Supporting Information

Photoredox Catalyzed Three-component Tandem Cyclization of 1,5-Dienes with

α -Keto Acids and Water to Access Pyrrolidinones

Kaixia Sui,^{a, §}Shiliang Jiang,^{a, §}Yuting Leng,^{*a} Yusheng Wu,^{*a,b,c} and Yangjie Wu^a

 ^a College of Chemistry and Pingyuan Laboratory, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
E-mail: yutingleng@zzu.edu.cn ^b TYK Medicines, Inc. Huzhou, 313000, People's Republic of China.
E-mail: yusheng.wu@tykmedicines.com ^c Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, NJ, 08901, USA.
^s These authors contributed equally to this work.

Table of Contents

1. General information	1
2. Experimental procedures	2
2.1 General procedure for synthesis of enamine amides 1a – 1q	2
2.2 General procedure for synthesis of benzoylformic acids $2a - 2j$	4
2.3 General procedure for the synthesis of compounds 3	5
2.4 Synthetic utility of 3aa	5
3. Control experiment	6
4. Characterization data of the products	8
5. 2D NMR for 3aa	21
6. The Single Crystal X-ray Diffraction Study	23
7. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of the products	25
8. References	51

1. General information

Unless otherwise mentioned, solvents, reagents and photoreactors were purchased from commercial sources and were used as received. All air- and moisture-sensitive manipulations were performed using oven-dried glassware (120 °C for a minimum of 15 h), including standard Schlenk techniques under an atmosphere of argon. Column chromatography was generally performed on silica gel (300-400 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker DPX-400 spectrometer with DMSO-d₆ as the solvent and TMS as an internal standard. Chemical shifts for ¹H NMR spectra are reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0) and relative to the signal of SiMe₄ (δ 0.00 singlet). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet) and etc. The mass spectra were indicated by LC-MS (Thermo Fisher Scientific DSQ II). X-ray analysis was performed with a single-crystal X-ray diffractometer (Gemini E). High-resolution mass spectrometry (HRMS) data obtained Technologies were on an Agilent 1290-6540 UHPLC/Accurate-Mass Quadrupole Time-of Flight (Q-TOF) LC/MS using ESI as ion source. Measured values are reported to 4 decimal places of the calculated value.

The spectrum of the lamp and the visible-light irradiation instrument

Photochemical reaction was carried out under visible light irradiation by a blue LED at 25 °C. The reaction vessel is borosilicate glass test tube and the distance between it and the lamp is 1.5 cm.

Figure S1. The spectrum of our lamp (white LED)

Figure S2. The visible-light irradiation instrument

2.Starting materials

Unless otherwise noted, all materials were purchased from commercial suppliers.

2.1 General procedure for synthesis of 1,5-dienes 1a – 1q.^[1]

General procedure for synthesis of 1,5-dienes 1a – 1p:

Step 1 To a mixture of hydroxylamine hydrochloride (1.390 g, 20 mmol, 2 equiv), NaOAc (3.281 g, 40 mmol, 4 equiv), EtOH (40 mL) was added aryl ketone (10 mmol, 1 equiv), and the mixture was stirred at 90 °C for 2 h or at r.t. for overnight. The reaction mixture was cooled down to room temperature, and then EtOH was removed under reduced pressure. The resulting mixture was extracted with EtOAc. The organic layer was then washed with brine and dried over Na₂SO₄. The solvent was removed under vacuum to give oxime (> 99% yield), not further purified.

Step 2 The mixture of ketoxime (10 mmol), anhydride (20 mmol, 2 equiv), NaHSO₃ (30 mmol, 3.124 g, 3equiv) and CuI (10 mol%, 182 mg) was stirred in 1,2-dichloroethane (DCE, 60 mL) at 120 °C under argon condition. After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, diluted with EtOAc (100 mL) and washed with NaOH (2N, 100 mL) and brine (100 mL). The organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuo. The desired enamide was obtained after purification by flash chromatography on silica gel (PE/EtOAc = 3/1).

Step 3 The appropriate anilide (10 mmol, 1 equiv) was dssolved in anhydrous dichloromethane (50 mL) in a 100 ml three-necked round bottom flask filled with Ar gas. To this solution, trietylamine (1.518 g, 15 mmol, 1.5 equiv) was added. The reaction mixture was then cooled to 0 °C. Next, the methacryloyl chloride (15 mmol, 1.5 equiv) was added dropwise. And the mixture was stirred at 0 °C for 30 minutes. After warming to room temperature and stirred for 16 h, the reaction was quenched with water and extracted with dichloromethane. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by a silica gel column chromatography (PE/EtOAc = 15:1) to get the desired 1,5-dienes 1a -1p.

General procedure for synthesis of 1,5-dienes 1q: To a 100 mL round-bottom flask was successively charged with atropic acid (15.0 mmol, 1.5 equiv), a drop of DMF, dichloromethane (40.0 mL) and (COCl)₂ (3.8 g, 30 mmol, 2.0 equiv) at 0 °C. The reaction was stirred at this temperature for 1 h. The excess of (COCl)₂ was removed under reduced pressure and the corresponding crude acryloyl chloride was afforded. The *N*-(1-phenylvinyl)acetamide (5 mmol, 1 equiv) was dissolved in anhydrous dichloromethane (50 mL) in a 100 ml three-necked round bottom flask filled with Ar gas. To this solution, triethylamine (0.759 g, 7.5 mmol, 1.5 equiv) was added. The reaction mixture was then cooled to 0 °C. Next, the methacryloyl chloride (7.5 mmol, 1.5 equiv) was added dropwise. And the mixture was stirred at 0 °C for 30 minutes. After warming to room temperature and stirred for 16 h, the reaction was quenched with water and extracted with dichloromethane. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated. The crude product was purified by a silica gel column chromatography (PE/EtOAc = 15:1) to get the desired compound **1q**.

2.2 General procedure for synthesis of benzoylformic acids $2a - 2j^{[2]}$

General procedure for synthesis of benzoylformic acids 2a - 2j: Add methyl ketone (5.0 mmol), SeO₂ (6.0 mmol), and 20.0 mL pyridine to a 50.0 mL round bottom bottle. Stir the reaction mixture in an oil bath at 110 °C for 1 h, then lower the

temperature to 90 °C and stir for 4 h. Using petroleum ether/ethyl acetate=20:1 for rapid column chromatography separation, benzoylformic acids 2a - 2j was obtained.

2.3 General procedure for the synthesis of compounds 3

A dry 25 mL Schlenk tube equipped with a magnetic stir bar was charged with enamine amides 1 (0.1 mmol, 1.0 equiv.), benzoylformic acids 2 (0.2 mmol), $(NH_4)_2S_2O_8$ (3.0 equiv.), $[Ir(dtbpy)(ppy)_2][PF_6]$ (2.0 mol%), AgOAc (10.0 mol%) and CH₃CN/H₂O (1 mL, 1:1) was stirred and irradiated with a 12 W blue LED at room temperature for 24 h under Ar atmosphere. The reaction mixture was diluted with ethyl acetate. The organic layer was washed with salt water and dried with Na₂SO₄. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (PE/EtOAc=5/1) to afford the desired products acylated pyrrolidone compound **3**.

2.4 Synthetic utility of compound 3aa

To an oven-dried 100 mL round-bottomed flask equipped with a magnetic stirring bar was added enamine amide **1a** (2.0 mmol, 0.458 g), benzoylformic acid **2a** (0.2 mmol, 0.6 g), $(NH_4)_2S_2O_8$ (6.0 mmol, 1.369 g), $[Ir(dtbbpy)(ppy)_2][PF_6]$ (2.0 mol%, 0.036 g), AgOAc (10.0 mol%, 0.033 g) and CH₃CN/H₂O (20 mL, 1:1) was

stirred and irradiated with a 12 W blue LED at room temperature for 48 h under Ar atmosphere. The reaction mixture was diluted with ethyl acetate. The organic layer was washed with salt water and dried with Na₂SO₄. The filtrate was concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (PE/EtOAc=5/1) to afford the desired products acylated pyrrolidone compounds **3aa** (0.337 g, 48%).

Compound **3aa** (0.2 mmol, 70.23 mg) was added into a 25 mL round bottom flask charged with a magnetic stir bar and dissolved in acetic acid (1 mL). The reaction mixture was stirred at 110 °C for 1 h. The reaction progress was monitored by TLC. When the starting material was fully consumed, the reaction was cooled to room temperature and quenched by addition of 1M NaOH until neutral pH. Organic phase was separated. And the aqueous phase was extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude extracts were purified by silica gel (PE/EtOAc=10/1) to obtain the compound **5** (50.07 mg, 86%).

3 Control experiment

A 25 mL Schlenk tube containing a magnetic was charged with **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), $(NH_4)_2S_2O_8$ (0.3 mmol, 3.0 equiv.), $[Ir(dtbbpy)(ppy)_2][PF_6]$ (2.0 mol %), AgOAc (10.0 mol %), CH₃CN/H₂O (1 mL, 1:1), additive (0.3 mmol, 3.0 equiv.), was stirred and irradiated with a 12 W blue LED at room temperature for 24 h under Ar atmosphere. Upon completion, the reaction mixture was cooled to room temperature, and CH₂Cl₂ (20 mL) was added. The resulting mixture was filtered through a pad of Celite, and concentrated in vacuum. The amount of **3aa** was detected by TLC and HRMS.

A 25 mL Schlenk tube containing a magnetic was charged with **1a** (0.1 mmol, 1.0 equiv.), **2a** (0.2 mmol, 2.0 equiv.), $(NH_4)_2S_2O_8$ (0.3 mmol, 3.0 equiv.), $[Ir(dtbbpy)(ppy)_2][PF_6]$ (2.0 mol %), AgOAc (10.0 mol %), CH₃CN/H₂¹⁸O (1 mL, 1:1), was stirred and irradiated with a 12 W blue LED at room temperature for 24 h under Ar atmosphere. Upon completion, the reaction mixture was cooled to room temperature, and CH₂Cl₂ (20 mL) was added. The resulting mixture was filtered through a pad of Celite, and concentrated in vacuum. The amount of **3aa-¹⁸O** was detected by TLC and HRMS.

Figure S3. HRMS Data of TEMPO Adduct 4.

Figure S4. HRMS Data of 3aa-18O.

4. Characterization data of the products

1-acetyl-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)-5-phenylpyrrolidin-2-one (3aa)

White powdery solid (yield 27.38 mg, 78%); mp:138.1-139.0°C; (dr = 6:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.03-7.92 (m, 2H), 7.70-7.57 (m, 3H), 7.56-7.47 (m, 2H), 7.38-7.31 (m, 2H), 7.28-7.19 (m, 1H), 6.50-6.39 (m, 1H), 3.67-3.53 (m, 1H), 3.53-3.42 (m, 1H), 2.47-2.34 (m, 3H), 2.28-2.17 (m, 1H), 2.09-1.98 (m, 1H), 1.53-1.10 (m, 3H).¹³C NMR (101 MHz, DMSO) δ 198.5, 181.0, 171.3, 146.6, 136.7, 134.0, 129.2, 128.4, 128.4, 127.2, 124.9, 90.8, 48.7, 46.4, 42.7, 26.5, 26.1. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₁NO₄Na [M+Na]⁺ 374.1363, found: 374.1365.

1-acetyl-5-(4-fluorophenyl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)pyrrolid in-2-one (3ba)

White powdery solid (yield 30.60 mg, 83%); mp:127.5-128.4°C; (dr = 10:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.13-8.03 (m, 1H), 8.03-7.93 (m, 1H), 7.69-7.58 (m, 2H), 7.56-7.50 (m, 1H), 7.39-7.14 (m, 4H), 6.58-6.41 (m, 1H), 3.66-3.62 (m, 1H), 3.50-3.41 (m, 1H), 2.45-2.31(m, 3H), 2.26-2.16(m, 1H), 2.08-1.99 (m, 1H), 1.51-1.10 (m, 3H).¹³C NMR (101 MHz, DMSO) δ 198.7, 197.1, 181.0, 180.97, 171.2, 165.7(d, $J_{C-F} = 253.5$ Hz), 161.6(d, $J_{C-F} = 243.4$ Hz), 146.5, 142.8(d, $J_{C-F} = 4.0$ Hz), 136.6, 134.1, 133.4(d, $J_{C-F} = 3.0$ Hz), 131.5(d, $J_{C-F} = 9.1$ Hz), 129.2, 128.6, 128.4, 128.39, 127.2, 127.0(d, $J_{C-F} = 8.1$ Hz), 125.2, 124.9, 116.2(d, $J_{C-F} = 22.2$ Hz), 115.1(d, $J_{C-F} = 21.2$ Hz), 90.8, 90.4, 48.7, 46.4, 46.3, 42.7, 42.6, 26.5, 26.47, 26.1, 26.05. ¹⁹F NMR (376 MHz, DMSO) δ -105.5, -116.6. HRMS (ESI, m/z): Calcd. For C₂₁H₂₀FNO4Na [M+Na]⁺ 392.1268, found: 392.1269.

1-acetyl-5-(4-chlorophenyl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)pyrrolid in-2-one (3ca)

White powdery solid (yield 28.50 mg, 74%); mp:139.5-140.4°C; (dr = 11:1 determined by ¹H NMR from 1.47-1.19). 1H NMR (400 MHz, DMSO) δ 8.04-7.94 (m, 2H), 7.69-7.58 (m, 3H), 7.56-7.50 (m, 1H), 7.45-7.20 (m, 3H), 6.65-6.40 (m, 1H), 3.66-3.52 (m, 1H), 3.52-3.41 (m, 1H), 2.46-2.31 (m, 3H), 2.29-2.15 (m, 1H), 2.10-1.96 (m, 1H), 1.52-1.15 (m, 3H). 13C NMR (101 MHz, DMSO) δ 198.7, 197.6,

181.0, 180.9, 171.2, 171.1, 146.5, 145.7, 138.9, 136.6, 135.3, 134.1, 131.9, 130.4, 129.3, 129.2, 128.4, 128.4, 128.4, 127.2, 126.9, 124.9, 90.8, 90.3, 48.7, 48.5, 46.4, 46.3, 42.7, 42.6, 26.5, 26.4, 26.0. HRMS (ESI, m/z): Calcd. For C₂₁H₂₀ClNO₄Na [M+Na]+ 408.0973, found: 408.0975.

1-acetyl-5-(4-bromophenyl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)pyrrolid in-2-one (3da)

White powdery solid (yield 30.89 mg, 72%); mp:150.0-150.9°C; (dr = 10:1 determined by ¹H NMR from 1.47-1.18). ¹H NMR (400 MHz, DMSO) δ 8.02-7.89 (m, 2H), 7.77-7.58 (m, 2H), 7.58-7.49 (m, 4H), 7.39-7.21 (m, 1H), 6.65-6.44 (m, 1H), 3.67-3.53 (m, 1H), 3.52-3.41(m, 1H), 2.45-2.33(m, 3H), 2.27-2.18 (m, 1H), 2.09-2.00 (m, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.7, 197.8, 181.0, 180.9, 171.2, 171.1, 146.5, 146.1, 136.6, 135.6, 134.1, 132.3, 131.3, 130.5, 129.2, 128.5, 128.4, 128.1, 127.3, 127.2, 127.5, 124.9, 120.5, 90.8, 90.3, 48.7, 48.5, 46.4, 46.3, 42.7, 42.6, 26.5, 26.4, 26.0. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀BrNO₄Na [M+Na]⁺ 452.0468, found: 452.0476.

1-acetyl-5-hydroxy-5-(4-iodophenyl)-3-methyl-3-(2-oxo-2-phenylethyl)pyrrolidin -2-one (3ea)

White powdery solid (yield 32.92 mg, 69%); mp:157.5-158.4°C; (dr = 14:1 determined by ¹H NMR from 1.31-1.03). ¹H NMR (400 MHz, DMSO) δ 7.88-7.74

(m, 2H), 7.63-7.34 (m, 5H), 7.30-7.00 (m, 2H), 6.49-6.27 (m, 1H), 3.50-3.36 (m, 1H), 3.36-3.24 (m, 1H), 2.30-2.14 (m, 3H), 2.11-1.98 (m, 1H), 1.93-1.82 (m, 1H), 1.31 (s, 3H).¹³C NMR (101 MHz, DMSO) δ 198.6, 198.1, 180.9, 171.2, 171.1, 146.6, 146.5, 138.1, 137.2, 136.6, 135.9, 134.1, 130.2, 129.2, 128.4, 128.4, 127.4, 127.2, 124.9, 102.7, 93.4, 90.8, 90.4, 48.7, 48.5, 46.4, 46.2, 42.6, 26.5, 26.4, 26.0. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀INO₄Na [M+Na]⁺ 500.0329, found: 500.0338.

1-acetyl-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)-5-(*p*-tolyl)pyrrolidin-2-one (3fa)

White powdery solid (yield 26.66 mg, 73%); mp:129.7-130.4°C; (dr = 7:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.02-7.81 (m, 2H), 7.69-7.45 (m, 3H), 7.39-7.27 (m, 3H), 7.26-7.07 (m, 1H), 6.46-6.31 (m, 1H), 3.63-3.50 (m, 1H), 3.50-3.38 (m, 1H), 2.47-2.26 (m, 6H), 2.25-2.18 (m, 1H), 2.08-1.98 (m, 1H), 1.50-1.09 (m, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.5, 198.0, 181.1, 181.0, 171.3, 171.3, 146.6, 144.4, 143.7, 136.7, 136.3, 134.2, 134.0, 129.7, 129.2, 128.9, 128.6, 128.4, 128.4, 127.2, 124.9, 124.9, 90.8, 90.8, 48.7, 46.3, 46.2, 42.6, 42.6, 26.6, 26.5, 26.5, 26.1, 21.6, 21.0. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1518.

1-acetyl-5-hydroxy-5-(4-methoxyphenyl)-3-methyl-3-(2-oxo-2-phenylethyl)pyrrol idin-2-one (3ga)

White powdery solid (yield 28.59 mg, 75%); mp:103.5-104.4°C; (dr = 10:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.03-7.93 (m, 2H), 7.67-7.50 (m, 2H), 7.40-7.19 (m, 3H), 7.08-6.89 (m, 2H), 6.49-6.34 (m, 1H), 3.89-3.73 m, 3H), 3.62-3.36 (m, 2H), 2.47-2.36 (m, 3H), 2.23 (dd, J = 13.5, 1.7 Hz, 1H), 2.04 (d, J = 13.4 Hz, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 196.7, 181.1, 171.3, 163.8, 146.6, 130.8, 129.6, 128.4, 127.2, 124.9, 114.4, 90.8, 56.0, 48.7, 46.0, 42.7, 26.5, 26.1. HRMS (ESI, m/z): Calcd. For C₂₂H₂₃NO₅Na [M+Na]⁺ 404.1468, found: 404.1464.

1-acetyl-5-(3-bromophenyl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)pyrrolid in-2-one (3ha)

White powdery solid (yield 26.17 mg, 61%); mp:153.8-154.4°C; (dr = 8:1 determined by ¹H NMR from 1.47-1.1.21). ¹H NMR (400 MHz, DMSO) δ 8.15-7.96 (m, 2H), 7.89-7.76 (m, 1H), 7.70-7.58 (m, 2H), 7.57-7.29 (m, 4H), 6.73-6.43 (m, 1H), 3.70-3.42 (m, 2H), 2.39 (d, *J* = 2.7 Hz, 3H), 2.29-2.16 (m, 1H), 2.05 (dd, *J* = 13.5, 8.6 Hz, 1H), 1.47 (d, *J* = 1.5 Hz, 3H).¹³C NMR (101 MHz, DMSO) δ 198.7, 197.6, 180.9, 180.9, 171.2, 171.1, 149.4, 146.5, 138.7, 136.6, 134.1, 131.5, 131.1, 130.7, 130.1, 129.2, 128.4, 128.4, 128.1, 127.5, 127.3, 124.9, 124.2, 124.0, 122.6, 121.8, 90.8, 90.0, 48.7, 48.6, 46.4, 42.7, 42.6 42.5, 26.5, 26.4, 26.0. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀BrNO₄Na [M+Na]⁺ 452.0468, found: 452.0464.

in-2-one (3ia)

White powdery solid (yield 25.03 mg, 65%); mp:152.7-153.4°C; (dr = 8:1 determined by ¹H NMR from 1.47-1.21). ¹H NMR (400 MHz, DMSO) δ 8.05-7.93 (m, 2H), 7.76-7.63 (m, 2H), 7.62-7.50 (m, 3H), 7.44-7.22 (m, 2H), 6.73-6.45 (m, 1H), 3.62 (d, J = 19.1 Hz, 1H), 3.56-3.42 (m, 1H), 2.46-2.34 (m, 3H), 2.28-2.15 (m, 1H), 2.11-2.00 (m, 1H), 1.47 (s, 3H) ¹³C NMR (101 MHz, DMSO) δ 198.7, 197.6, 180.9, 171.2, 171.1, 149.2, 146.5, 138.5, 136.6, 134.2, 134.1, 133.7, 133.2, 131.2, 130.4, 129.2, 128.4, 128.4, 128.2, 127.2, 127.1, 125.2, 124.9, 123.9, 123.6, 90.8, 90.1, 48.5, 46.4, 42.7, 42.6, 26.5, 26.4, 26.0. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀ClNO₄Na [M+Na]⁺ 408.0973, found: 408.0970.

1-acetyl-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)-5-(*m*-tolyl)pyrrolidin-2-one (3ja)

White powdery solid (yield 26.65 mg, 73%); mp:108.0-108.4°C; (dr = 8:1 determined by ¹H NMR from 1.47-1.17). ¹H NMR (400 MHz, DMSO) δ 8.04-7.96 (m, 1H), 7.85-7.77 (m, 1H), 7.68-7.51 (m, 2H), 7.49-7.02 (m, 5H), 6.49-6.35 (m, 1H), 3.66-3.41 (m, 2H), 2.47-2.30 (m, 6H), 2.27-2.17 (m, 1H), 2.04 (dd, *J* = 13.4, 5.0 Hz, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.6, 198.4, 181.04, 181.01, 171.27, 171.25, 146.6, 138.6, 137.2, 136.70, 136.69, 134.6, 134.0, 129.2, 129.1, 128.8, 128.63, 128.42, 128.40, 127.9, 127.2, 125.7, 125.6, 125.2, 124.9, 122.0, 90.8, 48.7, 46.4, 46.3, 42.67, 42.65, 26.49, 26.47, 26.1, 21.8, 21.3. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1519.

1-acetyl-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)-5-(*o*-tolyl)pyrrolidin-2-one (3ka)

White oily liquid (yield 22.64 mg, 62%); (dr = 8:1 determined by ¹H NMR from 1.44-1.14). ¹H NMR (400 MHz, DMSO) δ 7.77 (dd, J = 7.7, 1.4 Hz, 1H), 7.66-7.52 (m, 2H), 7.43 (td, J = 7.5, 1.4 Hz, 1H), 7.38-7.27 (m, 4H), 7.26-7.20 (m, 1H), 6.50-6.44 (m, 1H), 3.51-3.37 (m, 2H), 2.47-2.29 (m, 6H), 2.27-2.19 (m, 1H), 2.08 (d, J = 13.4 Hz, 1H), 1.44 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 203.1, 181.0, 171.3, 146.6, 138.0, 137.2, 132.1, 131.9, 128.9, 128.4, 127.3, 126.4, 124.9, 90.8, 49.4, 49.0, 42.9, 26.5, 25.9, 20.9. HRMS (ESI, m/z): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1520.

1-acetyl-5-(3,4-dimethylphenyl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)pyr rolidin-2-one (3la)

White powdery solid (yield 29.20 mg, 77%); mp:136.3-136.9°C; (dr = 9:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.03-7.69 (m, 2H), 7.67-7.50 (m, 2H), 7.41-7.06 (m, 4H), 6.51-6.24 (m, 1H), 3.62-3.38 (m, 2H), 2.48-2.21 (m, 9H), 2.20-215 (m, 1H), 2.07-1.99 (m, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.1, 181.1, 171.3, 146.6, 143.2, 137.3, 134.6, 130.2, 129.3, 128.4, 127.2, 126.2, 124.9, 90.8, 48.7, 46.3, 42.6, 26.5, 26.1, 20.1, 19.7. HRMS (ESI, *m/z*): Calcd. For C₂₃H₂₅NO₄Na [M+Na]⁺ 402.1676, found: 402.1675.

1-acetyl-5-(2,5-dimethylphenyl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)pyr

rolidin-2-one (3ma)

White oily liquid (yield 21.61 mg, 57%); (dr = 8:1 determined by ¹H NMR from 1.45-1.14). ¹H NMR (400 MHz, DMSO) δ 7.69-7.50 (m, 3H), 7.38-7.31 (m, 2H), 7.28-7.12 (m, 3H), 6.46 (d, *J* = 8.0 Hz, 1H), 3.48-3.36 (m, 2H), 2.43 (d, *J* = 22.1 Hz, 3H), 2.38-2.26 (m, 6H), 2.25-2.19 (m, 1H), 2.12-2.02 (m, 1H), 1.45 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 203.0, 181.0, 171.3, 146.6, 137.9, 135.5, 134.1, 132.5, 132.0, 129.4, 128.4, 127.3, 124.9, 90.8, 49.3, 49.0, 42.9, 26.5, 25.9, 20.9, 20.5. HRMS (ESI, *m/z*): Calcd. For C₂₃H₂₅NO₄Na [M+Na]⁺ 402.1676, found: 402.1677.

1-acetyl-5-hydroxy-3-methyl-5-(naphthalen-2-yl)-3-(2-oxo-2-phenylethyl)pyrroli din-2-one (3na)

White powdery solid (yield 28.48 mg, 71%); mp:135.9-136.9°C; (dr = 8:1 determined by ¹H NMR from 1.53-1.20). ¹H NMR (400 MHz, DMSO) δ 8.78-8.66 (m, 1H), 8.22-8.07 (m, 1H), 8.06-7.84 (m, 4H), 7.82-7.59 (m, 3H), 7.58-7.45 (m, 2H), 7.41-7.31 (m, 1H), 6.76-6.44 (m, 1H), 3.84-3.44 (m, 2H), 2.46-2.35 (m, 3H), 2.32 (ddd, *J* = 18.0, 13.5, 1.8 Hz, 1H), 2.10 (dd, *J* = 13.4, 7.7 Hz, 1H), 1.52 (d, *J* = 2.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.6, 198.5, 181.1, 171.28, 171.25, 146.6, 144.0, 136.7, 135.6, 134.1, 133.9, 132.9, 132.6, 132.5, 130.5, 130.1, 129.2, 128.8, 128.5, 128.4, 128.3, 128.2, 127.9, 127.5, 127.3, 126.7, 126.3, 124.9, 123.9, 123.6, 123.4, 90.9, 90.8, 48.8, 48.4, 46.4, 42.8, 42.7, 26.50, 26.46, 26.2, 26.1. HRMS (ESI, *m/z*): Calcd. For C₂₅H₂₃NO₄Na [M+Na]⁺ 424.1519, found: 424.1516.

1-acetyl-5-(benzo[d][1,3]dioxol-5-yl)-5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl) pyrrolidin-2-one (3oa)

White oily liquid (yield 16.70 mg, 43%); (dr = 11:1 determined by ¹H NMR from 1.45-1.13). ¹H NMR (400 MHz, DMSO) δ 8.02-7.57 (m, 3H), 7.56-7.31 (m, 3H), 7.26-7.09 (m, 1H), 7.06-6.86 (m, 1H), 6.48-6.38 (m, 1H), 6.17-5.98 (m, 2H), 3.68-3.37 (m, 2H), 2.46-2.32 (m, 3H), 2.26-2.15 (m, 1H), 2.07-1.98 (m, 1H), 1.45 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 196.5, 181.1, 171.3, 152.2, 148.3, 146.6, 131.3, 128.4, 127.2, 125.0, 124.9, 108.5, 107.8, 102.6, 90.8, 48.7, 46.1, 42.7, 26.5, 26.1. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₁NO₆Na [M+Na]⁺ 418.1261, found: 418.1262.

5-hydroxy-3-methyl-3-(2-oxo-2-phenylethyl)-5-phenyl-1-propionylpyrrolidin-2-o ne (3pa)

White powdery solid (yield 23.73 mg, 65%); mp:125.0-126.1°C; (dr = 7:1 determined by ¹H NMR from 1.17-0.97). ¹H NMR (400 MHz, DMSO) δ 8.04-7.90 (m, 2H), 7.69-7.48 (m, 5H), 7.39-7.32(m, 2H), 7.27-7.20 (m, 1H), 6.45 (d, *J* = 1.6 Hz, 1H), 3.72-3.41 (m, 2H), 2.96-2.65 (m, 2H), 2.24 (dd, *J* = 13.4, 1.9 Hz, 1H), 2.05 (d, *J* = 13.4 Hz, 1H), 1.48 (s, 3H), 0.99 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.6, 180.8, 175.0, 146.7, 136.7, 134.0, 129.2, 128.4, 128.3(7), 127.2, 124.9, 90.9, 48.7, 46.4, 42.7, 31.5, 26.1, 8.8. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1524.

1-acetyl-5-hydroxy-3-(2-oxo-2-phenylethyl)-3,5-diphenylpyrrolidin-2-one (3qa)

White oily liquid (yield 24.79 mg, 60%); (dr = 5:1 determined by ¹H NMR from 2.55-2.48). ¹H NMR (400 MHz, DMSO) δ 8.02-7.91 (m, 2H), 7.68-7.58 (m, 4H), 7.54-7.46 (m, 2H), 7.44-7.04 (m, 7H), 6.55-6.16 (m, 1H), 4.12-3.95 (m, 1H), 3.74-3.59 (m, 1H), 2.97-2.57 (m, 2H), 2.56-2.42 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 198.1, 197.2, 178.3, 177.3, 171.7, 171.1, 146.4, 144.4, 142.7, 140.5, 136.8, 136.6, 134.1, 134.0, 133.8, 129.2, 129.1, 128.8, 128.6, 128.52, 128.45, 128.4, 128.1, 127.4, 127.3, 127.2, 127.1, 127.0, 125.3, 124.9, 91.3, 90.9, 51.2, 50.5, 48.5, 48.3, 26.8, 26.7. HRMS (ESI, *m/z*): Calcd. For C₂₆H₂₃NO₄Na [M+Na]⁺ 436.1519, found: 436.1518.

1-acetyl-3-(2-(4-chlorophenyl)-2-oxoethyl)-5-hydroxy-3-methyl-5-phenylpyrrolid in-2-one (3ab)

White powdery solid (yield 31.96 mg, 83%); mp:156.6-157.6°C; (dr = 16:1 determined by ¹H NMR from 1.47-1.18). ¹H NMR (400 MHz, DMSO) δ 8.05-7.95 (m, 2H), 7.70-7.57 (m, 3H), 7.57-7.20 (m, 4H), 6.66-6.40 (m, 1H), 3.70-3.40 (m, 2H), 2.46-2.32 (m, 3H), 2.27-2.14 (m, 1H), 2.12-1.97 (m, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.7, 197.6, 181.0, 180.9, 171.2, 171.1, 146.5, 145.7, 138.9, 136.6, 135.3, 134.1, 131.9, 130.4, 129.3, 129.2, 128.5, 128.4, 128.3(7), 127.3, 126.9, 124.9, 90.8, 90.3, 48.7, 48.5, 46.4, 46.3, 42.7, 42.6, 26.5, 26.4, 26.1. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀ClNO₄Na [M+Na]⁺ 408.0973, found: 408.0973.

in-2-one (3ac)

White powdery solid (yield 31.75 mg, 74%); mp:161.0-161.9°C; (dr = 11:1 determined by ¹H NMR from 1.47-1.19). ¹H NMR (400 MHz, DMSO) δ 8.03-7.88 (m, 2H), 7.77-7.59 (m, 2H), 7.57-7.50 (m, 4H), 7.38-7.21 (m, 1H), 6.69-6.43 (m, 1H), 3.69-3.40 (m, 2H), 2.46-2.31(m, 3H), 2.26-2.16 (m, 1H), 2.09-1.97 (m, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.7, 197.8, 181.0, 180.9, 171.2, 171.1, 146.5, 146.1, 136.6, 135.6, 134.1, 132.3, 131.3, 130.5, 129.2, 128.5, 128.4, 128.1, 127.3, 127.2(5), 124.9, 120.5, 90.8, 90.3, 48.7, 48.5, 46.4, 46.3, 42.7, 42.6, 26.5, 26.4, 26.1. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀BrNO₄Na [M+Na]⁺ 452.0468, found: 452.0474.

1-acetyl-5-hydroxy-3-(2-(4-iodophenyl)-2-oxoethyl)-3-methyl-5-phenylpyrrolidin -2-one (3ad)

White powdery solid (yield 34.35 mg, 72%); mp:169.7-170.1°C; (dr = 14:1 determined by ¹H NMR from 1.46-1.18). ¹H NMR (400 MHz, DMSO) δ 8.03-7.89 (m, 2H), 7.80-7.49 (m, 5H), 7.45-7.32 (m, 2H), 6.62-6.44 (m, 1H), 3.68-3.51 (m, 1H), 3.52-3.40 (m, 1H), 2.46-2.28 (m, 3H), 2.26-2.14 (m, 1H), 2.04 (dd, *J* = 13.4, 3.2 Hz, 1H), 1.46 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.6, 198.1, 180.9, 171.2, 171.1, 146.6, 146.5, 138.1, 137.2, 136.6, 135.9, 134.1, 130.2, 129.2, 128.5, 128.4, 127.4, 127.2, 124.9, 93.4, 90.8, 90.4, 48.5, 46.4, 46.2, 42.6, 26.5, 26.4, 26.0. HRMS (ESI, *m/z*): Calcd. For C₂₁H₂₀INO₄Na [M+Na]⁺ 500.0329, found: 500.0324.

1-acetyl-3-(2-(4-bromophenyl)-2-oxoethyl)-5-hydroxy-3-methyl-5-phenylpyrrolid in-2-one (3ae) White powdery solid (yield 26.70 mg, 73%); mp:140.0-141.1°C; (dr = 7:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.04-7.83 (m, 2H), 7.69-7.46 (m, 3H), 7.40-7.30 (m, 3H), 7.26-7.13 (m, 1H), 6.50-6.32 (m, 1H), 3.64-3.52 (m, 1H), 3.50-3.39 (m, 1H), 2.46-2.26 (m, 6H), 2.26-2.18 (m, 1H), 2.07-1.98 (m, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.5, 198.0, 181.1, 181.0, 171.3, 171.3, 146.6, 144.4, 143.7, 136.7, 136.3, 134.2, 134.0, 129.7, 129.2, 128.9, 128.6, 128.4, 128.4, 127.2, 124.9, 124.8(6), 90.8, 90.8, 49.3, 48.7, 46.3, 46.2, 42.6, 42.6, 26.6, 26.5, 26.4, 26.1, 21.6, 21.1. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1518.

1-acetyl-5-hydroxy-3-methyl-3-(2-oxo-2-(*m*-tolyl)ethyl)-5-phenylpyrrolidin-2-one (3af)

White powdery solid (yield 25.20 mg, 69%); mp:118.0-118.5°C; (dr = 7:1 determined by ¹H NMR from 1.47-1.17). ¹H NMR (400 MHz, DMSO) δ 8.04-7.92 (m, 1H), 7.84-7.74 (m, 1H), 7.69-7.50 (m, 2H), 7.49-7.02 (m, 5H), 6.50-6.35 (m, 1H), 3.67-3.40 (m, 2H), 2.47-2.28 (m, 6H), 2.27-2.16 (m, 1H), 2.10-1.95 (m, 1H), 1.47 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.6, 198.4, 181.1, 181.0, 171.3, 171.2(5), 146.6, 138.6, 137.2, 136.7, 134.6, 134.0, 129.2, 129.1, 128.8, 128.6, 128.4, 128.4, 128.3(6), 127.9, 127.2, 125.7, 125.6, 125.2, 124.9, 122.0, 91.1, 90.8, 48.7, 46.4, 46.3, 42.7, 42.6(5), 26.6, 26.5, 26.4, 26.1, 21.8, 21.3. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1518.

1-acetyl-5-hydroxy-3-methyl-3-(2-oxo-2-(*o*-tolyl)ethyl)-5-phenylpyrrolidin-2-one (3ag)

White oily liquid (yield 27.38 mg, 75%); (dr = 8:1 determined by ¹H NMR from 1.44-1.14). ¹H NMR (400 MHz, DMSO) δ 7.81-7.73 (m, 1H), 7.66-7.57 (m, 2H), 7.47-7.40 (m, 1H), 7.39-7.20 (m, 5H), 6.54-6.40 (m, 1H), 3.50-3.37 (m, 2H), 2.47-2.32 (m, 6H), 2.27-2.18 (m, 1H), 2.11-2.03 (m, 1H), 1.44 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 203.1, 181.0, 171.3, 146.6, 138.0, 137.2, 132.1, 131.9, 128.9, 128.4, 127.3, 126.4, 124.9, 90.8, 49.4, 49.0, 42.9, 26.5, 25.9, 20.9. HRMS (ESI, *m/z*): Calcd. For C₂₂H₂₃NO₄Na [M+Na]⁺ 388.1519, found: 388.1519.

1-acetyl-5-hydroxy-3-(2-(4-iodophenyl)-2-oxoethyl)-3-methyl-5-phenylpyrrolidin -2-one (3ah)

White powdery solid (yield 27.68 mg, 73%); mp:139.0-140.2°C; (dr = 8:1 determined by ¹H NMR from 1.47-1.15). ¹H NMR (400 MHz, DMSO) δ 8.03-7.70 (m, 2H), 7.67-7.49 (m, 2H), 7.42-7.04 (m, 4H), 6.47-6.22 (m, 1H), 3.65-3.37 (m, 2H), 2.47-2.18 (m, 10H), 2.06-1.98 (m, 1H), 1.52-1.08 (m, 3H). ¹³C NMR (101 MHz, DMSO) δ 198.4, 198.1, 181.1, 171.3, 171.2(6), 146.6, 144.0, 143.2, 137.3, 136.7, 135.8, 135.0, 134.6, 134.0, 130.2, 129.5, 129.3, 129.2, 128.6, 128.4, 128.4, 127.2, 126.2, 125.2, 124.9, 122.3, 91.1, 90.8, 48.7, 46.3, 42.6, 26.5, 26.5, 26.1, 20.3, 20.1, 19.7, 19.4. HRMS (ESI, *m/z*): Calcd. For C₂₃H₂₅NO₄Na [M+Na]⁺ 402.1676, found: 402.1679.

3-methyl-3-(2-oxo-2-phenylethyl)-5-phenyl-1,3-dihydro-2*H*-pyrrol-2-one (5)

White powdery solid (yield 50.05 mg, 86%); mp:118.0-119.6°C. ¹H NMR (400 MHz, DMSO) δ 7.96 (d, J = 8.0 Hz, 2H), 7.69-7.62 (m, 3H), 7.53 (t, J = 7.6 Hz, 2H), 7.50-7.39 (m, 3H), 6.14 (s, 1H), 3.95 (d, J = 18.6 Hz, 1H), 3.52 (d, J = 18.6 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 197.2, 181.3, 151.1, 136.1, 134.2, 129.9, 129.3, 129.3, 128.9, 128.5, 124.9, 109.0, 46.2, 46.2, 24.6. HRMS (ESI, *m/z*): Calcd. For C₁₉H₁₈NO₂ [M+H]⁺ 292.1332, found: 292.1331.

5.2D NMR for 3

3aa H-H COSY

aa HMBC

6.The Single Crystal X-ray Diffraction Study

X-ray structure of 3aa

The product **3aa** was recrystallized from petroleum ether/ethyl acetate at room temperature. Fuether information can be found in the CIF file. This crystal was deposited in the Cambridge Crystallographic Data Center and assigned as CCDC2447550. ORTEP view of complex Ellipsoids are represented at the 50% probability level.

Table S1 Crystal data and structure refinement for CCDC 244/55	/220
---	------

Empirical formula	$C_{21}H_{21}NO_4$
Formula weight	351.39
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21
a/Å	6.22346(18)
b/Å	22.0539(8)

c/Å	13.8854(4)
α/°	90
β/°	101.653(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1866.51(10)
Z	4
$\rho_{calc}g/cm^3$	1.250
μ/mm ⁻¹	0.705
F(000)	744.0
Crystal size/mm ³	0.15 imes 0.11 imes 0.1
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.638 to 141.906
Index ranges	$-7 \le h \le 7$, $-26 \le k \le 20$, $-16 \le k \le 16$
Reflections collected	21216
Independent reflections	$6314 [R_{int} = 0.0395, R_{sigma} = 0.0423]$
Data/restraints/parameters	6314/1/475
Goodness-of-fit on F ²	1.020
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0480, wR_2 = 0.1221$
Final R indexes [all data]	$R_1 = 0.0546, wR_2 = 0.1298$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.25
Flack parameter	0.10(16)

7. ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra of the products

¹³C NMR (101 MHz, DMSO-d₆) spectrum of compound 3aa

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 3ba

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ca

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3da

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ea

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3fa

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ga

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ha

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ia

¹³C NMR (101 MHz, DMSO-d₆) spectrum of compound 3ia

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ja

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ka

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3la

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ma

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3na

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, DMSO-d₆) spectrum of compound 3na

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3oa

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3pa

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, DMSO-d₆) spectrum of compound 3pa

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3qa

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ab

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ac

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ad

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ae

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3af

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ag

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3ah

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 5

¹³C NMR (101 MHz, DMSO-*d*₆) spectrum of compound 5

8. References

- [1] P. P. Wang, Y. T. Leng, Y. J. Wu, Eur. J. Org. Chem., 2022, 2022, e202201091.
- [2] G. Chen, C. Li, J. Peng, Z. Yuan, P. Liu, X. Liu, Org. Biomol. Chem., 2019, 17, 8527-8532.