Electronic Supplementary Information

Crystal structure and fluoride-ion conductivity of strontium cerium fluoride epitaxial films prepared by topochemical fluorination

Akira Chikamatsu,^{*a} Ayuka Nakano,^a Miku Hagiwara,^a Dai Kutsuzawa,^b Erika Fukushi,^c Hiroyuki Oguchi,^c Fumihiko Uesugi,^d Tsukasa Katayama ^{e,f} and Yasushi Hirose ^g

^aDepartment of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan. *E-mail: chikamatsu.akira@ocha.ac.jp

^bCentral Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan

^cChemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo, 135-8548, Japan

^dNational Institute for Materials Science, 1–2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

^eResearch Institute for Electronic Science, Hokkaido University, N21W10, Kita, Sapporo, Hokkaido 001-0020, Japan

^fJST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^gDepartment of Chemistry, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

Figure S1. Reciprocal space mapping images around (a) the 103 asymmetric diffraction of the SrCeO₃ precursor film and (b) the 113 asymmetric diffraction of the film fluorinated at T_f = 500 °C (Sr_{0.5}Ce_{0.5}F_{2.5}).

Figure S2. Variations of the lengths of the *a*- and *c*-axes of the SrCeO₃ precursor and fluorinated films as a function of T_{f} . Note that the *a*-axis lengths were determined by detecting the 101 diffraction peaks of the films.

Figure S3. (a, d) Wide-range cross-sectional annular dark-field scanning transmission electron microscopy (STEM) images, (b, e) enlarged images of the circled areas in (a) and (d), which correspond to the perovskite and fluorite structures, respectively, (c, f) STEM–energy dispersive spectroscopy maps of (b) and (e) colorized using wavelet-transform-inspired image processing (Sr: green, Ce: yellow, O: red, and F: blue) of the SrCeO₃ film obtained at $T_f = 250$ °C and a temperature rise time of 1 h.

Figure S4. Schematic of the fluorite crystal structure of $Sr_{0.5}Ce_{0.5}F_{2.5}$.

Figure S5. In-plane impedance spectra and the fitting results of the $Sr_{0.5}Ce_{0.5}F_{2.5}$ film (obtained at $T_f = 500 \text{ °C}$) obtained at (a) 323 K, (b) 373 K, (c) 393 K, (d) 423 K, (e) 453 K, (f) 473 K, (g) 493 K, and (h) 523 K. (g) Equivalent circuits for the impedance spectra.

Figure S6. Out-of-plane impedance spectra and the fitting results of the $Sr_{0.5}Ce_{0.5}F_{2.5}$ film (obtained at $T_f = 500$ °C) obtained at (a) 323 K, (b) 343 K, (c) 373 K, (d) 393 K, (e) 423 K, and (f) 443 K. (g) Equivalent circuits for the impedance spectra.