Supporting information

Systematic exploration of alkali-anion pairs for descriptor

identification on OH-mediated methane coupling

Shintaro Yoshida, William J. Movick, Keisuke Obata and Kazuhiro Takanabe*

Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan. Corresponding author: Kazuhiro Takanabe takanabe@chemsys.t.u-tokyo.ac.jp

Experimental

1.1 Catalyst preparation

Most SiO₂-supported catalysts were prepared by impregnation methods. Na₂WO₄·2H₂O (Sigma-Aldrich), Na₂MoO₄·12H₂O (Sigma-Aldrich), Na₂CO₃ (Sigma-Aldrich), Na₃PO₄·12H₂O (Sigma-Aldrich), Na₂SO₄ (Wako), K₂WO₄ (Alfa Aesar), K₂MoO₄ (Sigma-Aldrich), K₂CO₃ (Sigma-Aldrich), K₃PO₄ (Sigma-Aldrich), K₂SO₄ (Sigma-Aldrich). Li₂WO₄ (Alfa Aesar), Li₂MoO₄ (Alfa Aesar), Li₂CO₃ (Sigma-Aldrich), Li₃PO₄ (Sigma-Aldrich), Li₂SO₄ (Sigma-Aldrich), Cs₂WO₄, Cs₂CO₃ (Wako), and Cs₂SO₄·H₂O (Wako) were used for the supported materials and SiO₂ (Silica Gel Grade 643, Sigma-Aldrich) was used for the support. The required amount of each supported material was dissolved in 5 ml of deionized water, and then, the solution was stirred with SiO₂ to achieve 5 wt % supported material and a total of 1 g of the whole sample. The samples were dried in ambient air at 130 °C for 5 h and the treated in ambient air with a ramp rate of 10 °C min⁻¹ and held at 900 °C for 8 h. For preparation of 5 wt% Cs₂MoO₄/SiO₂ and 5 wt% Cs₃PO₄/SiO₂, stoichiometric amount of CsNO₃ (Wako), H₂MoO₄ (Sigma-Aldrich) and NH₄H₂PO₄ (Sigma-Aldrich) were used as precursor instead.

The OCM rates and selectivity were measured in a U-shape quartz flow reactor with 4 mm of inner diameter. Catalysts were packed and held in U-shaped reactor tube by plugs of quartz wool. Those were located in the second half of the reactor to minimize secondary reaction. The reaction temperature was controlled by an electric furnace and Omron controller (Omron, ESCC), and the temperature was measured with a K-type thermocouple at the outer surface of the reactor closest to the catalyst bed. For reaction tests, CH_4 (>99.999%) and O_2 (20.0%, diluted by Ar) were used as reactants, and Ar (>99.9999%) was used as a diluent.

The flow was controlled by mass flow controllers (Brooks, SLA5850S). A saturator with a temperature- controlled water jacket (15 °C) was used to introduce H₂O to the reactant feed. The concentration of reactants and products was measured using a GC (Shimazu, GC-2014) gas chromatograph with an Rt- Molsieve 5A capillary column (0.25 mm, 10 m, Backflush 1.0 μ L) and an Rt-Q-bond capillary column (0.25 mm, 3 m) with a thermal conductivity detector and an RT-Q-bond capillary column (0.25 mm, 12 m) with a thermal conductivity detector. In our experiment, CH₄, C₂H₂, C₂H₄, C₂H₆, C₃H₆, C₃H₈ and C₄H₈ were measured by GC-FID and CH₄, O₂, H₂, CO and CO₂ were measured by GC-TCD. CH₄ conversion, product selectivity, and yield were calculated by eqs 1–3.

Selectivity (%) =
$$\frac{\text{total moles of carbon in specific product}}{\text{total moles of carbon in all products}} \times 100$$

 $\label{eq:Yield} \mbox{Yield} = \frac{\mbox{CH}_4 \mbox{ conversion (\%)} \times \mbox{ selectivity (\%)}}{100}$

To minimize the effects of product formation in our kinetic analysis, the CH_4 conversion rate was measured at below 5% conversion and extrapolated to 1% conversion.

To minimize the effects of product formation in our kinetic analysis, the CH_4 conversion rate was measured at below 5% conversion and extrapolated to 1% conversion.

Table S1

The OCM detailed yield and selectivity of WO₄-related catalysts taken at 850°C at wet condition (10 kPa CH₄ and 0.9-10 kPa O₂ with an additional 1.7 kPa H₂O feed, 30 ml min⁻¹ of total flow rate)

Catalysts	Catalyst amount / mg	CH₄/O₂ ratio	CH₄ conv. /%	C ₂₊ sel. /%	Selectivity					
					C ₂ H ₆	C_2H_4	C_2H_2	C ₃₊	со	CO ₂
	0.5	12	9.4	0.63	4.9	1.7	0	0	71	22
Li ₂ WO ₄ /SiO ₂	0.5	9	11	0.93	5.8	2.5	0	0	69	23
	0.5	6	15	1.6	6.3	3.9	0.06	0.11	65	24
	0.5	3	28	3.2	5.2	6.2	0.10	0.21	62	26
	0.5	2	41	4.5	3.8	7.1	0.12	0.27	60	28
	0.5	1	69	4.8	1.4	5.5	0.11	0.19	58	35
	0.6	12	14	11	40	39	N.M.	2.5	7.2	11
	0.6	9	16	13	36	42	N.M.	3.5	7.6	12
	0.6	6	23	17	29	45	N.M.	3.6	9.2	14
$Na_2 VVO_4/SIO_2$	0.6	3	38	24	17	44	N.M.	4.3	14	20
	0.6	2	50	26	12	41	N.M.	3.6	18	26
	0.6	1	80	25	4.9	27	N.M.	1.7	26	41
	0.8	12	13	10	35	45	N.M.	0	9.4	11
	0.8	9	15	12	32	47	N.M.	0	10	12
	0.8	6	21	16	24	47	N.M.	3.8	12	14
$K_2 V V O_4 / S I O_2$	0.8	3	35	23	15	44	N.M.	3.9	17	20
	0.8	2	45	25	10	39	N.M.	3.2	22	26
	0.8	1	71	24	4.3	25	N.M.	1.6	31	39
0- 14/0 /0:0	0.8	12	15	11	29	41	0.61	4.9	8.0	17
	0.8	9	18	13	27	43	0.64	4.6	8.3	17
	0.8	6	23	16	21	44	0.65	5.0	9.8	20
US2VVU4/SIU2	0.8	3	36	21	13	39	0.58	5.0	14	29
	0.8	2	48	22	8.1	33	0.50	4.3	17	37
	0.8	1	71	18	3.5	19	0.51	2.3	21	54

Table S2

The OCM detailed selectivity and rate of various catalysts taken at 850 °C at dry and wet conditions.

Catalysts	C₂ sel. (dry)	C ₂ sel. (wet)	r′ _{dry} ª	𝖍 _{wet} ^b	Ratio (r _{dry} /r _{wet})	BET surface area / m² g ⁻¹	Catalyst loading ^c / wt% (AAS / ICP)	Selectivity (S _{dry} / S _{wet})						
								C_2H_6	C_2H_4	со	C_2H_2	C ₃ H ₈	C_3H_6	CO ₂
Li ₂ WO ₄ /SiO ₂	42	61	1.4	3.2	2.3	4.7	1.7 : 2	38.0 / 53.4	3.0 / 5.9	49.5 / 34.8	0.0 / 0.2	0.0 / 0.1	0.0 / 0.1	9.4 / 5.5
Li ₂ MoO ₄ /SiO ₂	48	63	0.87	4.4	2.9	1.0	3.9 : 3.9	44.6 / 54.9	2.8 / 7.3	19.1 / 17.6	0 / 0.0	0.0 / 0.3	0 / 0.1	33.4 / 19.8
Li ₃ PO ₄ /SiO ₂	13	45	4.2	4.4	1.0	32	3.4 : 4.5	11.9 / 39.5	1.0 / 7.1	87.4 / 53.7	0.0 / 0.0	0/0.0	0 / 0.0	0 / 0
Li ₂ SO ₄ /SiO ₂	49	68	0.30	0.34	1.2	2.4	3.8 : 4.2	44.9 / 62.6	3.9 / 6.2	42.1 / 31.1	0 / 0	0 / 0	0.0 / 0.1	9.0 / 0
Li ₂ CO ₃ /SiO ₂	39	65	0.30	0.70	2.3	1.5	0.52 : 1	35.7 / 58.1	3.2 / 5.5	49.7 / 29.1	0 / 0	0 / 0	0 / 0.0	11.3 / 7.2
Na ₂ WO ₄ /SiO ₂	80	91	0.72	2.4	3.3	2.5	- : 5	73.3/84.0	6.9 / 6.3	14.9 / 6.7	0.0 / 0	0.1 / 0.2	0.1/0	4.7 / 2.9
Na ₂ MoO ₄ /SiO ₂	45	68	0.79	1.8	2.1	1.8	- : 3.5	41.4 / 61.2	3.8 / 5.0	31.5 / 20.2	0 / 0	0 / 0.1	0 / 0.0	23.2 / 13.5
Na ₃ PO ₄ /SiO ₂	51	67	0.84	1.2	1.4	1.4	-:3	47.1/61.0	4.3 / 5.5	42.2 / 29.7	0 / 0	0 / 0.1	0.0 / 0.1	6.4 / 3.6
Na ₂ SO ₄ /SiO ₂	51	60	0.52	0.66	1.3	15	- : 4.3	45.9 / 55.0	5.0 / 5.3	43.4 / 35.7	0 / 0	0 / 0	0 / 0	5.7 / 4.0
Na ₂ CO ₃ /SiO ₂	45	57	0.17	0.20	1.2	0.65	- : 2.3	32.8 / 41.3	12.3 / 15.9	54.9 / 42.8	0 / 0	0 / 0	0 / 0	0 / 0
K ₂ WO ₄ /SiO ₂	76	89	0.68	1.9	2.8	2.7	3.8 : 9	71.2 / 81.7	5.9 / 7.7	14.8 / 6.9	N.M. / N.M.	0 / 0	0 / 0	8.1 / 3.6
K ₂ MoO ₄ /SiO ₂	38	53	0.40	1.0	2.5	2.1	3.1 : 5	35.8 / 49.0	1.8 / 3.9	47.0/37.4	N,M. / N,M.	0 / 0	0/0	15.4 / 9.8
K_3PO_4/SiO_2	76	88	0.24	0.44	1.8	0.96	3.6 : 8.6	57.8 / 68.9	22.8 / 9.2	19.4 / 21.9	N.M. / N.M.	0 / 0	0/0	0 / 0
K_2SO_4/SiO_2	68	77	0.12	0.16	1.3	21	0.47:0.9	60.7 / 69.9	7.4 / 6.5	29.1 / 21.9	N.M. / N.M.	0 / 0	0/0	2.7 / 1.6
K ₂ CO ₃ /SiO ₂	64	69	0.06 8	0.05 4	0.79	1.1	2.3 : 6.3	51.5 / 53.1	12.4 / 16.3	36.1 / 30.7	N,M. / N,M.	0 / 0	0 / 0	0 / 0
Cs ₂ WO ₄ /SiO ₂	68	87	0.75	1.7	2.3	5.4	2.7 : -	67.7 / 71.7	6.2 / 6.9	21.7 / 16.6	0.0 / 0	0.2 / 0.2	0.0 / 0	4.1 / 4.6
Cs ₂ MoO ₄ /SiO ₂	25	46	1.6	2.4	1.5	1.4	2.2 : -	22.7 / 41.1	1.1 / 3.6	35.5 / 32.1	0/0.1	0/0.2	0/0	40.8 / 23.1
Cs ₃ PO ₄ /SiO ₂	62	74	0.80	1.7	2.1	1.9	2.9 : -	57.1 / 66.7	4.7 / 6.0	36.9 / 26.7	0 / 0	0.0 / 0.2	0 / 0	1.3 / 0.6
Cs_2SO_4/SiO_2	42	53	0.04 2	0.05 0	1.2	26	4.2 : -	29.1 / 41.2	8.1 / 12.7	62.8 / 46.1	0 / 0	0/0	0 / 0	0 / 0
$Cs_2CO_{3/}SiO_2$	50	57	0.38	0.45	1.2	0.53	0.94 : -	41.3 / 46.5	8.4 / 9.5	45.6 / 37.8	0 / 0.5	0 / 0	0 / 0.6	4.8 / 5.0

a) Taken at 1% CH₄ conversion with 10 kPa CH₄ and 1.7 kPa O₂ at 850 $^\circ\text{C}.$

b) Same as a) but with an additional 1.7 kPa H₂O feed.

c) Determined from the alkali metal content measured from either atomic adsorption spectroscopy (AAS) or inductively coupled plasma (ICP) spectroscopy.

Catalyst	BET surface area / m² g ⁻¹	Catalyst loading / wt% (AAS : ICP)
Li ₂ WO ₄ /SiO ₂	4.7	1.7 : 2.0
Li2MoO4/SiO2	1.0	3.9:3.9
Li_3PO_4/SiO_2	32	3.4 : 4.5
Li ₂ SO ₄ /SiO ₂	2.4	3.8:4.2
Li ₂ CO ₃ /SiO ₂	1.5	0.52 : 1.0
Na ₂ WO ₄ /SiO ₂	2.5	-: 5.0
Na ₂ MoO ₄ /SiO ₂	1.8	-: 3.5
Na ₃ PO ₄ /SiO ₂	1.4	-: 3.0
Na ₂ SO ₄ /SiO ₂	15	-: 4.3
Na ₂ CO ₃ /SiO ₂	0.7	-: 2.3
K ₂ WO ₄ /SiO ₂	2.7	3.8 : 9.0
K_2MoO_4/SiO_2	2.1	3.1 : 5.0
K ₃ PO ₄ /SiO ₂	1.0	3.6 : 8.6
K ₂ SO ₄ /SiO ₂	21	0.47 : 0.90
K ₂ CO ₃ /SiO ₂	1.1	2.3 : 6.3
Cs ₂ WO ₄ /SiO ₂	5.4	2.7 : -
Cs_2MoO_4/SiO_2	1.4	2.2 : -
Cs ₃ PO ₄ /SiO ₂	1.9	2.9 : -
Cs_2SO_4/SiO_2	26	4.2 : -
Cs ₂ CO ₃ /SiO ₂	0.53	0.94 : -

Table S3

Surface area and element analysis of alkali metal salt catalysts.

SiO ₂ structure	Catalyst
Cristobalite	$\begin{array}{c} \text{Li}_{2}\text{WO}_{4}, \text{Li}_{2}\text{SO}_{4}, \text{Na}_{2}\text{WO}_{4}, \text{Na}_{2}\text{MoO}_{4}, \text{Na}_{3}\text{PO}_{4}, \text{Na}_{2}\text{SO}_{4},\\ \text{Na}_{2}\text{CO}_{3}, \text{K}_{2}\text{WO}_{4}, \text{K}_{2}\text{MoO}_{4}, \text{K}_{3}\text{PO}_{4}, \text{K}_{2}\text{CO}_{3}, \text{Cs}_{2}\text{WO}_{4},\\ \text{Cs}_{2}\text{MoO}_{4}, \text{Cs}_{2}\text{SO}_{4}, \text{Cs}_{2}\text{CO}_{3}\end{array}$
Tridymite	Li ₂ SO ₄ , Na ₃ PO ₄ , K ₂ CO ₃
Quartz	$\text{Li}_{2}\text{MoO}_{4}, \text{Li}_{2}\text{SO}_{4}, \text{Li}_{2}\text{CO}_{3}$
Amorphous	$\text{Li}_{3}\text{PO}_{4}, \text{K}_{2}\text{SO}_{4}, \text{Cs}_{3}\text{PO}_{4}$

Assignment of SiO₂ crystal phase for each catalyst based on XRD results.

The polarizability of WO_4^{2-} and MoO_4^{2-} was obtained from reported dielectric factors ε_r . The reported ε_r for various materials was obtained and is shown in Table S5. The material polarizability can be calculated by using the Clausius-Mossotti equation:

$$A = \frac{3V}{4\pi} \frac{(\varepsilon_r - 1)}{(\varepsilon_r + 2)}$$

Table S4

where V is the molar volume of the material. To estimate the polarizability of the anion, the following equation was applied¹:

 $A(total) = A(MO_4^{2-}) + 2A(A^+)$

Where $A(MO_4^{2^-})$ is the polarizability of the anion and $A(A^+)$ is the polarizability of the alkali metal cation. Tabulated values for the polarizability of Li⁺ and Na⁺ were obtained from Coker² and gave 0.028 and 0.14 Å⁻³, respectively. The calculated values for the anion polarizability are shown also in Table S2. Using this estimation, there is relatively good agreement in the case of WO₄²⁻ of around ~10 Å⁻³. The estimated polarizability of MoO₄²⁻ took on a wider range of values. It is more likely those estimated from Li₂MoO₄ are closer to the real value as the low Li⁺ polarizability should impact the calculation less than Na⁺. However, it is clear from the values shown that the order of polarizability is WO₄²⁻ > MoO₄²⁻ > PO₄³⁻ > SO₄²⁻.

······································	······				
Material	ε _r	Reference	Calculated anion polarizability / Å ⁻³		
Li ₂ MoO ₄	5.5	Zhou et al. ³	8.1		
Li ₂ MoO ₄	5.1	Kähäri ⁴	7.8		
Li ₂ MoO ₄	5.5	Li et al. ⁵	8.1		
Li ₂ MoO ₄	5.58	Zhang et al. ⁶	8.1		
Na ₂ MoO ₄	4.31	Abbas et al. ⁷	6.5		
Na ₂ MoO ₄	4.43	Gupta et al. ¹	6.7		
Li ₂ WO ₄	5.5	Zhen et al. ⁹	10		
Li ₂ WO ₄	5.5	Zhou et al. ⁹	10		
Na ₂ WO ₄	5.6	Yuan et al. ¹⁰	9.9		
Na ₂ WO ₄	5.7	Hao et al. ¹¹	10		

Table S5Estimated values of anion polarizability based on calculations of various materials

Figure S1. XPS spectra of Li₂WO₄/SiO₂

Figure S2. XPS spectra of Li₂MoO₄/SiO₂

Figure S3. XPS spectra of Li₃PO₄/SiO₂

Figure S4. XPS spectra of Li₂SO₄/SiO₂

Figure S5. XPS spectra of Na₂WO₄/SiO₂

Figure S6. XPS spectra of Na₂MoO₄/SiO₂

Figure S7. XPS spectra of Na₃PO₄/SiO₂

Figure S8. XPS spectra of Na₂SO₄/SiO₂

Figure S9. XPS spectra of K₂WO₄/SiO₂

Figure S10. XPS spectra of K₂MoO₄/SiO₂

Figure S11. XPS spectra of K₃PO₄/SiO₂

Figure S12. XPS spectra of K_2SO_4/SiO_2

Figure S13. XPS spectra of Cs₂WO₄/SiO₂

Figure S14. XPS spectra of Cs₂MoO₄/SiO₂

Figure S15. XPS spectra of Cs₃PO₄/SiO₂

Figure S16. XPS spectra of Cs₂SO₄/SiO₂

Figure S17. XRD profiles of (a) Li-salts, (b) Na-salts, (c) K-salts and (d) Cs-Salts on SiO₂.

Figure S18. Ratio of wet (1.7 kPa H₂O added) over dry (no additional H₂O) CH₄ conversion rate as a function of enthalpy of reaction to form alkali metal peroxide (M₂O₂) from alkali metal oxide (M₂O). Rates taken at 1% CH₄ conversion and 850 °C with 10 kPa CH₄, 1.7 kPa O₂, and balance Ar.

Figure S19. Value of r_{wet}/r_{dry} as a function of XPS peak binding energy of a) cation species or b) anion centers.

Figure S20. In-situ Raman of (a) WO_4^{2-} -related catalysts and (b) MoO_4^{2-} related catalysts.

References

- 1 R. Gupta, D. H. Kim and H. T. Kim, *Ceram. Int.*, 2022, **48**, 15282–15292.
- 2 H. Coker, J. Phys. Chem., 1976, 80, 2078–2084.
- 3 D. Zhou, C. A. Randall, H. Wang, L. X. Pang and X. Yao, *J. Am. Ceram. Soc.*, 2010, **93**, 1096–1100.
- 4 H. Kähäri, PhD thesis, University of Oulu, 2016.
- 5 X. Cs, X. Xue, Q. Csn, Z. Qi, H. Wang, Y. Zhao and J. Guo, *J. Eur. Ceram. Soc.*, 2023,
 43, 1477–1482.
- H. Zhang, X. Wang, Q. Cheng, X. Ma, M. Cs, P. Zhang and Y. Zhao, J. Mater. Sci., 2016, 27, 5422–5426.
- S. A. Abbas, I. Mahmood, M. Sajjad, N. A. Noor, Q. Mahmood, M. A. Naeem, A.
 Mahmood and S. M. Ramay, *Chem. Phys.*, DOI:10.1016/j.chemphys.2020.110902.
- 8 W. Zhen, S. Cs and B. Jianjiang, *Ceram. Int.*, 2013, **39**, 9767–9772.
- 9 D. Zhou, C. A. Randall, L. X. Pang, H. Wang, J. Guo, G. Q. Zhang, X. G. Wu, L. Shui and X. Yao, J. Am. Ceram. Soc., 2011, 94, 348–350.
- 10 X. Yuan, X. Xue and H. Wang, J. Am. Ceram. Soc., 2019, **102**, 4014–4020.
- 11 J. Hao, J. Guo, C. Ma, F. Z. Yao, B. Yao, M. Si, E. Zhao and H. Wang, J. Eur. Ceram. Soc., 2021, 41, 6029–6034.