Supporting Information

Bidentate (P^N) Au(III)-Azide Complexes: Synthesis and Reductive Elimination Studies

Urvashi and Nitin T. Patil*

Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India E-mail: npatil@iiserb.ac.in

Sr. No.		Contents	Page No.
1.		General information	2
	1.1.	Practical considerations	2
	1.2.	Instrumentation	2
	1.3.	Materials	2
2.		Synthesis of (P^N) Au(III)-azide complexes	3
3.		Reductive elimination studies from Au(III)-azide complexes	7
	3.1.	Reductive elimination from Au(III)-azide complex under thermal conditions	7
	3.2.	Reaction of Au(III)-azide complex with TMSCN	13
	3.3.	Reaction of Au(III)-azide complex with TMS-alkyne	15
	3.4.	Reaction of Au(III)-azide complex with terminal alkyne	17
4.		General procedure for the gold-catalyzed azidation of aryl iodides	18
5.		X-ray crystallographic information	21
6.		NMR spectra	23

1. General information:

1.1. Practical considerations:

All reactions were carried out in oven-dried vials or reaction vessels with magnetic stirring under nitrogen atmosphere, unless otherwise mentioned. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. All the gold-catalyzed cross-coupling reactions were performed in 2.5 mL glass vials with a PTFE-lined cap, whereas all other reactions were performed in round-bottom flasks with rubber septa. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on 0.25 mm precoated silica gel plates (60 F254). After elution, plate was visualized under UV at 254 nm for UV active materials. Further visualization was achieved by staining in I₂ and KMnO₄ solution and charring on a hot plate. Solvents were removed *in vacuo* and heated in a water bath at 35 °C. Silica gel finer than 200 mesh was used for flash column chromatography. Columns were packed as slurry of silica gel in pet ether and equilibrated with the appropriate solvent mixture prior to use. The compounds were loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure with an air pump.

1.2. Instrumentation:

All ¹H NMR, ³¹P NMR and ¹³C NMR spectra were recorded in Bruker AVANCE III 400, 500 and 700 MHz NMR spectrometers at 25 °C unless specified otherwise using TMS as an internal standard or the solvent signals as secondary standards and the chemical shifts are shown in δ scales. Multiplicities of ¹H NMR signals are designated as s (singlet), br. s. (broad singlet), d (doublet), dd (doublet of doublet), ddd (doublet of doublet of doublet), t (triplet), q (quartet), m (multiplet) etc. HRMS (ESI) data were recorded on a Bruker Daltonics MicroTOF-Q-II spectrometer. Single crystal X-ray diffraction measurements were performed with Bruker D8 Venture Dual Source X-ray diffractometer and Bruker APEX-II CCD diffractometer.

1.3. Materials:

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. THF was distilled from Na/benzophenone under an atmosphere of N₂. DMSO, MeCN, DCM, 1,4-dioxane and acetone were dried using standard protocol under N₂. Gold, silver salts and deuterated solvents were purchased from Sigma-Aldrich and stored under nitrogen atmosphere.

2. Synthesis of (P^N) Au(III)-azide complexes

General Method:

Step 1: Oxidative addition of aryl iodides to gold(I) complexes

A reaction vial was charged with $AgSbF_6$ (1 equiv) in dichloromethane. Subsequently, aryl iodide (2 equiv) and gold(I) chloride complex (1 equiv) were added and the reaction mixture was stirred for 1 hour. After complete conversion, the reaction mixture was passed through a short pad of celite. The solvent was evaporated under reduced pressure and the residue was washed with benzene, diethyl ether and hexane twice. The Au(III) oxidative addition complexes **2** were dried under reduced pressure and high-vacuum and were directly subjected to the next step.

Step 2: Iodide abstraction followed by reaction with sodium azide

A reaction vial was charged with Au(III) oxidative addition complex 2 (1 equiv) in dichloromethane. Subsequently, $AgSbF_6$ (1 equiv) and NaN_3 (2 equiv) were added at room temperature and stirred for 1 hour. The reaction mixture was passed through a short pad of celite. Next, the solvent was evaporated under reduced pressure and the residue was washed with benzene, diethyl ether and hexane twice. The obtained solid was dried under reduced pressure and high-vacuum to furnish (P^N) Au(III)-azide complexes **3a-3i**.

Characterization data:

Au complex 3a:

White Solid, 95% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) δ = 7.98 - 7.87 (m, 3 H), 7.77 - 7.70 (m, 1 H), 7.59 (d, *J* = 7.9 Hz, 2 H), 7.44 (t, *J* = 7.5 Hz, 2 H), 7.33 - 7.27 (m, 1 H), 3.31 (s, 6 H), 2.24 (br. s., 6 H), 2.08 (br. s., 12 H), 1.81 - 1.71 (m, 12 H); ¹³C NMR

(176 MHz, DICHLOROMETHANE-d₂) δ = 158.8 (d, *J* = 7.6 Hz), 136.9, 136.6 (d, *J* = 2.5 Hz), 133.0, 132.4, 130.7 (d, *J* = 7.6 Hz), 128.5, 125.5 (d, *J* = 6.4 Hz), 120.1, 119.9, 53.1, 47.0 (d, *J* = 15.3 Hz), 40.9, 36.0, 29.0 (d, *J* = 10.2 Hz); ³¹P NMR (202 MHz, DICHLOROMETHANE-d₂) δ = 72.5. HRMS (ESI) calcd for C₃₄H₄₅AuN₄P (M) 737.3042, found 737.3057.

Au complex 3b:

White Solid, 92% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) $\delta = 7.99 - 7.85$ (m, 3 H), 7.78 - 7.69 (m, 1 H), 7.64 - 7.55 (m, 2 H), 7.24 (t, J = 8.3 Hz, 2 H), 3.32 (s, 6 H), 2.23 (br. s., 6 H), 2.10 (br. s., 6 H), 2.03 (br. s., 6 H), 1.80 - 1.72 (m, 12 H); ¹³C NMR (176 MHz, DICHLOROMETHANE-d₂) $\delta = 163.0$ (d, J = 248 Hz), 158.8 (d, J = 7.6 Hz), 136.9 (d, J = 34.3 Hz), 134.0 (d, J = 6.4 Hz), 130.9 (d, J = 7.6 Hz), 129.5, 125.5 (d, J = 7.6 Hz), 120.0, 119.7, 119.2 (d, J = 21.6 Hz), 53.2, 47.1 (d, J = 14.0 Hz), 40.9, 36.0, 29.0 (d, J = 10.2 Hz); ³¹P NMR (202 MHz, DICHLOROMETHANE-d₂) $\delta = -115.0$. HRMS (ESI) calcd for C₃₄H₄₄AuFN₄P (M) 755.2948, found 755.2964.

Au complex 3c:

White Solid, 90% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) δ = 7.99 - 7.85 (m, 3 H), 7.77 - 7.69 (m, 1 H), 7.48 - 7.40 (m, *J* = 7.8 Hz, 2 H), 7.30 - 7.22 (m, *J* = 7.8 Hz, 2 H), 3.30 (s, 6 H), 2.39 (s, 3 H), 2.24 (br. s., 6 H), 2.08 (br. s., 12 H), 1.82 - 1.69 (m, 12 H); ¹³C NMR (176 MHz, DICHLOROMETHANE-d₂) δ = 158.8 (d, *J* = 7.6 Hz), 138.6, 136.9 (d, *J* = 8.9 Hz), 133.0, 132.6, 132.4, 130.7 (d, *J* = 6.4 Hz), 125.5 (d, *J* = 6.4 Hz), 120.2, 120.0, 53.0, 46.9 (d, *J* = 15.3 Hz), 40.9, 36.0, 28.9 (d, *J* = 10.2 Hz), 20.9; ³¹P NMR (202 MHz, DICHLOROMETHANE-d₂) δ = 71.9. HRMS (ESI) calcd for C₃₅H₄₇AuN₄P (M) 751.3198, found 751.3214.

Au complex 3d:

White Solid, 94% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) δ = 7.99 - 7.86 (m, 3 H), 7.78 - 7.68 (m, 1 H), 7.52 - 7.42 (m, *J* = 8.1 Hz, 2 H), 7.08 - 7.00 (m, *J* = 8.1 Hz, 2 H), 3.84 (s, 3 H), 3.30 (s, 6 H), 2.24 (br. s., 6 H), 2.09 (br. s., 12 H), 1.82 - 1.70 (m, 12 H); ¹³C NMR (176 MHz, DICHLOROMETHANE-d₂) δ = 160.0, 158.8 (d, *J* = 7.6 Hz), 136.9 (d, *J* = 5.1 Hz), 133.1, 130.7 (d, *J* = 6.4 Hz), 125.5 (d, *J* = 7.6 Hz), 124.8 (d, *J* = 3.8 Hz), 120.2, 120.0, 117.9, 55.9, 53.1, 46.9 (d, *J* = 15.3 Hz), 40.9, 36.0, 29.0 (d, *J* = 10.2 Hz); ³¹P NMR (202 MHz, DICHLOROMETHANE-d₂) δ = 72.1. HRMS (ESI) calcd for C₃₅H₄₇AuN₄OP (M) 767.3148, found 767.3177.

Au complex 3e:

White Solid, 82% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) $\delta = 8.03 - 7.86$ (m, 5 H), 7.76 (d, J = 7.9 Hz, 3 H), 3.34 (s, 6 H), 2.62 (s, 3 H), 2.24 (br. s., 6 H), 2.10 (br. s., 6 H), 2.04 (br. s., 6 H), 1.86 - 1.68 (m, 12 H); ¹³C NMR (176 MHz, DICHLOROMETHANE-d₂) $\delta = 197.6$, 158.8 (d, J = 7.6 Hz), 142.9, 137.1 (d, J = 16.5 Hz), 136.8, 133.4, 131.4, 130.9 (d, J = 7.6 Hz), 125.6 (d, J = 6.4 Hz), 119.9, 119.6, 53.3, 47.2 (d, J = 14.0 Hz), 41.0, 35.9, 29.0 (d, J = 10.2 Hz), 27.0; ³¹P NMR (202 MHz, DICHLOROMETHANE-d₂) $\delta = 74.9$. HRMS (ESI) calcd for C₃₆H₄₇AuN₄OP (M) 779.3148, found 779.3173.

Au complex 3f:

White Solid, 88% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) $\delta = 8.07$ (d, J = 8.3 Hz, 2 H), 8.00 - 7.87 (m, 3 H), 7.74 (d, J = 8.1 Hz, 3 H), 3.92 (s, 3 H), 3.33 (s, 6 H), 2.24 (br. s., 6 H), 2.10 (br. s., 6 H), 2.03 (br. s., 6 H), 1.83 - 1.69 (m, 12 H); ¹³C NMR (176 MHz,

DICHLOROMETHANE-d₂) δ = 166.6, 158.8 (d, *J* = 6.4 Hz), 142.7, 137.1, 136.8, 133.2, 132.6, 130.9 (d, *J* = 7.6 Hz), 130.6, 125.6 (d, *J* = 6.4 Hz), 119.8, 119.6, 53.3, 52.8, 47.2 (d, *J* = 14.0 Hz), 41.0, 35.9, 28.9 (d, *J* = 8.9 Hz); ³¹P NMR (202 MHz, DICHLOROMETHANEd₂) δ = 74.8. HRMS (ESI) calcd for C₃₆H₄₇AuN₄O₂P (M) 795.3097, found 795.3108.

Au complex 3g:

White Solid, 93% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) $\delta = 8.01 - 7.86$ (m, 3 H), 7.79 - 7.71 (m, 1 H), 7.52 - 7.34 (m, 3 H), 7.05 (t, *J* = 7.9 Hz, 1 H), 3.33 (s, 6 H), 2.24 (br. s., 6 H), 2.10 (br. s., 6 H), 2.05 (br. s., 6 H), 1.77 (br. s., 12 H); ¹³C NMR (176 MHz, **DICHLOROMETHANE-d**₂) $\delta = 164.0 (d, J = 253.0 Hz), 158.8 (d, J = 6.4 Hz), 137.1 (d, J = 253.0 Hz), 158.8 (d, J = 6.4 Hz$ 2.5 Hz), 136.9, 136.4 (dd, J = 2.5 Hz), 133.2 (d, J = 7.6 Hz), 130.9 (d, J = 7.6 Hz), 128.9 (d, J = 2.5 Hz), 125.5 (d, J = 7.6 Hz), 120.4 (d, J = 22.9 Hz), 119.9, 119.6, 115.4 (d, J = 20.3 Hz), 53.3, 47.3 (d, J = 16.5 Hz), 41.0 (d, J = 24.2 Hz), 36.0, 29.0 (dd, J = 6.4 Hz); ³¹P NMR (202) ¹⁹F MHz. **DICHLOROMETHANE-d**₂) δ = 74.5. **NMR** (377 MHz, **DICHLOROMETHANE-d**₂) δ = -108.8. **HRMS** (ESI) calcd for C₃₄H₄₄AuN₄FP (M) 755.2948, found 755.2930.

Au complex 3h:

White Solid, 85% yield; ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) $\delta = 8.01 - 7.90$ (m, 3 H), 7.79 - 7.72 (m, 1 H), 7.67 (d, J = 7.8 Hz, 1 H), 7.55 (d, J = 7.8 Hz, 1 H), 7.43 - 7.37 (m, 1 H), 7.36 - 7.29 (m, 1 H), 3.34 (s, 3 H), 3.38 (s, 3 H), 2.34 (d, J = 6.4 Hz, 3 H), 2.19 (br. s., 9 H), 2.01 (br. s., 3 H), 1.94 (br. s., 3 H), 1.86 - 1.67 (m, 12 H); ¹³C NMR (176 MHz, DICHLOROMETHANE-d₂) $\delta = 158.8$ (d, J = 7.6 Hz), 137.1, 136.5, 135.5 (d, J = 2.5 Hz), 134.9, 134.5, 133.3, 131.2 (d, J = 7.6 Hz), 130.2, 129.7, 125.5 (d, J = 6.4 Hz), 120.2 (d, J = 44.5 Hz), 53.5, 53.1, 47.1 (d, J = 15.3 Hz), 46.8 (d, J = 14.0 Hz), 41.3, 39.6, 36.0, 35.7, 29.0

(dd, *J* = 10.2 Hz); ³¹**P** NMR (202 MHz, DICHLOROMETHANE-d₂) δ = 77.9. HRMS (ESI) calcd for C₃₄H₄₄AuClN₄P (M) 771.2652, found 771.2644.

Au complex 3i:

White Solid, 81% yield, ¹H NMR (400 MHz, DICHLOROMETHANE-d₂) $\delta = 8.16$ (s, 2 H), 8.03 - 7.94 (m, 2 H), 7.93 - 7.85 (m, 2 H), 7.78 (d, J = 6.7 Hz, 1 H), 3.39 (s, 6 H), 2.23 (br. s., 6 H), 2.10 (br. s., 6 H), 1.99 (br. s., 6 H), 1.77 (d, J = 13.2 Hz, 9 H), 1.84 - 1.70 (m, 3 H); ¹³C NMR (176 MHz, DICHLOROMETHANE-d₂) $\delta = 158.9$ (d, J = 7.6 Hz), 137.4 (d, J = 2.5Hz), 137.3 (d, J = 2.5 Hz), 136.9, 134.2 - 133.6 (q, J = 34.3 Hz), 134.0, 131.3 (d, J = 7.6 Hz), 125.7, 125.6 (d, J = 7.6 Hz), 124.1, 122.6, 122.4 (t, J = 3.8 Hz), 121.0, 119.2, 119.0, 53.8, 47.7, 47.6, 41.2, 35.8, 28.9, 28.9 (d, J = 10.2 Hz); ³¹P NMR (202 MHz, DICHLOROMETHANEd₂) $\delta = 78.2$; ¹⁹F NMR (377 MHz, DICHLOROMETHANE-d₂) $\delta = -63.2$. HRMS (ESI) calcd for C₃₆H₄₃AuF₆N₄P (M) 873.2790, found 873.2788.

3. Reductive elimination studies from Au(III)-azide complexes

3.1. Reductive elimination from Au(III)-azide complex under thermal conditions:

An oven dried vial was charged with Au(III)-azide complex **3** (0.4 mmol, 1 equiv) in dichloroethane. The reaction mixture was heated at 100 °C and stirred for 12 hour. The formation of the $C(sp^2)-N_3$ cross-coupled product **4** was indicated by TLC analysis and the product was further isolated and characterized by ¹H NMR spectroscopy.

azidobenzene (4a):¹

¹⁾ A. S. Kumar, M. A. Reddy, M. Knorn, O. Reiser, B. Sreedhar, Eur. J. Org. Chem., 2013, 4674–4680.

Colorless oil, 96% yield, $R_f = 0.90$ (petroleum ether); ¹H NMR (400 MHz, CHLOROFORMd) $\delta = 7.37$ (t, J = 7.4 Hz, 2 H), 7.16 (t, J = 7.4 Hz, 1 H), 7.05 (d, J = 7.8 Hz, 2 H).

1-azido-4-fluorobenzene (4b):¹

Yellow oil, 92% yield, $R_f = 0.90$ (petroleum ether); ¹H NMR (500 MHz, DICHLOROMETHANE-d₂) $\delta = 7.08 - 7.05$ (m, 2 H), 7.01 - 6.98 (m, 2 H). ¹⁹F NMR (500 MHz, DICHLOROMETHANE-d₂) $\delta = -118.54$.

1-azido-4-methylbenzene (4c):²

Yellow oil, 95% yield, $R_f = 0.90$ (petroleum ether); ¹H NMR (500 MHz, CHLOROFORMd) $\delta = 7.17$ (d, J = 8.4 Hz, 2 H), 6.94 (d, J = 8.3 Hz, 2 H), 2.35 (s, 3 H).

1-azido-4-methoxybenzene (4d):²

Yellow oil, 93% yield, $R_f = 0.80$ (petroleum ether); ¹H NMR (500 MHz, CHLOROFORMd) $\delta = 6.97$ (d, J = 9.1 Hz, 2 H), 6.90 (d, J = 9.0 Hz, 2 H), 3.81 (s, 3 H).

1-(4-azidophenyl)ethan-1-one (4e):²

²⁾ Y. Li, L.-X. Gao, F.-S. Han, Chem. Eur. J., 2010, 16, 7969 - 7972.

White Solid, 95% yield, $R_f = 0.80$ (petroleum ether); ¹H NMR (500 MHz, CHLOROFORMd) $\delta = 7.95$ (d, J = 8.8 Hz, 2 H), 7.07 (d, J = 8.8 Hz, 2 H), 2.57 (s, 3 H).

1-(4-azidophenyl)ethan-1-one (4f):³

White Solid, 91% yield, $R_f = 0.80$ (petroleum ether); ¹H NMR (400 MHz, CHLOROFORMd) $\delta = 8.03$ (d, J = 8.6 Hz, 2 H), 7.06 (d, J = 8.6 Hz, 2 H), 3.91 (s, 3 H).

1-azido-2-chlorobenzene (4h):⁴

Yellow oil, 90% yield, *R*_{*f*} = 0.90 (petroleum ether); ¹**H NMR** (**500 MHz, CHLOROFORMd**) δ = 7.39 (dd, *J* = 1.4, 8.0 Hz, 1 H), 7.33 - 7.28 (m, 1 H), 7.19 (dd, *J* = 1.4, 8.0 Hz, 1 H), 7.12 - 7.06 (m, 1 H).

³⁾ W. Song, N. Zheng, M. Li, J. He, J. Li, K. Dong, K. Ullah, Y. Zheng, Adv. Synth. Catal., 2019, 361, 469–475.

⁴⁾ H. Zheng, R. McDonald, D. G. Hall, Chem. Eur. J., 2010, 16, 5454-5460.

3.2. Reaction of Au(III)-azide complex with TMSCN:

An oven dried vial was charged with Au(III) azide complex **3b** (0.2 mmol, 1 equiv) in dichloromethane. Trimethylsilyl cyanide (1 mmol, 5 equiv) was added, and the reaction mixture was stirred for 20 minutes at room temperature. The formation of 4-fluorobenzonitrile **5** was indicated by TLC analysis and the product was further isolated and characterized by ¹H NMR spectroscopy.

4-fluorobenzonitrile (5):⁵

99% yield, ¹H NMR (500 MHz, CHLOROFORM-d) δ = 7.70 - 7.68 (m, 2 H), 7.20 - 7.17 (m, 2 H). ¹⁹F NMR (470 MHz, CHLOROFORM-d) δ = -102.4.

⁵⁾ R. Gerber, M. Oberholzer, C. M. Frech, Chem. Eur. J., 2012, 18, 2978–2986.

3.3. Reaction of Au(III)-azide complex with TMS-alkyne:

An oven dried vial was charged with Au(III)-azide complex **3b** (0.2 mmol, 1 equiv) in dichloromethane. Trimethylsilyl alkyne (1 mmol, 5 equiv) was added, and the reaction mixture was stirred for 48 hours at 60 °C. The formation of the $C(sp^2)$ -C(sp) cross-coupled product **6** was indicated by TLC analysis and the product was further isolated and characterized by ¹H NMR spectroscopy.

1-fluoro-4-((4-methoxyphenyl)ethynyl)benzene (6):⁶

⁶⁾ T. Li, X. Qu, G. Xie, J. Mao, Chem. Asian J., 2011, 6, 1325–1330.

87% yield, ¹H NMR (500 MHz, CHLOROFORM-d) $\delta = 7.51 - 7.46$ (m, 4 H), 7.04 (t, J = 8.7 Hz, 2 H), 6.91 - 6.87 (d, J = 8.8 Hz, 2 H), 3.84 (s, 3 H). ¹⁹F NMR (470 MHz, CHLOROFORM-d) $\delta = -111.51$.

3.4. Reaction of Au(III)-azide complex with terminal alkyne:

An oven dried vial was charged with Au(III)-azide complex **3b** (0.2 mmol, 1 equiv) in dichloromethane. Methyl propiolate (1 mmol, 5 equiv) was added, and the reaction mixture was stirred for 48 hours at 60 °C. The formation of methyl 3-(4-fluorophenyl)propiolate **7** was indicated by TLC analysis and the product was further isolated and characterized by ¹H NMR spectroscopy.

methyl 3-(4-fluorophenyl)propiolate (7):⁷

96% yield, ¹H NMR (500 MHz, CHLOROFORM-d) δ = 7.62 - 7.59 (m, 2 H), 7.12 - 7.08 (m, 2 H), 3.86 (s, 3 H). ¹⁹F NMR (470 MHz, CHLOROFORM-d) δ = -106.27.

⁷⁾ Y.-L. Zhu, N. Zhao, X.-L. Fu, X.-Y. Zhao, Y.-L. Li, Y.-D. Shao, J. Chen, Y. Lu, Org. Lett., 2024, 26, 12–17.

4. General procedure for the gold-catalyzed azidation of aryl iodides:

We began the development of gold-catalyzed azidation reaction of aryl iodides by performing the reaction of iodobenzene (1 equiv) with sodium azide (1 equiv) in the presence of 5 mol%

MeDalPhosAuCl, 10 mol% AgSbF₆ and 1.1 equiv AgOAc in DCE:DMSO (10:1) at 100 °C for 24 hours. The formation of the desired product was observed in trace amounts. Next, we moved our attention towards screening of other sources of azide such as TMSN₃ and diphenyl phosphoryl azide. By utilizing TMSN₃ as the coupling partner, the yield of the reaction was increased to 84%.

An oven-dried screw-cap vial, equipped with a magnetic stir bar, was loaded with TMSN₃ (0.2 mmol, 1.0 equiv), AgOAc (0.22 mmol, 1.1 equiv) and DMSO (0.2 ml) and allowed to stir at 100 °C for 1 h. In another vial, aryl iodide (0.2 mmol, 1.0 equiv), MeDalPhosAuCl (0.01 mmol, 0.05 equiv), and DCE (2 ml) was added and stirred at room temperature. This mixture was then added to the screw-cap vial by using a syringe equipped with a needle. The resulting reaction mixture was stirred at room temperature for 5 min, then AgSbF₆ (0.02 mmol, 0.1 equiv) was added and the mixture was allowed to stir at 100 °C for 24 h. After completion of the reaction, as monitored by TLC, it was diluted with DCM (5 mL), filtered through a short pad of celite, concentrated and subsequently purified by silica gel column chromatography to afford the desired cross-coupled product **4**.

NMR Spectra for azidoarenes (4):

5. X-ray crystallographic information

Sr. No. Compound structure	ORTEP diagram
----------------------------	---------------

Justification for omission of elemental analysis data: Elemental analysis data could not be obtained for the (P^N)Au(III)-azide complexes due to their thermal instability. These complexes undergo reductive elimination at 100 °C. Alternative characterization data, including ¹H, ³¹P and ¹³C NMR, HRMS, and X-ray crystallography (wherever applicable), have been provided to confirm the purity of the compounds.

6. NMR Spectra:
