ScanAsyst mode using a Bruker AXS Dimension Icon
AFM equipped with a ScanAsyst-Air probe. The AFM images were collected with Bruker silicon tips (0.2-
0.8N/m) with a silicon nitride cantilever. The sample was prepared by depositing it onto a freshly cleaved
mica surface, followed by washing with deionized water and drying prior to imaging. Images were acquired
at a resolution of 512 x 512 pixels with a scan rate of 0.9—1 Hz. Data analysis was conducted with Bruker
NanoScope Analysis 3.0 software. Transmission Electron Microscopy (TEM): Samples were diluted and
dropped on carbon-coated copper grids (Ted Pella, Inc.) for 1 min. Excess solution was wicked off, and the
sample grid was negatively stained with 2% (w/w) uranyl acetate solution for 45 s. The dried specimen was
observed with Technai G2 Spirit TEM instrument operating at 80 keV. Images were analyzed with ImageJ
imaging software.
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Figure S17: AFM and TEM images of 2 (0.5 mM) in CH3CN. A section analysis showing AFM height
measurement with the height generated by the nano particles along the blue lines in the image.
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Figure S18: AFM, section analysis and TEM images of 2 (5.0 mM) in CH;CN.
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Figure S79: (a) Absorption spectra of 1 (20 uM) in CHCI; and 2 in various solvents. (b) Fluorescence
spectra of 1 (20 uM) in CHCl; and 2 (20 uM) in various solvents.
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Figure $20: UV-Vis absorbance of 1 in CHCIl; and 2 in CHCI; and CH3CN.
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Figure S21: UV-Vis absorption spectra of 2 (30.0 pM) in CH;CN with different temperature from 25 °C
to 70 °C. (Solution was equilibrated for 5.0 minute prior to each scan)
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Figure §22: UV-Vis absorption spectra of 2 in CH;CN with different concentration from 2.5 uM to 25
uM at room temperature (left) and UV-Vis absorption of 2 in CH;CN as a function of time.

Standard
Name Mean Deviation RSD Minimum Maximum
Z-Average (nm) 5064.65 354.729 7.004 4691.383 5397.353
Polydispersity Index (P1) 1 0 0 1 1
Peak 1 Mean by Intensity ordered by area (nm) 144.711 16.343 11.293 127.721 160.319
Peak 1 Area by Intensity ordered by area (%) 100 0 0 100 100

Intensity (%)
g

7 T T T
1 10 100 1000 10000
Size (d.nm)

Figure §23: DLS of 2 (5.0 mM) in CH;CN and picture showing aggregation.

Cyclic Voltammetry

The CV of both ligand and complex shows two reversible reduction waves corresponding to the
formation of radical anion and dianions. However, reduction waves of ligand (E;/, = -0.87 and -1.25 V vs
Fc/Fc+) is more negative (Ej/, -0.82 and -1.18 V vs Fc/Fc+) than complex i.e. upon platinum coordination, both
reduction waves are shifted by about ~70 mV with respect to the ligand. This indicates the complex is easily
reducible as it becomes electron deficient than ligand after coordination with the platinum ion. The platinum
corners are not involved in the redox process within the applied potential range.
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Figure §24: Cyclic Voltammetry of 1(100 uM) and 2 (100 uM) in CH,Cl, at a gold electrode (0.05 M
TBAP, Ag/AgNOs;, 100 mVST).
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Figure $25 : '"H NMR of 1 in CDCls.
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Figure §26: 13C NMR of 1 in CDCl;.
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Figure S27: COSY of 1 in CDCl;.
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Figure §28: COSY (aromatic) of 1 in CDCls.
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Figure §29: HSQC of 1 in CDCl;.
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Figure $30: HSQC(aromatic) of 1 in CDCls.
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Figure S37: HMBC of 1in CDCls.
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Figure §32: '"H NMR of 2 in CDCl;.
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Figure $33: 3C NMR of 2 in CDCl;.
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Figure S34: HSQC of 2 in CDCl;.
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Figure S35: COSY of 2 in CDCl.
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Figure §36: DOSY of 2 in CDCl;.
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Figure §37: DOSY of 1 with Pt(dppp).20Tf in CDCl;.
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Figure §38: DOSY of 1 with Pd(dppp).20Tf in CDCl;.
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